1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * SPDX-License-Identifier: GPL-2.0+ 7 * 8 * Author: Adrian Hunter 9 */ 10 11 #include <linux/err.h> 12 #include "ubifs.h" 13 14 /* 15 * An orphan is an inode number whose inode node has been committed to the index 16 * with a link count of zero. That happens when an open file is deleted 17 * (unlinked) and then a commit is run. In the normal course of events the inode 18 * would be deleted when the file is closed. However in the case of an unclean 19 * unmount, orphans need to be accounted for. After an unclean unmount, the 20 * orphans' inodes must be deleted which means either scanning the entire index 21 * looking for them, or keeping a list on flash somewhere. This unit implements 22 * the latter approach. 23 * 24 * The orphan area is a fixed number of LEBs situated between the LPT area and 25 * the main area. The number of orphan area LEBs is specified when the file 26 * system is created. The minimum number is 1. The size of the orphan area 27 * should be so that it can hold the maximum number of orphans that are expected 28 * to ever exist at one time. 29 * 30 * The number of orphans that can fit in a LEB is: 31 * 32 * (c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64) 33 * 34 * For example: a 15872 byte LEB can fit 1980 orphans so 1 LEB may be enough. 35 * 36 * Orphans are accumulated in a rb-tree. When an inode's link count drops to 37 * zero, the inode number is added to the rb-tree. It is removed from the tree 38 * when the inode is deleted. Any new orphans that are in the orphan tree when 39 * the commit is run, are written to the orphan area in 1 or more orphan nodes. 40 * If the orphan area is full, it is consolidated to make space. There is 41 * always enough space because validation prevents the user from creating more 42 * than the maximum number of orphans allowed. 43 */ 44 45 static int dbg_check_orphans(struct ubifs_info *c); 46 47 /** 48 * ubifs_add_orphan - add an orphan. 49 * @c: UBIFS file-system description object 50 * @inum: orphan inode number 51 * 52 * Add an orphan. This function is called when an inodes link count drops to 53 * zero. 54 */ 55 int ubifs_add_orphan(struct ubifs_info *c, ino_t inum) 56 { 57 struct ubifs_orphan *orphan, *o; 58 struct rb_node **p, *parent = NULL; 59 60 orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_NOFS); 61 if (!orphan) 62 return -ENOMEM; 63 orphan->inum = inum; 64 orphan->new = 1; 65 66 spin_lock(&c->orphan_lock); 67 if (c->tot_orphans >= c->max_orphans) { 68 spin_unlock(&c->orphan_lock); 69 kfree(orphan); 70 return -ENFILE; 71 } 72 p = &c->orph_tree.rb_node; 73 while (*p) { 74 parent = *p; 75 o = rb_entry(parent, struct ubifs_orphan, rb); 76 if (inum < o->inum) 77 p = &(*p)->rb_left; 78 else if (inum > o->inum) 79 p = &(*p)->rb_right; 80 else { 81 ubifs_err(c, "orphaned twice"); 82 spin_unlock(&c->orphan_lock); 83 kfree(orphan); 84 return 0; 85 } 86 } 87 c->tot_orphans += 1; 88 c->new_orphans += 1; 89 rb_link_node(&orphan->rb, parent, p); 90 rb_insert_color(&orphan->rb, &c->orph_tree); 91 list_add_tail(&orphan->list, &c->orph_list); 92 list_add_tail(&orphan->new_list, &c->orph_new); 93 spin_unlock(&c->orphan_lock); 94 dbg_gen("ino %lu", (unsigned long)inum); 95 return 0; 96 } 97 98 /** 99 * ubifs_delete_orphan - delete an orphan. 100 * @c: UBIFS file-system description object 101 * @inum: orphan inode number 102 * 103 * Delete an orphan. This function is called when an inode is deleted. 