xref: /openbmc/u-boot/fs/ubifs/recovery.c (revision 0b45a79faa2f61bc095c785cfbfe4aa5206d9d13)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * SPDX-License-Identifier:	GPL-2.0+
7  *
8  * Authors: Adrian Hunter
9  *          Artem Bityutskiy (Битюцкий Артём)
10  */
11 
12 /*
13  * This file implements functions needed to recover from unclean un-mounts.
14  * When UBIFS is mounted, it checks a flag on the master node to determine if
15  * an un-mount was completed successfully. If not, the process of mounting
16  * incorporates additional checking and fixing of on-flash data structures.
17  * UBIFS always cleans away all remnants of an unclean un-mount, so that
18  * errors do not accumulate. However UBIFS defers recovery if it is mounted
19  * read-only, and the flash is not modified in that case.
20  *
21  * The general UBIFS approach to the recovery is that it recovers from
22  * corruptions which could be caused by power cuts, but it refuses to recover
23  * from corruption caused by other reasons. And UBIFS tries to distinguish
24  * between these 2 reasons of corruptions and silently recover in the former
25  * case and loudly complain in the latter case.
26  *
27  * UBIFS writes only to erased LEBs, so it writes only to the flash space
28  * containing only 0xFFs. UBIFS also always writes strictly from the beginning
29  * of the LEB to the end. And UBIFS assumes that the underlying flash media
30  * writes in @c->max_write_size bytes at a time.
31  *
32  * Hence, if UBIFS finds a corrupted node at offset X, it expects only the min.
33  * I/O unit corresponding to offset X to contain corrupted data, all the
34  * following min. I/O units have to contain empty space (all 0xFFs). If this is
35  * not true, the corruption cannot be the result of a power cut, and UBIFS
36  * refuses to mount.
37  */
38 
39 #ifndef __UBOOT__
40 #include <linux/crc32.h>
41 #include <linux/slab.h>
42 #else
43 #include <linux/err.h>
44 #endif
45 #include "ubifs.h"
46 
47 /**
48  * is_empty - determine whether a buffer is empty (contains all 0xff).
49  * @buf: buffer to clean
50  * @len: length of buffer
51  *
52  * This function returns %1 if the buffer is empty (contains all 0xff) otherwise
53  * %0 is returned.
54  */
55 static int is_empty(void *buf, int len)
56 {
57 	uint8_t *p = buf;
58 	int i;
59 
60 	for (i = 0; i < len; i++)
61 		if (*p++ != 0xff)
62 			return 0;
63 	return 1;
64 }
65 
66 /**
67  * first_non_ff - find offset of the first non-0xff byte.
68  * @buf: buffer to search in
69  * @len: length of buffer
70  *
71  * This function returns offset of the first non-0xff byte in @buf or %-1 if
72  * the buffer contains only 0xff bytes.
73  */
74 static int first_non_ff(void *buf, int len)
75 {
76 	uint8_t *p = buf;
77 	int i;
78 
79 	for (i = 0; i < len; i++)
80 		if (*p++ != 0xff)
81 			return i;
82 	return -1;
83 }
84 
85 /**
86  * get_master_node - get the last valid master node allowing for corruption.
87  * @c: UBIFS file-system description object
88  * @lnum: LEB number
89  * @pbuf: buffer containing the LEB read, is returned here
90  * @mst: master node, if found, is returned here
91  * @cor: corruption, if found, is returned here
92  *
93  * This function allocates a buffer, reads the LEB into it, and finds and
94  * returns the last valid master node allowing for one area of corruption.
95  * The corrupt area, if there is one, must be consistent with the assumption
96  * that it is the result of an unclean unmount while the master node was being
97  * written. Under those circumstances, it is valid to use the previously written
98  * master node.
99  *
100  * This function returns %0 on success and a negative error code on failure.
101  */
102 static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf,
103 			   struct ubifs_mst_node **mst, void **cor)
104 {
105 	const int sz = c->mst_node_alsz;
106 	int err, offs, len;
107 	void *sbuf, *buf;
108 
109 	sbuf = vmalloc(c->leb_size);
110 	if (!sbuf)
111 		return -ENOMEM;
112 
113 	err = ubifs_leb_read(c, lnum, sbuf, 0, c->leb_size, 0);
114 	if (err && err != -EBADMSG)
115 		goto out_free;
116 
117 	/* Find the first position that is definitely not a node */
118 	offs = 0;
119 	buf = sbuf;
120 	len = c->leb_size;
121 	while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) {
122 		struct ubifs_ch *ch = buf;
123 
124 		if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
125 			break;
126 		offs += sz;
127 		buf  += sz;
128 		len  -= sz;
129 	}
130 	/* See if there was a valid master node before that */
131 	if (offs) {
132 		int ret;
133 
134 		offs -= sz;
135 		buf  -= sz;
136 		len  += sz;
137 		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
138 		if (ret != SCANNED_A_NODE && offs) {
139 			/* Could have been corruption so check one place back */
140 			offs -= sz;
141 			buf  -= sz;
142 			len  += sz;
143 			ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
144 			if (ret != SCANNED_A_NODE)
145 				/*
146 				 * We accept only one area of corruption because
147 				 * we are assuming that it was caused while
148 				 * trying to write a master node.
149 				 */
150 				goto out_err;
151 		}
152 		if (ret == SCANNED_A_NODE) {
153 			struct ubifs_ch *ch = buf;
154 
155 			if (ch->node_type != UBIFS_MST_NODE)
156 				goto out_err;
157 			dbg_rcvry("found a master node at %d:%d", lnum, offs);
158 			*mst = buf;
159 			offs += sz;
160 			buf  += sz;
161 			len  -= sz;
162 		}
163 	}
164 	/* Check for corruption */
165 	if (offs < c->leb_size) {
166 		if (!is_empty(buf, min_t(int, len, sz))) {
167 			*cor = buf;
168 			dbg_rcvry("found corruption at %d:%d", lnum, offs);
169 		}
170 		offs += sz;
171 		buf  += sz;
172 		len  -= sz;
173 	}
174 	/* Check remaining empty space */
175 	if (offs < c->leb_size)
176 		if (!is_empty(buf, len))
177 			goto out_err;
178 	*pbuf = sbuf;
179 	return 0;
180 
181 out_err:
182 	err = -EINVAL;
183 out_free:
184 	vfree(sbuf);
185 	*mst = NULL;
186 	*cor = NULL;
187 	return err;
188 }
189 
190 /**
191  * write_rcvrd_mst_node - write recovered master node.
192  * @c: UBIFS file-system description object
193  * @mst: master node
194  *
195  * This function returns %0 on success and a negative error code on failure.
196  */
197 static int write_rcvrd_mst_node(struct ubifs_info *c,
198 				struct ubifs_mst_node *mst)
199 {
200 	int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz;
201 	__le32 save_flags;
202 
203 	dbg_rcvry("recovery");
204 
205 	save_flags = mst->flags;
206 	mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY);
207 
208 	ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1);
209 	err = ubifs_leb_change(c, lnum, mst, sz);
210 	if (err)
211 		goto out;
212 	err = ubifs_leb_change(c, lnum + 1, mst, sz);
213 	if (err)
214 		goto out;
215 out:
216 	mst->flags = save_flags;
217 	return err;
218 }
219 
220 /**
221  * ubifs_recover_master_node - recover the master node.