104 */ 105 void ubifs_delete_orphan(struct ubifs_info *c, ino_t inum) 106 { 107 struct ubifs_orphan *o; 108 struct rb_node *p; 109 110 spin_lock(&c->orphan_lock); 111 p = c->orph_tree.rb_node; 112 while (p) { 113 o = rb_entry(p, struct ubifs_orphan, rb); 114 if (inum < o->inum) 115 p = p->rb_left; 116 else if (inum > o->inum) 117 p = p->rb_right; 118 else { 119 if (o->del) { 120 spin_unlock(&c->orphan_lock); 121 dbg_gen("deleted twice ino %lu", 122 (unsigned long)inum); 123 return; 124 } 125 if (o->cmt) { 126 o->del = 1; 127 o->dnext = c->orph_dnext; 128 c->orph_dnext = o; 129 spin_unlock(&c->orphan_lock); 130 dbg_gen("delete later ino %lu", 131 (unsigned long)inum); 132 return; 133 } 134 rb_erase(p, &c->orph_tree); 135 list_del(&o->list); 136 c->tot_orphans -= 1; 137 if (o->new) { 138 list_del(&o->new_list); 139 c->new_orphans -= 1; 140 } 141 spin_unlock(&c->orphan_lock); 142 kfree(o); 143 dbg_gen("inum %lu", (unsigned long)inum); 144 return; 145 } 146 } 147 spin_unlock(&c->orphan_lock); 148 ubifs_err(c, "missing orphan ino %lu", (unsigned long)inum); 149 dump_stack(); 150 } 151 152 /** 153 * ubifs_orphan_start_commit - start commit of orphans. 154 * @c: UBIFS file-system description object 155 * 156 * Start commit of orphans. 157 */ 158 int ubifs_orphan_start_commit(struct ubifs_info *c) 159 { 160 struct ubifs_orphan *orphan, **last; 161 162 spin_lock(&c->orphan_lock); 163 last = &c->orph_cnext; 164 list_for_each_entry(orphan, &c->orph_new, new_list) { 165 ubifs_assert(orphan->new); 166 ubifs_assert(!orphan->cmt); 167 orphan->new = 0; 168 orphan->cmt = 1; 169 *last = orphan; 170 last = &orphan->cnext; 171 } 172 *last = NULL; 173 c->cmt_orphans = c->new_orphans; 174 c->new_orphans = 0; 175 dbg_cmt("%d orphans to commit", c->cmt_orphans); 176 INIT_LIST_HEAD(&c->orph_new); 177 if (c->tot_orphans == 0) 178 c->no_orphs = 1; 179 else 180 c->no_orphs = 0; 181 spin_unlock(&c->orphan_lock); 182 return 0; 183 } 184 185 /** 186 * avail_orphs - calculate available space. 187 * @c: UBIFS file-system description object 188 * 189 * This function returns the number of orphans that can be written in the 190 * available space. 191 */ 192 static int avail_orphs(struct ubifs_info *c) 193 { 194 int avail_lebs, avail, gap; 195 196 avail_lebs = c->orph_lebs - (c->ohead_lnum - c->orph_first) - 1; 197 avail = avail_lebs * 198 ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64)); 199 gap = c->leb_size - c->ohead_offs; 200 if (gap >= UBIFS_ORPH_NODE_SZ + sizeof(__le64)) 201 avail += (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64); 202 return avail; 203 } 204 205 /** 206 * tot_avail_orphs - calculate total space. 207 * @c: UBIFS file-system description object 208 * 209 * This function returns the number of orphans that can be written in half 210 * the total space. That leaves half the space for adding new orphans. 211 */ 212 static int tot_avail_orphs(struct ubifs_info *c) 213 { 214 int avail_lebs, avail; 215 216 avail_lebs = c->orph_lebs; 217 avail = avail_lebs * 218 ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64)); 219 return avail / 2; 220 } 221 222 /** 223 * do_write_orph_node - write a node to the orphan head. 224 * @c: UBIFS file-system description object 225 * @len: length of node 226 * @atomic: write atomically 227 * 228 * This function writes a node to the orphan head from the orphan buffer. If 229 * %atomic is not zero, then the write is done atomically. On success, %0 is 230 * returned, otherwise a negative error code is returned. 