222  * @c: UBIFS file-system description object
223  *
224  * This function recovers the master node from corruption that may occur due to
225  * an unclean unmount.
226  *
227  * This function returns %0 on success and a negative error code on failure.
228  */
229 int ubifs_recover_master_node(struct ubifs_info *c)
230 {
231 	void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL;
232 	struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst;
233 	const int sz = c->mst_node_alsz;
234 	int err, offs1, offs2;
235 
236 	dbg_rcvry("recovery");
237 
238 	err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1);
239 	if (err)
240 		goto out_free;
241 
242 	err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2);
243 	if (err)
244 		goto out_free;
245 
246 	if (mst1) {
247 		offs1 = (void *)mst1 - buf1;
248 		if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) &&
249 		    (offs1 == 0 && !cor1)) {
250 			/*
251 			 * mst1 was written by recovery at offset 0 with no
252 			 * corruption.
253 			 */
254 			dbg_rcvry("recovery recovery");
255 			mst = mst1;
256 		} else if (mst2) {
257 			offs2 = (void *)mst2 - buf2;
258 			if (offs1 == offs2) {
259 				/* Same offset, so must be the same */
260 				if (memcmp((void *)mst1 + UBIFS_CH_SZ,
261 					   (void *)mst2 + UBIFS_CH_SZ,
262 					   UBIFS_MST_NODE_SZ - UBIFS_CH_SZ))
263 					goto out_err;
264 				mst = mst1;
265 			} else if (offs2 + sz == offs1) {
266 				/* 1st LEB was written, 2nd was not */
267 				if (cor1)
268 					goto out_err;
269 				mst = mst1;
270 			} else if (offs1 == 0 &&
271 				   c->leb_size - offs2 - sz < sz) {
272 				/* 1st LEB was unmapped and written, 2nd not */
273 				if (cor1)
274 					goto out_err;
275 				mst = mst1;
276 			} else
277 				goto out_err;
278 		} else {
279 			/*
280 			 * 2nd LEB was unmapped and about to be written, so
281 			 * there must be only one master node in the first LEB
282 			 * and no corruption.
283 			 */
284 			if (offs1 != 0 || cor1)
285 				goto out_err;
286 			mst = mst1;
287 		}
288 	} else {
289 		if (!mst2)
290 			goto out_err;
291 		/*
292 		 * 1st LEB was unmapped and about to be written, so there must
293 		 * be no room left in 2nd LEB.
294 		 */
295 		offs2 = (void *)mst2 - buf2;
296 		if (offs2 + sz + sz <= c->leb_size)
297 			goto out_err;
298 		mst = mst2;
299 	}
300 
301 	ubifs_msg(c, "recovered master node from LEB %d",
302 		  (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1));
303 
304 	memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ);
305 
306 	if (c->ro_mount) {
307 		/* Read-only mode. Keep a copy for switching to rw mode */
308 		c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL);
309 		if (!c->rcvrd_mst_node) {
310 			err = -ENOMEM;
311 			goto out_free;
312 		}
313 		memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ);
314 
315 		/*
316 		 * We had to recover the master node, which means there was an
317 		 * unclean reboot. However, it is possible that the master node
318 		 * is clean at this point, i.e., %UBIFS_MST_DIRTY is not set.
319 		 * E.g., consider the following chain of events:
320 		 *
321 		 * 1. UBIFS was cleanly unmounted, so the master node is clean
322 		 * 2. UBIFS is being mounted R/W and starts changing the master
323 		 *    node in the first (%UBIFS_MST_LNUM). A power cut happens,
324 		 *    so this LEB ends up with some amount of garbage at the
325 		 *    end.
326 		 * 3. UBIFS is being mounted R/O. We reach this place and
327 		 *    recover the master node from the second LEB
328 		 *    (%UBIFS_MST_LNUM + 1). But we cannot update the media
329 		 *    because we are being mounted R/O. We have to defer the
330 		 *    operation.
331 		 * 4. However, this master node (@c->mst_node) is marked as
332 		 *    clean (since the step 1). And if we just return, the
333 		 *    mount code will be confused and won't recover the master
334 		 *    node when it is re-mounter R/W later.
335 		 *
336 		 *    Thus, to force the recovery by marking the master node as
337 		 *    dirty.
338 		 */
339 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
340 #ifndef __UBOOT__
341 	} else {
342 		/* Write the recovered master node */
343 		c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1;
344 		err = write_rcvrd_mst_node(c, c->mst_node);
345 		if (err)
346 			goto out_free;
347 #endif
348 	}
349 
350 	vfree(buf2);
351 	vfree(buf1);
352 
353 	return 0;
354 
355 out_err:
356 	err = -EINVAL;
357 out_free:
358 	ubifs_err(c, "failed to recover master node");
359 	if (mst1) {
360 		ubifs_err(c, "dumping first master node");
361 		ubifs_dump_node(c, mst1);
362 	}
363 	if (mst2) {
364 		ubifs_err(c, "dumping second master node");
365 		ubifs_dump_node(c, mst2);
366 	}
367 	vfree(buf2);
368 	vfree(buf1);
369 	return err;
370 }
371 
372 /**
373  * ubifs_write_rcvrd_mst_node - write the recovered master node.
374  * @c: UBIFS file-system description object
375  *
376  * This function writes the master node that was recovered during mounting in
377  * read-only mode and must now be written because we are remounting rw.
378  *
379  * This function returns %0 on success and a negative error code on failure.
380  */
381 int ubifs_write_rcvrd_mst_node(struct ubifs_info *c)
382 {
383 	int err;
384 
385 	if (!c->rcvrd_mst_node)
386 		return 0;
387 	c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
388 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
389 	err = write_rcvrd_mst_node(c, c->rcvrd_mst_node);
390 	if (err)
391 		return err;
392 	kfree(c->rcvrd_mst_node);
393 	c->rcvrd_mst_node = NULL;
394 	return 0;
395 }
396 
397 /**
398  * is_last_write - determine if an offset was in the last write to a LEB.
399  * @c: UBIFS file-system description object
400  * @buf: buffer to check
401  * @offs: offset to check
402  *
403  * This function returns %1 if @offs was in the last write to the LEB whose data
404  * is in @buf, otherwise %0 is returned. The determination is made by checking
405  * for subsequent empty space starting from the next @c->max_write_size
406  * boundary.
407  */
408 static int is_last_write(const struct ubifs_info *c, void *buf, int offs)
409 {
410 	int empty_offs, check_len;
411 	uint8_t *p;
412 
413 	/*
414 	 * Round up to the next @c->max_write_size boundary i.e. @offs is in
415 	 * the last wbuf written. After that should be empty space.