231 */ 232 static int do_write_orph_node(struct ubifs_info *c, int len, int atomic) 233 { 234 int err = 0; 235 236 if (atomic) { 237 ubifs_assert(c->ohead_offs == 0); 238 ubifs_prepare_node(c, c->orph_buf, len, 1); 239 len = ALIGN(len, c->min_io_size); 240 err = ubifs_leb_change(c, c->ohead_lnum, c->orph_buf, len); 241 } else { 242 if (c->ohead_offs == 0) { 243 /* Ensure LEB has been unmapped */ 244 err = ubifs_leb_unmap(c, c->ohead_lnum); 245 if (err) 246 return err; 247 } 248 err = ubifs_write_node(c, c->orph_buf, len, c->ohead_lnum, 249 c->ohead_offs); 250 } 251 return err; 252 } 253 254 /** 255 * write_orph_node - write an orphan node. 256 * @c: UBIFS file-system description object 257 * @atomic: write atomically 258 * 259 * This function builds an orphan node from the cnext list and writes it to the 260 * orphan head. On success, %0 is returned, otherwise a negative error code 261 * is returned. 262 */ 263 static int write_orph_node(struct ubifs_info *c, int atomic) 264 { 265 struct ubifs_orphan *orphan, *cnext; 266 struct ubifs_orph_node *orph; 267 int gap, err, len, cnt, i; 268 269 ubifs_assert(c->cmt_orphans > 0); 270 gap = c->leb_size - c->ohead_offs; 271 if (gap < UBIFS_ORPH_NODE_SZ + sizeof(__le64)) { 272 c->ohead_lnum += 1; 273 c->ohead_offs = 0; 274 gap = c->leb_size; 275 if (c->ohead_lnum > c->orph_last) { 276 /* 277 * We limit the number of orphans so that this should 278 * never happen. 279 */ 280 ubifs_err(c, "out of space in orphan area"); 281 return -EINVAL; 282 } 283 } 284 cnt = (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64); 285 if (cnt > c->cmt_orphans) 286 cnt = c->cmt_orphans; 287 len = UBIFS_ORPH_NODE_SZ + cnt * sizeof(__le64); 288 ubifs_assert(c->orph_buf); 289 orph = c->orph_buf; 290 orph->ch.node_type = UBIFS_ORPH_NODE; 291 spin_lock(&c->orphan_lock); 292 cnext = c->orph_cnext; 293 for (i = 0; i < cnt; i++) { 294 orphan = cnext; 295 ubifs_assert(orphan->cmt); 296 orph->inos[i] = cpu_to_le64(orphan->inum); 297 orphan->cmt = 0; 298 cnext = orphan->cnext; 299 orphan->cnext = NULL; 300 } 301 c->orph_cnext = cnext; 302 c->cmt_orphans -= cnt; 303 spin_unlock(&c->orphan_lock); 304 if (c->cmt_orphans) 305 orph->cmt_no = cpu_to_le64(c->cmt_no); 306 else 307 /* Mark the last node of the commit */ 308 orph->cmt_no = cpu_to_le64((c->cmt_no) | (1ULL << 63)); 309 ubifs_assert(c->ohead_offs + len <= c->leb_size); 310 ubifs_assert(c->ohead_lnum >= c->orph_first); 311 ubifs_assert(c->ohead_lnum <= c->orph_last); 312 err = do_write_orph_node(c, len, atomic); 313 c->ohead_offs += ALIGN(len, c->min_io_size); 314 c->ohead_offs = ALIGN(c->ohead_offs, 8); 315 return err; 316 } 317 318 /** 319 * write_orph_nodes - write orphan nodes until there are no more to commit. 320 * @c: UBIFS file-system description object 321 * @atomic: write atomically 322 * 323 * This function writes orphan nodes for all the orphans to commit. On success, 324 * %0 is returned, otherwise a negative error code is returned. 325 */ 326 static int write_orph_nodes(struct ubifs_info *c, int atomic) 327 { 328 int err; 329 330 while (c->cmt_orphans > 0) { 331 err = write_orph_node(c, atomic); 332 if (err) 333 return err; 334 } 335 if (atomic) { 336 int lnum; 337 338 /* Unmap any unused LEBs after consolidation */ 339 for (lnum = c->ohead_lnum + 1; lnum <= c->orph_last; lnum++) { 340 err = ubifs_leb_unmap(c, lnum); 341 if (err) 342 return err; 343 } 344 } 345 return 0; 346 } 347 348 /** 349 * consolidate - consolidate the orphan area. 350 * @c: UBIFS file-system description object 351 * 352 * This function enables consolidation by putting all the orphans into the list 353 * to commit. The list is in the order that the orphans were added, and the 354 * LEBs are written atomically in order, so at no time can orphans be lost by 355 * an unclean unmount. 