416 	 */
417 	empty_offs = ALIGN(offs + 1, c->max_write_size);
418 	check_len = c->leb_size - empty_offs;
419 	p = buf + empty_offs - offs;
420 	return is_empty(p, check_len);
421 }
422 
423 /**
424  * clean_buf - clean the data from an LEB sitting in a buffer.
425  * @c: UBIFS file-system description object
426  * @buf: buffer to clean
427  * @lnum: LEB number to clean
428  * @offs: offset from which to clean
429  * @len: length of buffer
430  *
431  * This function pads up to the next min_io_size boundary (if there is one) and
432  * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
433  * @c->min_io_size boundary.
434  */
435 static void clean_buf(const struct ubifs_info *c, void **buf, int lnum,
436 		      int *offs, int *len)
437 {
438 	int empty_offs, pad_len;
439 
440 	lnum = lnum;
441 	dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs);
442 
443 	ubifs_assert(!(*offs & 7));
444 	empty_offs = ALIGN(*offs, c->min_io_size);
445 	pad_len = empty_offs - *offs;
446 	ubifs_pad(c, *buf, pad_len);
447 	*offs += pad_len;
448 	*buf += pad_len;
449 	*len -= pad_len;
450 	memset(*buf, 0xff, c->leb_size - empty_offs);
451 }
452 
453 /**
454  * no_more_nodes - determine if there are no more nodes in a buffer.
455  * @c: UBIFS file-system description object
456  * @buf: buffer to check
457  * @len: length of buffer
458  * @lnum: LEB number of the LEB from which @buf was read
459  * @offs: offset from which @buf was read
460  *
461  * This function ensures that the corrupted node at @offs is the last thing
462  * written to a LEB. This function returns %1 if more data is not found and
463  * %0 if more data is found.
464  */
465 static int no_more_nodes(const struct ubifs_info *c, void *buf, int len,
466 			int lnum, int offs)
467 {
468 	struct ubifs_ch *ch = buf;
469 	int skip, dlen = le32_to_cpu(ch->len);
470 
471 	/* Check for empty space after the corrupt node's common header */
472 	skip = ALIGN(offs + UBIFS_CH_SZ, c->max_write_size) - offs;
473 	if (is_empty(buf + skip, len - skip))
474 		return 1;
475 	/*
476 	 * The area after the common header size is not empty, so the common
477 	 * header must be intact. Check it.
478 	 */
479 	if (ubifs_check_node(c, buf, lnum, offs, 1, 0) != -EUCLEAN) {
480 		dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs);
481 		return 0;
482 	}
483 	/* Now we know the corrupt node's length we can skip over it */
484 	skip = ALIGN(offs + dlen, c->max_write_size) - offs;
485 	/* After which there should be empty space */
486 	if (is_empty(buf + skip, len - skip))
487 		return 1;
488 	dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip);
489 	return 0;
490 }
491 
492 /**
493  * fix_unclean_leb - fix an unclean LEB.
494  * @c: UBIFS file-system description object
495  * @sleb: scanned LEB information
496  * @start: offset where scan started
497  */
498 static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
499 			   int start)
500 {
501 	int lnum = sleb->lnum, endpt = start;
502 
503 	/* Get the end offset of the last node we are keeping */
504 	if (!list_empty(&sleb->nodes)) {
505 		struct ubifs_scan_node *snod;
506 
507 		snod = list_entry(sleb->nodes.prev,
508 				  struct ubifs_scan_node, list);
509 		endpt = snod->offs + snod->len;
510 	}
511 
512 	if (c->ro_mount && !c->remounting_rw) {
513 		/* Add to recovery list */
514 		struct ubifs_unclean_leb *ucleb;
515 
516 		dbg_rcvry("need to fix LEB %d start %d endpt %d",
517 			  lnum, start, sleb->endpt);
518 		ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS);
519 		if (!ucleb)
520 			return -ENOMEM;
521 		ucleb->lnum = lnum;
522 		ucleb->endpt = endpt;
523 		list_add_tail(&ucleb->list, &c->unclean_leb_list);
524 #ifndef __UBOOT__
525 	} else {
526 		/* Write the fixed LEB back to flash */
527 		int err;
528 
529 		dbg_rcvry("fixing LEB %d start %d endpt %d",
530 			  lnum, start, sleb->endpt);
531 		if (endpt == 0) {
532 			err = ubifs_leb_unmap(c, lnum);
533 			if (err)
534 				return err;
535 		} else {
536 			int len = ALIGN(endpt, c->min_io_size);
537 
538 			if (start) {
539 				err = ubifs_leb_read(c, lnum, sleb->buf, 0,
540 						     start, 1);
541 				if (err)
542 					return err;
543 			}
544 			/* Pad to min_io_size */
545 			if (len > endpt) {
546 				int pad_len = len - ALIGN(endpt, 8);
547 
548 				if (pad_len > 0) {
549 					void *buf = sleb->buf + len - pad_len;
550 
551 					ubifs_pad(c, buf, pad_len);
552 				}
553 			}
554 			err = ubifs_leb_change(c, lnum, sleb->buf, len);
555 			if (err)
556 				return err;
557 		}
558 #endif
559 	}
560 	return 0;
561 }
562 
563 /**
564  * drop_last_group - drop the last group of nodes.
565  * @sleb: scanned LEB information
566  * @offs: offset of dropped nodes is returned here
567  *
568  * This is a helper function for 'ubifs_recover_leb()' which drops the last
569  * group of nodes of the scanned LEB.
570  */
571 static void drop_last_group(struct ubifs_scan_leb *sleb, int *offs)
572 {
573 	while (!list_empty(&sleb->nodes)) {
574 		struct ubifs_scan_node *snod;
575 		struct ubifs_ch *ch;
576 
577 		snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
578 				  list);
579 		ch = snod->node;
580 		if (ch->group_type != UBIFS_IN_NODE_GROUP)
581 			break;
582 
583 		dbg_rcvry("dropping grouped node at %d:%d",
584 			  sleb->lnum, snod->offs);
585 		*offs = snod->offs;
586 		list_del(&snod->list);
587 		kfree(snod);
588 		sleb->nodes_cnt -= 1;
589 	}
590 }
591 
592 /**
593  * drop_last_node - drop the last node.
594  * @sleb: scanned LEB information
595  * @offs: offset of dropped nodes is returned here
596  *
597  * This is a helper function for 'ubifs_recover_leb()' which drops the last
598  * node of the scanned LEB.
599  */
600 static void drop_last_node(struct ubifs_scan_leb *sleb, int *offs)
601 {
602 	struct ubifs_scan_node *snod;
603 
604 	if (!list_empty(&sleb->nodes)) {
605 		snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
606 				  list);
607 
608 		dbg_rcvry("dropping last node at %d:%d",
609 			  sleb->lnum, snod->offs);
610 		*offs = snod->offs;
611 		list_del(&snod->list);
612 		kfree(snod);
613 		sleb->nodes_cnt -= 1;
614 	}
615 }
616 
617 /**
618  * ubifs_recover_leb - scan and recover a LEB.