356 * 357 * This function returns %0 on success and a negative error code on failure. 358 */ 359 static int consolidate(struct ubifs_info *c) 360 { 361 int tot_avail = tot_avail_orphs(c), err = 0; 362 363 spin_lock(&c->orphan_lock); 364 dbg_cmt("there is space for %d orphans and there are %d", 365 tot_avail, c->tot_orphans); 366 if (c->tot_orphans - c->new_orphans <= tot_avail) { 367 struct ubifs_orphan *orphan, **last; 368 int cnt = 0; 369 370 /* Change the cnext list to include all non-new orphans */ 371 last = &c->orph_cnext; 372 list_for_each_entry(orphan, &c->orph_list, list) { 373 if (orphan->new) 374 continue; 375 orphan->cmt = 1; 376 *last = orphan; 377 last = &orphan->cnext; 378 cnt += 1; 379 } 380 *last = NULL; 381 ubifs_assert(cnt == c->tot_orphans - c->new_orphans); 382 c->cmt_orphans = cnt; 383 c->ohead_lnum = c->orph_first; 384 c->ohead_offs = 0; 385 } else { 386 /* 387 * We limit the number of orphans so that this should 388 * never happen. 389 */ 390 ubifs_err(c, "out of space in orphan area"); 391 err = -EINVAL; 392 } 393 spin_unlock(&c->orphan_lock); 394 return err; 395 } 396 397 /** 398 * commit_orphans - commit orphans. 399 * @c: UBIFS file-system description object 400 * 401 * This function commits orphans to flash. On success, %0 is returned, 402 * otherwise a negative error code is returned. 403 */ 404 static int commit_orphans(struct ubifs_info *c) 405 { 406 int avail, atomic = 0, err; 407 408 ubifs_assert(c->cmt_orphans > 0); 409 avail = avail_orphs(c); 410 if (avail < c->cmt_orphans) { 411 /* Not enough space to write new orphans, so consolidate */ 412 err = consolidate(c); 413 if (err) 414 return err; 415 atomic = 1; 416 } 417 err = write_orph_nodes(c, atomic); 418 return err; 419 } 420 421 /** 422 * erase_deleted - erase the orphans marked for deletion. 423 * @c: UBIFS file-system description object 424 * 425 * During commit, the orphans being committed cannot be deleted, so they are 426 * marked for deletion and deleted by this function. Also, the recovery 427 * adds killed orphans to the deletion list, and therefore they are deleted 428 * here too. 429 */ 430 static void erase_deleted(struct ubifs_info *c) 431 { 432 struct ubifs_orphan *orphan, *dnext; 433 434 spin_lock(&c->orphan_lock); 435 dnext = c->orph_dnext; 436 while (dnext) { 437 orphan = dnext; 438 dnext = orphan->dnext; 439 ubifs_assert(!orphan->new); 440 ubifs_assert(orphan->del); 441 rb_erase(&orphan->rb, &c->orph_tree); 442 list_del(&orphan->list); 443 c->tot_orphans -= 1; 444 dbg_gen("deleting orphan ino %lu", (unsigned long)orphan->inum); 445 kfree(orphan); 446 } 447 c->orph_dnext = NULL; 448 spin_unlock(&c->orphan_lock); 449 } 450 451 /** 452 * ubifs_orphan_end_commit - end commit of orphans. 453 * @c: UBIFS file-system description object 454 * 455 * End commit of orphans. 456 */ 457 int ubifs_orphan_end_commit(struct ubifs_info *c) 458 { 459 int err; 460 461 if (c->cmt_orphans != 0) { 462 err = commit_orphans(c); 463 if (err) 464 return err; 465 } 466 erase_deleted(c); 467 err = dbg_check_orphans(c); 468 return err; 469 } 470 471 /** 472 * ubifs_clear_orphans - erase all LEBs used for orphans. 473 * @c: UBIFS file-system description object 474 * 475 * If recovery is not required, then the orphans from the previous session 476 * are not needed. This function locates the LEBs used to record 477 * orphans, and un-maps them. 478 */ 479 int ubifs_clear_orphans(struct ubifs_info *c) 480 { 481 int lnum, err; 482 483 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) { 484 err = ubifs_leb_unmap(c, lnum); 485 if (err) 486 return err; 487 } 488 c->ohead_lnum = c->orph_first; 489 c->ohead_offs = 0; 490 return 0; 491 } 492 493 /** 494 * insert_dead_orphan - insert an orphan. 