619  * @c: UBIFS file-system description object
620  * @lnum: LEB number
621  * @offs: offset
622  * @sbuf: LEB-sized buffer to use
623  * @jhead: journal head number this LEB belongs to (%-1 if the LEB does not
624  *         belong to any journal head)
625  *
626  * This function does a scan of a LEB, but caters for errors that might have
627  * been caused by the unclean unmount from which we are attempting to recover.
628  * Returns the scanned information on success and a negative error code on
629  * failure.
630  */
631 struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
632 					 int offs, void *sbuf, int jhead)
633 {
634 	int ret = 0, err, len = c->leb_size - offs, start = offs, min_io_unit;
635 	int grouped = jhead == -1 ? 0 : c->jheads[jhead].grouped;
636 	struct ubifs_scan_leb *sleb;
637 	void *buf = sbuf + offs;
638 
639 	dbg_rcvry("%d:%d, jhead %d, grouped %d", lnum, offs, jhead, grouped);
640 
641 	sleb = ubifs_start_scan(c, lnum, offs, sbuf);
642 	if (IS_ERR(sleb))
643 		return sleb;
644 
645 	ubifs_assert(len >= 8);
646 	while (len >= 8) {
647 		dbg_scan("look at LEB %d:%d (%d bytes left)",
648 			 lnum, offs, len);
649 
650 		cond_resched();
651 
652 		/*
653 		 * Scan quietly until there is an error from which we cannot
654 		 * recover
655 		 */
656 		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
657 		if (ret == SCANNED_A_NODE) {
658 			/* A valid node, and not a padding node */
659 			struct ubifs_ch *ch = buf;
660 			int node_len;
661 
662 			err = ubifs_add_snod(c, sleb, buf, offs);
663 			if (err)
664 				goto error;
665 			node_len = ALIGN(le32_to_cpu(ch->len), 8);
666 			offs += node_len;
667 			buf += node_len;
668 			len -= node_len;
669 		} else if (ret > 0) {
670 			/* Padding bytes or a valid padding node */
671 			offs += ret;
672 			buf += ret;
673 			len -= ret;
674 		} else if (ret == SCANNED_EMPTY_SPACE ||
675 			   ret == SCANNED_GARBAGE     ||
676 			   ret == SCANNED_A_BAD_PAD_NODE ||
677 			   ret == SCANNED_A_CORRUPT_NODE) {
678 			dbg_rcvry("found corruption (%d) at %d:%d",
679 				  ret, lnum, offs);
680 			break;
681 		} else {
682 			ubifs_err(c, "unexpected return value %d", ret);
683 			err = -EINVAL;
684 			goto error;
685 		}
686 	}
687 
688 	if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) {
689 		if (!is_last_write(c, buf, offs))
690 			goto corrupted_rescan;
691 	} else if (ret == SCANNED_A_CORRUPT_NODE) {
692 		if (!no_more_nodes(c, buf, len, lnum, offs))
693 			goto corrupted_rescan;
694 	} else if (!is_empty(buf, len)) {
695 		if (!is_last_write(c, buf, offs)) {
696 			int corruption = first_non_ff(buf, len);
697 
698 			/*
699 			 * See header comment for this file for more
700 			 * explanations about the reasons we have this check.
701 			 */
702 			ubifs_err(c, "corrupt empty space LEB %d:%d, corruption starts at %d",
703 				  lnum, offs, corruption);
704 			/* Make sure we dump interesting non-0xFF data */
705 			offs += corruption;
706 			buf += corruption;
707 			goto corrupted;
708 		}
709 	}
710 
711 	min_io_unit = round_down(offs, c->min_io_size);
712 	if (grouped)
713 		/*
714 		 * If nodes are grouped, always drop the incomplete group at
715 		 * the end.
716 		 */
717 		drop_last_group(sleb, &offs);
718 
719 	if (jhead == GCHD) {
720 		/*
721 		 * If this LEB belongs to the GC head then while we are in the
722 		 * middle of the same min. I/O unit keep dropping nodes. So
723 		 * basically, what we want is to make sure that the last min.
724 		 * I/O unit where we saw the corruption is dropped completely
725 		 * with all the uncorrupted nodes which may possibly sit there.
726 		 *
727 		 * In other words, let's name the min. I/O unit where the
728 		 * corruption starts B, and the previous min. I/O unit A. The
729 		 * below code tries to deal with a situation when half of B
730 		 * contains valid nodes or the end of a valid node, and the
731 		 * second half of B contains corrupted data or garbage. This
732 		 * means that UBIFS had been writing to B just before the power
733 		 * cut happened. I do not know how realistic is this scenario
734 		 * that half of the min. I/O unit had been written successfully
735 		 * and the other half not, but this is possible in our 'failure
736 		 * mode emulation' infrastructure at least.
737 		 *
738 		 * So what is the problem, why we need to drop those nodes? Why
739 		 * can't we just clean-up the second half of B by putting a
740 		 * padding node there? We can, and this works fine with one
741 		 * exception which was reproduced with power cut emulation
742 		 * testing and happens extremely rarely.
743 		 *
744 		 * Imagine the file-system is full, we run GC which starts
745 		 * moving valid nodes from LEB X to LEB Y (obviously, LEB Y is
746 		 * the current GC head LEB). The @c->gc_lnum is -1, which means
747 		 * that GC will retain LEB X and will try to continue. Imagine
748 		 * that LEB X is currently the dirtiest LEB, and the amount of
749 		 * used space in LEB Y is exactly the same as amount of free
750 		 * space in LEB X.
751 		 *
752 		 * And a power cut happens when nodes are moved from LEB X to
753 		 * LEB Y. We are here trying to recover LEB Y which is the GC
754 		 * head LEB. We find the min. I/O unit B as described above.
755 		 * Then we clean-up LEB Y by padding min. I/O unit. And later
756 		 * 'ubifs_rcvry_gc_commit()' function fails, because it cannot
757 		 * find a dirty LEB which could be GC'd into LEB Y! Even LEB X
758 		 * does not match because the amount of valid nodes there does
759 		 * not fit the free space in LEB Y any more! And this is
760 		 * because of the padding node which we added to LEB Y. The
761 		 * user-visible effect of this which I once observed and
762 		 * analysed is that we cannot mount the file-system with
763 		 * -ENOSPC error.
764 		 *
765 		 * So obviously, to make sure that situation does not happen we
766 		 * should free min. I/O unit B in LEB Y completely and the last
767 		 * used min. I/O unit in LEB Y should be A. This is basically
768 		 * what the below code tries to do.