495 * @c: UBIFS file-system description object 496 * @inum: orphan inode number 497 * 498 * This function is a helper to the 'do_kill_orphans()' function. The orphan 499 * must be kept until the next commit, so it is added to the rb-tree and the 500 * deletion list. 501 */ 502 static int insert_dead_orphan(struct ubifs_info *c, ino_t inum) 503 { 504 struct ubifs_orphan *orphan, *o; 505 struct rb_node **p, *parent = NULL; 506 507 orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_KERNEL); 508 if (!orphan) 509 return -ENOMEM; 510 orphan->inum = inum; 511 512 p = &c->orph_tree.rb_node; 513 while (*p) { 514 parent = *p; 515 o = rb_entry(parent, struct ubifs_orphan, rb); 516 if (inum < o->inum) 517 p = &(*p)->rb_left; 518 else if (inum > o->inum) 519 p = &(*p)->rb_right; 520 else { 521 /* Already added - no problem */ 522 kfree(orphan); 523 return 0; 524 } 525 } 526 c->tot_orphans += 1; 527 rb_link_node(&orphan->rb, parent, p); 528 rb_insert_color(&orphan->rb, &c->orph_tree); 529 list_add_tail(&orphan->list, &c->orph_list); 530 orphan->del = 1; 531 orphan->dnext = c->orph_dnext; 532 c->orph_dnext = orphan; 533 dbg_mnt("ino %lu, new %d, tot %d", (unsigned long)inum, 534 c->new_orphans, c->tot_orphans); 535 return 0; 536 } 537 538 /** 539 * do_kill_orphans - remove orphan inodes from the index. 540 * @c: UBIFS file-system description object 541 * @sleb: scanned LEB 542 * @last_cmt_no: cmt_no of last orphan node read is passed and returned here 543 * @outofdate: whether the LEB is out of date is returned here 544 * @last_flagged: whether the end orphan node is encountered 545 * 546 * This function is a helper to the 'kill_orphans()' function. It goes through 547 * every orphan node in a LEB and for every inode number recorded, removes 548 * all keys for that inode from the TNC. 549 */ 550 static int do_kill_orphans(struct ubifs_info *c, struct ubifs_scan_leb *sleb, 551 unsigned long long *last_cmt_no, int *outofdate, 552 int *last_flagged) 553 { 554 struct ubifs_scan_node *snod; 555 struct ubifs_orph_node *orph; 556 unsigned long long cmt_no; 557 ino_t inum; 558 int i, n, err, first = 1; 559 560 list_for_each_entry(snod, &sleb->nodes, list) { 561 if (snod->type != UBIFS_ORPH_NODE) { 562 ubifs_err(c, "invalid node type %d in orphan area at %d:%d", 563 snod->type, sleb->lnum, snod->offs); 564 ubifs_dump_node(c, snod->node); 565 return -EINVAL; 566 } 567 568 orph = snod->node; 569 570 /* Check commit number */ 571 cmt_no = le64_to_cpu(orph->cmt_no) & LLONG_MAX; 572 /* 573 * The commit number on the master node may be less, because 574 * of a failed commit. If there are several failed commits in a 575 * row, the commit number written on orphan nodes will continue 576 * to increase (because the commit number is adjusted here) even 577 * though the commit number on the master node stays the same 578 * because the master node has not been re-written. 