769 		 */
770 		while (offs > min_io_unit)
771 			drop_last_node(sleb, &offs);
772 	}
773 
774 	buf = sbuf + offs;
775 	len = c->leb_size - offs;
776 
777 	clean_buf(c, &buf, lnum, &offs, &len);
778 	ubifs_end_scan(c, sleb, lnum, offs);
779 
780 	err = fix_unclean_leb(c, sleb, start);
781 	if (err)
782 		goto error;
783 
784 	return sleb;
785 
786 corrupted_rescan:
787 	/* Re-scan the corrupted data with verbose messages */
788 	ubifs_err(c, "corruption %d", ret);
789 	ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
790 corrupted:
791 	ubifs_scanned_corruption(c, lnum, offs, buf);
792 	err = -EUCLEAN;
793 error:
794 	ubifs_err(c, "LEB %d scanning failed", lnum);
795 	ubifs_scan_destroy(sleb);
796 	return ERR_PTR(err);
797 }
798 
799 /**
800  * get_cs_sqnum - get commit start sequence number.
801  * @c: UBIFS file-system description object
802  * @lnum: LEB number of commit start node
803  * @offs: offset of commit start node
804  * @cs_sqnum: commit start sequence number is returned here
805  *
806  * This function returns %0 on success and a negative error code on failure.
807  */
808 static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs,
809 			unsigned long long *cs_sqnum)
810 {
811 	struct ubifs_cs_node *cs_node = NULL;
812 	int err, ret;
813 
814 	dbg_rcvry("at %d:%d", lnum, offs);
815 	cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL);
816 	if (!cs_node)
817 		return -ENOMEM;
818 	if (c->leb_size - offs < UBIFS_CS_NODE_SZ)
819 		goto out_err;
820 	err = ubifs_leb_read(c, lnum, (void *)cs_node, offs,
821 			     UBIFS_CS_NODE_SZ, 0);
822 	if (err && err != -EBADMSG)
823 		goto out_free;
824 	ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0);
825 	if (ret != SCANNED_A_NODE) {
826 		ubifs_err(c, "Not a valid node");
827 		goto out_err;
828 	}
829 	if (cs_node->ch.node_type != UBIFS_CS_NODE) {
830 		ubifs_err(c, "Node a CS node, type is %d", cs_node->ch.node_type);
831 		goto out_err;
832 	}
833 	if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) {
834 		ubifs_err(c, "CS node cmt_no %llu != current cmt_no %llu",
835 			  (unsigned long long)le64_to_cpu(cs_node->cmt_no),
836 			  c->cmt_no);
837 		goto out_err;
838 	}
839 	*cs_sqnum = le64_to_cpu(cs_node->ch.sqnum);
840 	dbg_rcvry("commit start sqnum %llu", *cs_sqnum);
841 	kfree(cs_node);
842 	return 0;
843 
844 out_err:
845 	err = -EINVAL;
846 out_free:
847 	ubifs_err(c, "failed to get CS sqnum");
848 	kfree(cs_node);
849 	return err;
850 }
851 
852 /**
853  * ubifs_recover_log_leb - scan and recover a log LEB.
854  * @c: UBIFS file-system description object
855  * @lnum: LEB number
856  * @offs: offset
857  * @sbuf: LEB-sized buffer to use
858  *
859  * This function does a scan of a LEB, but caters for errors that might have
860  * been caused by unclean reboots from which we are attempting to recover
861  * (assume that only the last log LEB can be corrupted by an unclean reboot).
862  *
863  * This function returns %0 on success and a negative error code on failure.
864  */
865 struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
866 					     int offs, void *sbuf)
867 {
868 	struct ubifs_scan_leb *sleb;
869 	int next_lnum;
870 
871 	dbg_rcvry("LEB %d", lnum);
872 	next_lnum = lnum + 1;
873 	if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs)
874 		next_lnum = UBIFS_LOG_LNUM;
875 	if (next_lnum != c->ltail_lnum) {
876 		/*
877 		 * We can only recover at the end of the log, so check that the
878 		 * next log LEB is empty or out of date.
879 		 */
880 		sleb = ubifs_scan(c, next_lnum, 0, sbuf, 0);
881 		if (IS_ERR(sleb))
882 			return sleb;
883 		if (sleb->nodes_cnt) {
884 			struct ubifs_scan_node *snod;
885 			unsigned long long cs_sqnum = c->cs_sqnum;
886 
887 			snod = list_entry(sleb->nodes.next,
888 					  struct ubifs_scan_node, list);
889 			if (cs_sqnum == 0) {
890 				int err;
891 
892 				err = get_cs_sqnum(c, lnum, offs, &cs_sqnum);
893 				if (err) {
894 					ubifs_scan_destroy(sleb);
895 					return ERR_PTR(err);
896 				}
897 			}
898 			if (snod->sqnum > cs_sqnum) {
899 				ubifs_err(c, "unrecoverable log corruption in LEB %d",
900 					  lnum);
901 				ubifs_scan_destroy(sleb);
902 				return ERR_PTR(-EUCLEAN);
903 			}
904 		}
905 		ubifs_scan_destroy(sleb);
906 	}
907 	return ubifs_recover_leb(c, lnum, offs, sbuf, -1);
908 }
909 
910 /**
911  * recover_head - recover a head.
912  * @c: UBIFS file-system description object
913  * @lnum: LEB number of head to recover
914  * @offs: offset of head to recover
915  * @sbuf: LEB-sized buffer to use
916  *
917  * This function ensures that there is no data on the flash at a head location.
918  *
919  * This function returns %0 on success and a negative error code on failure.
920  */
921 static int recover_head(struct ubifs_info *c, int lnum, int offs, void *sbuf)
922 {
923 	int len = c->max_write_size, err;
924 
925 	if (offs + len > c->leb_size)
926 		len = c->leb_size - offs;
927 
928 	if (!len)
929 		return 0;
930 
931 	/* Read at the head location and check it is empty flash */
932 	err = ubifs_leb_read(c, lnum, sbuf, offs, len, 1);
933 	if (err || !is_empty(sbuf, len)) {
934 		dbg_rcvry("cleaning head at %d:%d", lnum, offs);
935 		if (offs == 0)
936 			return ubifs_leb_unmap(c, lnum);
937 		err = ubifs_leb_read(c, lnum, sbuf, 0, offs, 1);
938 		if (err)
939 			return err;
940 		return ubifs_leb_change(c, lnum, sbuf, offs);
941 	}
942 
943 	return 0;
944 }
945 
946 /**
947  * ubifs_recover_inl_heads - recover index and LPT heads.
948  * @c: UBIFS file-system description object
949  * @sbuf: LEB-sized buffer to use
950  *
951  * This function ensures that there is no data on the flash at the index and
952  * LPT head locations.
953  *
954  * This deals with the recovery of a half-completed journal commit. UBIFS is
955  * careful never to overwrite the last version of the index or the LPT. Because
956  * the index and LPT are wandering trees, data from a half-completed commit will
957  * not be referenced anywhere in UBIFS. The data will be either in LEBs that are
958  * assumed to be empty and will be unmapped anyway before use, or in the index
959  * and LPT heads.
960  *
961  * This function returns %0 on success and a negative error code on failure.
962  */
963 int ubifs_recover_inl_heads(struct ubifs_info *c, void *sbuf)
964 {
965 	int err;
966 
967 	ubifs_assert(!c->ro_mount || c->remounting_rw);
968 
969 	dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs);
970 	err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf);
971 	if (err)
972 		return err;
973 
974 	dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs);
975 
976 	return recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf);
977 }
978 
979 /**
980  * clean_an_unclean_leb - read and write a LEB to remove corruption.
981  * @c: UBIFS file-system description object
982  * @ucleb: unclean LEB information
983  * @sbuf: LEB-sized buffer to use
984  *
985  * This function reads a LEB up to a point pre-determined by the mount recovery,
986  * checks the nodes, and writes the result back to the flash, thereby cleaning
987  * off any following corruption, or non-fatal ECC errors.
988  *
989  * This function returns %0 on success and a negative error code on failure.
990  */
991 static int clean_an_unclean_leb(struct ubifs_info *c,
992 				struct ubifs_unclean_leb *ucleb, void *sbuf)
993 {
994 	int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1;
995 	void *buf = sbuf;
996 
997 	dbg_rcvry("LEB %d len %d", lnum, len);
998 
999 	if (len == 0) {
1000 		/* Nothing to read, just unmap it */
1001 		return ubifs_leb_unmap(c, lnum);
1002 	}
1003 
1004 	err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
1005 	if (err && err != -EBADMSG)
1006 		return err;
1007 
1008 	while (len >= 8) {
1009 		int ret;
1010 
1011 		cond_resched();
1012 
1013 		/* Scan quietly until there is an error */
1014 		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
1015 
1016 		if (ret == SCANNED_A_NODE) {
1017 			/* A valid node, and not a padding node */
1018 			struct ubifs_ch *ch = buf;
1019 			int node_len;
1020 
1021 			node_len = ALIGN(le32_to_cpu(ch->len), 8);
1022 			offs += node_len;
1023 			buf += node_len;
1024 			len -= node_len;
1025 			continue;
1026 		}
1027 
1028 		if (ret > 0) {
1029 			/* Padding bytes or a valid padding node */
1030 			offs += ret;
1031 			buf += ret;
1032 			len -= ret;
1033 			continue;
1034 		}
1035 
1036 		if (ret == SCANNED_EMPTY_SPACE) {
1037 			ubifs_err(c, "unexpected empty space at %d:%d",
1038 				  lnum, offs);
1039 			return -EUCLEAN;
1040 		}
1041 
1042 		if (quiet) {
1043 			/* Redo the last scan but noisily */
1044 			quiet = 0;
1045 			continue;
1046 		}
1047 
1048 		ubifs_scanned_corruption(c, lnum, offs, buf);
1049 		return -EUCLEAN;
1050 	}
1051 
1052 	/* Pad to min_io_size */
1053 	len = ALIGN(ucleb->endpt, c->min_io_size);
1054 	if (len > ucleb->endpt) {
1055 		int pad_len = len - ALIGN(ucleb->endpt, 8);
1056 
1057 		if (pad_len > 0) {
1058 			buf = c->sbuf + len - pad_len;
1059 			ubifs_pad(c, buf, pad_len);
1060 		}
1061 	}
1062 
1063 	/* Write back the LEB atomically */
1064 	err = ubifs_leb_change(c, lnum, sbuf, len);
1065 	if (err)
1066 		return err;
1067 
1068 	dbg_rcvry("cleaned LEB %d", lnum);
1069 
1070 	return 0;
1071 }
1072 
1073 /**
1074  * ubifs_clean_lebs - clean LEBs recovered during read-only mount.
1075  * @c: UBIFS file-system description object
1076  * @sbuf: LEB-sized buffer to use
1077  *
1078  * This function cleans a LEB identified during recovery that needs to be
1079  * written but was not because UBIFS was mounted read-only. This happens when
1080  * remounting to read-write mode.
1081  *
1082  * This function returns %0 on success and a negative error code on failure.
1083  */
1084 int ubifs_clean_lebs(struct ubifs_info *c, void *sbuf)
1085 {
1086 	dbg_rcvry("recovery");
1087 	while (!list_empty(&c->unclean_leb_list)) {
1088 		struct ubifs_unclean_leb *ucleb;
1089 		int err;
1090 
1091 		ucleb = list_entry(c->unclean_leb_list.next,
1092 				   struct ubifs_unclean_leb, list);
1093 		err = clean_an_unclean_leb(c, ucleb, sbuf);
1094 		if (err)
1095 			return err;
1096 		list_del(&ucleb->list);
1097 		kfree(ucleb);
1098 	}
1099 	return 0;
1100 }
1101 
1102 #ifndef __UBOOT__
1103 /**
1104  * grab_empty_leb - grab an empty LEB to use as GC LEB and run commit.
1105  * @c: UBIFS file-system description object
1106  *
1107  * This is a helper function for 'ubifs_rcvry_gc_commit()' which grabs an empty
1108  * LEB to be used as GC LEB (@c->gc_lnum), and then runs the commit. Returns
1109  * zero in case of success and a negative error code in case of failure.
1110  */
1111 static int grab_empty_leb(struct ubifs_info *c)
1112 {
1113 	int lnum, err;
1114 
1115 	/*
1116 	 * Note, it is very important to first search for an empty LEB and then
1117 	 * run the commit, not vice-versa. The reason is that there might be
1118 	 * only one empty LEB at the moment, the one which has been the
1119 	 * @c->gc_lnum just before the power cut happened. During the regular
1120 	 * UBIFS operation (not now) @c->gc_lnum is marked as "taken", so no
1121 	 * one but GC can grab it. But at this moment this single empty LEB is
1122 	 * not marked as taken, so if we run commit - what happens? Right, the
1123 	 * commit will grab it and write the index there. Remember that the
1124 	 * index always expands as long as there is free space, and it only
1125 	 * starts consolidating when we run out of space.
1126 	 *
1127 	 * IOW, if we run commit now, we might not be able to find a free LEB
1128 	 * after this.
1129 	 */
1130 	lnum = ubifs_find_free_leb_for_idx(c);
1131 	if (lnum < 0) {
1132 		ubifs_err(c, "could not find an empty LEB");
1133 		ubifs_dump_lprops(c);
1134 		ubifs_dump_budg(c, &c->bi);
1135 		return lnum;
1136 	}
1137 
1138 	/* Reset the index flag */
1139 	err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
1140 				  LPROPS_INDEX, 0);
1141 	if (err)
1142 		return err;
1143 
1144 	c->gc_lnum = lnum;
1145 	dbg_rcvry("found empty LEB %d, run commit", lnum);
1146 
1147 	return ubifs_run_commit(c);
1148 }
1149 
1150 /**
1151  * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit.
1152  * @c: UBIFS file-system description object
1153  *
1154  * Out-of-place garbage collection requires always one empty LEB with which to
1155  * start garbage collection. The LEB number is recorded in c->gc_lnum and is
1156  * written to the master node on unmounting. In the case of an unclean unmount
1157  * the value of gc_lnum recorded in the master node is out of date and cannot
1158  * be used. Instead, recovery must allocate an empty LEB for this purpose.
1159  * However, there may not be enough empty space, in which case it must be
1160  * possible to GC the dirtiest LEB into the GC head LEB.