579 */ 580 if (cmt_no > c->cmt_no) 581 c->cmt_no = cmt_no; 582 if (cmt_no < *last_cmt_no && *last_flagged) { 583 /* 584 * The last orphan node had a higher commit number and 585 * was flagged as the last written for that commit 586 * number. That makes this orphan node, out of date. 587 */ 588 if (!first) { 589 ubifs_err(c, "out of order commit number %llu in orphan node at %d:%d", 590 cmt_no, sleb->lnum, snod->offs); 591 ubifs_dump_node(c, snod->node); 592 return -EINVAL; 593 } 594 dbg_rcvry("out of date LEB %d", sleb->lnum); 595 *outofdate = 1; 596 return 0; 597 } 598 599 if (first) 600 first = 0; 601 602 n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3; 603 for (i = 0; i < n; i++) { 604 inum = le64_to_cpu(orph->inos[i]); 605 dbg_rcvry("deleting orphaned inode %lu", 606 (unsigned long)inum); 607 err = ubifs_tnc_remove_ino(c, inum); 608 if (err) 609 return err; 610 err = insert_dead_orphan(c, inum); 611 if (err) 612 return err; 613 } 614 615 *last_cmt_no = cmt_no; 616 if (le64_to_cpu(orph->cmt_no) & (1ULL << 63)) { 617 dbg_rcvry("last orph node for commit %llu at %d:%d", 618 cmt_no, sleb->lnum, snod->offs); 619 *last_flagged = 1; 620 } else 621 *last_flagged = 0; 622 } 623 624 return 0; 625 } 626 627 /** 628 * kill_orphans - remove all orphan inodes from the index. 629 * @c: UBIFS file-system description object 630 * 631 * If recovery is required, then orphan inodes recorded during the previous 632 * session (which ended with an unclean unmount) must be deleted from the index. 633 * This is done by updating the TNC, but since the index is not updated until 634 * the next commit, the LEBs where the orphan information is recorded are not 635 * erased until the next commit. 636 */ 637 static int kill_orphans(struct ubifs_info *c) 638 { 639 unsigned long long last_cmt_no = 0; 640 int lnum, err = 0, outofdate = 0, last_flagged = 0; 641 642 c->ohead_lnum = c->orph_first; 643 c->ohead_offs = 0; 644 /* Check no-orphans flag and skip this if no orphans */ 645 if (c->no_orphs) { 646 dbg_rcvry("no orphans"); 647 return 0; 648 } 649 /* 650 * Orph nodes always start at c->orph_first and are written to each 651 * successive LEB in turn. Generally unused LEBs will have been unmapped 652 * but may contain out of date orphan nodes if the unmap didn't go 653 * through. In addition, the last orphan node written for each commit is 654 * marked (top bit of orph->cmt_no is set to 1). It is possible that 655 * there are orphan nodes from the next commit (i.e. the commit did not 656 * complete successfully). In that case, no orphans will have been lost 657 * due to the way that orphans are written, and any orphans added will 658 * be valid orphans anyway and so can be deleted. 659 */ 660 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) { 661 struct ubifs_scan_leb *sleb; 662 663 dbg_rcvry("LEB %d", lnum); 664 sleb = ubifs_scan(c, lnum, 0, c->sbuf, 1); 665 if (IS_ERR(sleb)) { 666 if (PTR_ERR(sleb) == -EUCLEAN) 667 sleb = ubifs_recover_leb(c, lnum, 0, 668 c->sbuf, -1); 669 if (IS_ERR(sleb)) { 670 err = PTR_ERR(sleb); 671 break; 672 } 673 } 674 err = do_kill_orphans(c, sleb, &last_cmt_no, &outofdate, 675 &last_flagged); 676 if (err || outofdate) { 677 ubifs_scan_destroy(sleb); 678 break; 679 } 680 if (sleb->endpt) { 681 c->ohead_lnum = lnum; 682 c->ohead_offs = sleb->endpt; 683 } 684 ubifs_scan_destroy(sleb); 685 } 686 return err; 687 } 688 689 /** 690 * ubifs_mount_orphans - delete orphan inodes and erase LEBs that recorded them. 691 * @c: UBIFS file-system description object 692 * @unclean: indicates recovery from unclean unmount 693 * @read_only: indicates read only mount 694 * 695 * This function is called when mounting to erase orphans from the previous 696 * session. If UBIFS was not unmounted cleanly, then the inodes recorded as 697 * orphans are deleted. 