1161  *
1162  * This function also runs the commit which causes the TNC updates from
1163  * size-recovery and orphans to be written to the flash. That is important to
1164  * ensure correct replay order for subsequent mounts.
1165  *
1166  * This function returns %0 on success and a negative error code on failure.
1167  */
1168 int ubifs_rcvry_gc_commit(struct ubifs_info *c)
1169 {
1170 	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
1171 	struct ubifs_lprops lp;
1172 	int err;
1173 
1174 	dbg_rcvry("GC head LEB %d, offs %d", wbuf->lnum, wbuf->offs);
1175 
1176 	c->gc_lnum = -1;
1177 	if (wbuf->lnum == -1 || wbuf->offs == c->leb_size)
1178 		return grab_empty_leb(c);
1179 
1180 	err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2);
1181 	if (err) {
1182 		if (err != -ENOSPC)
1183 			return err;
1184 
1185 		dbg_rcvry("could not find a dirty LEB");
1186 		return grab_empty_leb(c);
1187 	}
1188 
1189 	ubifs_assert(!(lp.flags & LPROPS_INDEX));
1190 	ubifs_assert(lp.free + lp.dirty >= wbuf->offs);
1191 
1192 	/*
1193 	 * We run the commit before garbage collection otherwise subsequent
1194 	 * mounts will see the GC and orphan deletion in a different order.
1195 	 */
1196 	dbg_rcvry("committing");
1197 	err = ubifs_run_commit(c);
1198 	if (err)
1199 		return err;
1200 
1201 	dbg_rcvry("GC'ing LEB %d", lp.lnum);
1202 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1203 	err = ubifs_garbage_collect_leb(c, &lp);
1204 	if (err >= 0) {
1205 		int err2 = ubifs_wbuf_sync_nolock(wbuf);
1206 
1207 		if (err2)
1208 			err = err2;
1209 	}
1210 	mutex_unlock(&wbuf->io_mutex);
1211 	if (err < 0) {
1212 		ubifs_err(c, "GC failed, error %d", err);
1213 		if (err == -EAGAIN)
1214 			err = -EINVAL;
1215 		return err;
1216 	}
1217 
1218 	ubifs_assert(err == LEB_RETAINED);
1219 	if (err != LEB_RETAINED)
1220 		return -EINVAL;
1221 
1222 	err = ubifs_leb_unmap(c, c->gc_lnum);
1223 	if (err)
1224 		return err;
1225 
1226 	dbg_rcvry("allocated LEB %d for GC", lp.lnum);
1227 	return 0;
1228 }
1229 #else
1230 int ubifs_rcvry_gc_commit(struct ubifs_info *c)
1231 {
1232 	return 0;
1233 }
1234 #endif
1235 
1236 /**
1237  * struct size_entry - inode size information for recovery.
1238  * @rb: link in the RB-tree of sizes
1239  * @inum: inode number
1240  * @i_size: size on inode
1241  * @d_size: maximum size based on data nodes
1242  * @exists: indicates whether the inode exists
1243  * @inode: inode if pinned in memory awaiting rw mode to fix it
1244  */
1245 struct size_entry {
1246 	struct rb_node rb;
1247 	ino_t inum;
1248 	loff_t i_size;
1249 	loff_t d_size;
1250 	int exists;
1251 	struct inode *inode;
1252 };
1253 
1254 /**
1255  * add_ino - add an entry to the size tree.
1256  * @c: UBIFS file-system description object
1257  * @inum: inode number
1258  * @i_size: size on inode
1259  * @d_size: maximum size based on data nodes
1260  * @exists: indicates whether the inode exists
1261  */
1262 static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size,
1263 		   loff_t d_size, int exists)
1264 {
1265 	struct rb_node **p = &c->size_tree.rb_node, *parent = NULL;
1266 	struct size_entry *e;
1267 
1268 	while (*p) {
1269 		parent = *p;
1270 		e = rb_entry(parent, struct size_entry, rb);
1271 		if (inum < e->inum)
1272 			p = &(*p)->rb_left;
1273 		else
1274 			p = &(*p)->rb_right;
1275 	}
1276 
1277 	e = kzalloc(sizeof(struct size_entry), GFP_KERNEL);
1278 	if (!e)
1279 		return -ENOMEM;
1280 
1281 	e->inum = inum;
1282 	e->i_size = i_size;
1283 	e->d_size = d_size;
1284 	e->exists = exists;
1285 
1286 	rb_link_node(&e->rb, parent, p);
1287 	rb_insert_color(&e->rb, &c->size_tree);
1288 
1289 	return 0;
1290 }
1291 
1292 /**
1293  * find_ino - find an entry on the size tree.
1294  * @c: UBIFS file-system description object
1295  * @inum: inode number
1296  */
1297 static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum)
1298 {
1299 	struct rb_node *p = c->size_tree.rb_node;
1300 	struct size_entry *e;
1301 
1302 	while (p) {
1303 		e = rb_entry(p, struct size_entry, rb);
1304 		if (inum < e->inum)
1305 			p = p->rb_left;
1306 		else if (inum > e->inum)
1307 			p = p->rb_right;
1308 		else
1309 			return e;
1310 	}
1311 	return NULL;
1312 }
1313 
1314 /**
1315  * remove_ino - remove an entry from the size tree.
1316  * @c: UBIFS file-system description object
1317  * @inum: inode number
1318  */
1319 static void remove_ino(struct ubifs_info *c, ino_t inum)
1320 {
1321 	struct size_entry *e = find_ino(c, inum);
1322 
1323 	if (!e)
1324 		return;
1325 	rb_erase(&e->rb, &c->size_tree);
1326 	kfree(e);
1327 }
1328 
1329 /**
1330  * ubifs_destroy_size_tree - free resources related to the size tree.
1331  * @c: UBIFS file-system description object
1332  */
1333 void ubifs_destroy_size_tree(struct ubifs_info *c)
1334 {
1335 	struct size_entry *e, *n;
1336 
1337 	rbtree_postorder_for_each_entry_safe(e, n, &c->size_tree, rb) {
1338 		if (e->inode)
1339 			iput(e->inode);
1340 		kfree(e);
1341 	}
1342 
1343 	c->size_tree = RB_ROOT;
1344 }
1345 
1346 /**
1347  * ubifs_recover_size_accum - accumulate inode sizes for recovery.
1348  * @c: UBIFS file-system description object
1349  * @key: node key
1350  * @deletion: node is for a deletion
1351  * @new_size: inode size
1352  *
1353  * This function has two purposes:
1354  *     1) to ensure there are no data nodes that fall outside the inode size
1355  *     2) to ensure there are no data nodes for inodes that do not exist
1356  * To accomplish those purposes, a rb-tree is constructed containing an entry
1357  * for each inode number in the journal that has not been deleted, and recording
1358  * the size from the inode node, the maximum size of any data node (also altered
1359  * by truncations) and a flag indicating a inode number for which no inode node
1360  * was present in the journal.
1361  *
1362  * Note that there is still the possibility that there are data nodes that have
1363  * been committed that are beyond the inode size, however the only way to find
1364  * them would be to scan the entire index. Alternatively, some provision could
1365  * be made to record the size of inodes at the start of commit, which would seem
1366  * very cumbersome for a scenario that is quite unlikely and the only negative
1367  * consequence of which is wasted space.
1368  *
1369  * This functions returns %0 on success and a negative error code on failure.
1370  */
1371 int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
1372 			     int deletion, loff_t new_size)
1373 {
1374 	ino_t inum = key_inum(c, key);
1375 	struct size_entry *e;
1376 	int err;
1377 
1378 	switch (key_type(c, key)) {
1379 	case UBIFS_INO_KEY:
1380 		if (deletion)
1381 			remove_ino(c, inum);
1382 		else {
1383 			e = find_ino(c, inum);
1384 			if (e) {
1385 				e->i_size = new_size;
1386 				e->exists = 1;
1387 			} else {
1388 				err = add_ino(c, inum, new_size, 0, 1);
1389 				if (err)
1390 					return err;
1391 			}
1392 		}
1393 		break;
1394 	case UBIFS_DATA_KEY:
1395 		e = find_ino(c, inum);
1396 		if (e) {
1397 			if (new_size > e->d_size)
1398 				e->d_size = new_size;
1399 		} else {
1400 			err = add_ino(c, inum, 0, new_size, 0);
1401 			if (err)
1402 				return err;
1403 		}
1404 		break;
1405 	case UBIFS_TRUN_KEY:
1406 		e = find_ino(c, inum);
1407 		if (e)
1408 			e->d_size = new_size;
1409 		break;
1410 	}
1411 	return 0;
1412 }
1413 
1414 #ifndef __UBOOT__
1415 /**
1416  * fix_size_in_place - fix inode size in place on flash.
1417  * @c: UBIFS file-system description object
1418  * @e: inode size information for recovery
1419  */
1420 static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e)
1421 {
1422 	struct ubifs_ino_node *ino = c->sbuf;
1423 	unsigned char *p;
1424 	union ubifs_key key;
1425 	int err, lnum, offs, len;
1426 	loff_t i_size;
1427 	uint32_t crc;
1428 
1429 	/* Locate the inode node LEB number and offset */
1430 	ino_key_init(c, &key, e->inum);
1431 	err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs);
1432 	if (err)
1433 		goto out;
1434 	/*
1435 	 * If the size recorded on the inode node is greater than the size that
1436 	 * was calculated from nodes in the journal then don't change the inode.
1437 	 */
1438 	i_size = le64_to_cpu(ino->size);
1439 	if (i_size >= e->d_size)
1440 		return 0;
1441 	/* Read the LEB */
1442 	err = ubifs_leb_read(c, lnum, c->sbuf, 0, c->leb_size, 1);
1443 	if (err)
1444 		goto out;
1445 	/* Change the size field and recalculate the CRC */
1446 	ino = c->sbuf + offs;
1447 	ino->size = cpu_to_le64(e->d_size);
1448 	len = le32_to_cpu(ino->ch.len);
1449 	crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8);
1450 	ino->ch.crc = cpu_to_le32(crc);
1451 	/* Work out where data in the LEB ends and free space begins */
1452 	p = c->sbuf;
1453 	len = c->leb_size - 1;
1454 	while (p[len] == 0xff)
1455 		len -= 1;
1456 	len = ALIGN(len + 1, c->min_io_size);
1457 	/* Atomically write the fixed LEB back again */
1458 	err = ubifs_leb_change(c, lnum, c->sbuf, len);
1459 	if (err)
1460 		goto out;
1461 	dbg_rcvry("inode %lu at %d:%d size %lld -> %lld",
1462 		  (unsigned long)e->inum, lnum, offs, i_size, e->d_size);
1463 	return 0;
1464 
1465 out:
1466 	ubifs_warn(c, "inode %lu failed to fix size %lld -> %lld error %d",
1467 		   (unsigned long)e->inum, e->i_size, e->d_size, err);
1468 	return err;
1469 }
1470 #endif
1471 
1472 /**
1473  * ubifs_recover_size - recover inode size.
1474  * @c: UBIFS file-system description object
1475  *
1476  * This function attempts to fix inode size discrepancies identified by the
1477  * 'ubifs_recover_size_accum()' function.
1478  *
1479  * This functions returns %0 on success and a negative error code on failure.
1480  */
1481 int ubifs_recover_size(struct ubifs_info *c)
1482 {
1483 	struct rb_node *this = rb_first(&c->size_tree);
1484 
1485 	while (this) {
1486 		struct size_entry *e;
1487 		int err;
1488 
1489 		e = rb_entry(this, struct size_entry, rb);
1490 		if (!e->exists) {
1491 			union ubifs_key key;
1492 
1493 			ino_key_init(c, &key, e->inum);
1494 			err = ubifs_tnc_lookup(c, &key, c->sbuf);
1495 			if (err && err != -ENOENT)
1496 				return err;
1497 			if (err == -ENOENT) {
1498 				/* Remove data nodes that have no inode */
1499 				dbg_rcvry("removing ino %lu",
1500 					  (unsigned long)e->inum);
1501 				err = ubifs_tnc_remove_ino(c, e->inum);
1502 				if (err)
1503 					return err;
1504 			} else {
1505 				struct ubifs_ino_node *ino = c->sbuf;
1506 
1507 				e->exists = 1;
1508 				e->i_size = le64_to_cpu(ino->size);
1509 			}
1510 		}
1511 
1512 		if (e->exists && e->i_size < e->d_size) {
1513 			if (c->ro_mount) {
1514 				/* Fix the inode size and pin it in memory */
1515 				struct inode *inode;
1516 				struct ubifs_inode *ui;
1517 
1518 				ubifs_assert(!e->inode);
1519 
1520 				inode = ubifs_iget(c->vfs_sb, e->inum);
1521 				if (IS_ERR(inode))
1522 					return PTR_ERR(inode);
1523 
1524 				ui = ubifs_inode(inode);
1525 				if (inode->i_size < e->d_size) {
1526 					dbg_rcvry("ino %lu size %lld -> %lld",
1527 						  (unsigned long)e->inum,
1528 						  inode->i_size, e->d_size);
1529 					inode->i_size = e->d_size;
1530 					ui->ui_size = e->d_size;
1531 					ui->synced_i_size = e->d_size;
1532 					e->inode = inode;
1533 					this = rb_next(this);
1534 					continue;
1535 				}
1536 				iput(inode);
1537 #ifndef __UBOOT__
1538 			} else {
1539 				/* Fix the size in place */
1540 				err = fix_size_in_place(c, e);
1541 				if (err)
1542 					return err;
1543 				if (e->inode)
1544 					iput(e->inode);
1545 #endif
1546 			}
1547 		}
1548 
1549 		this = rb_next(this);
1550 		rb_erase(&e->rb, &c->size_tree);
1551 		kfree(e);
1552 	}
1553 
1554 	return 0;
1555 }
1556