698 */ 699 int ubifs_mount_orphans(struct ubifs_info *c, int unclean, int read_only) 700 { 701 int err = 0; 702 703 c->max_orphans = tot_avail_orphs(c); 704 705 if (!read_only) { 706 c->orph_buf = vmalloc(c->leb_size); 707 if (!c->orph_buf) 708 return -ENOMEM; 709 } 710 711 if (unclean) 712 err = kill_orphans(c); 713 else if (!read_only) 714 err = ubifs_clear_orphans(c); 715 716 return err; 717 } 718 719 /* 720 * Everything below is related to debugging. 721 */ 722 723 struct check_orphan { 724 struct rb_node rb; 725 ino_t inum; 726 }; 727 728 struct check_info { 729 unsigned long last_ino; 730 unsigned long tot_inos; 731 unsigned long missing; 732 unsigned long long leaf_cnt; 733 struct ubifs_ino_node *node; 734 struct rb_root root; 735 }; 736 737 static int dbg_find_orphan(struct ubifs_info *c, ino_t inum) 738 { 739 struct ubifs_orphan *o; 740 struct rb_node *p; 741 742 spin_lock(&c->orphan_lock); 743 p = c->orph_tree.rb_node; 744 while (p) { 745 o = rb_entry(p, struct ubifs_orphan, rb); 746 if (inum < o->inum) 747 p = p->rb_left; 748 else if (inum > o->inum) 749 p = p->rb_right; 750 else { 751 spin_unlock(&c->orphan_lock); 752 return 1; 753 } 754 } 755 spin_unlock(&c->orphan_lock); 756 return 0; 757 } 758 759 static int dbg_ins_check_orphan(struct rb_root *root, ino_t inum) 760 { 761 struct check_orphan *orphan, *o; 762 struct rb_node **p, *parent = NULL; 763 764 orphan = kzalloc(sizeof(struct check_orphan), GFP_NOFS); 765 if (!orphan) 766 return -ENOMEM; 767 orphan->inum = inum; 768 769 p = &root->rb_node; 770 while (*p) { 771 parent = *p; 772 o = rb_entry(parent, struct check_orphan, rb); 773 if (inum < o->inum) 774 p = &(*p)->rb_left; 775 else if (inum > o->inum) 776 p = &(*p)->rb_right; 777 else { 778 kfree(orphan); 779 return 0; 780 } 781 } 782 rb_link_node(&orphan->rb, parent, p); 783 rb_insert_color(&orphan->rb, root); 784 return 0; 785 } 786 787 static int dbg_find_check_orphan(struct rb_root *root, ino_t inum) 788 { 789 struct check_orphan *o; 790 struct rb_node *p; 791 792 p = root->rb_node; 793 while (p) { 794 o = rb_entry(p, struct check_orphan, rb); 795 if (inum < o->inum) 796 p = p->rb_left; 797 else if (inum > o->inum) 798 p = p->rb_right; 799 else 800 return 1; 801 } 802 return 0; 803 } 804 805 static void dbg_free_check_tree(struct rb_root *root) 806 { 807 struct check_orphan *o, *n; 808 809 rbtree_postorder_for_each_entry_safe(o, n, root, rb) 810 kfree(o); 811 } 812 813 static int dbg_orphan_check(struct ubifs_info *c, struct ubifs_zbranch *zbr, 814 void *priv) 815 { 816 struct check_info *ci = priv; 817 ino_t inum; 818 int err; 819 820 inum = key_inum(c, &zbr->key); 821 if (inum != ci->last_ino) { 822 /* Lowest node type is the inode node, so it comes first */ 823 if (key_type(c, &zbr->key) != UBIFS_INO_KEY) 824 ubifs_err(c, "found orphan node ino %lu, type %d", 825 (unsigned long)inum, key_type(c, &zbr->key)); 826 ci->last_ino = inum; 827 ci->tot_inos += 1; 828 err = ubifs_tnc_read_node(c, zbr, ci->node); 829 if (err) { 830 ubifs_err(c, "node read failed, error %d", err); 831 return err; 832 } 833 if (ci->node->nlink == 0) 834 /* Must be recorded as an orphan */ 835 if (!dbg_find_check_orphan(&ci->root, inum) && 836 !dbg_find_orphan(c, inum)) { 837 ubifs_err(c, "missing orphan, ino %lu", 838 (unsigned long)inum); 839 ci->missing += 1; 840 } 841 } 842 ci->leaf_cnt += 1; 843 return 0; 844 } 845 846 static int dbg_read_orphans(struct check_info *ci, struct ubifs_scan_leb *sleb) 847 { 848 struct ubifs_scan_node *snod; 849 struct ubifs_orph_node *orph; 850 ino_t inum; 851 int i, n, err; 852 853 list_for_each_entry(snod, &sleb->nodes, list) { 854 cond_resched(); 855 if (snod->type != UBIFS_ORPH_NODE) 856 continue; 857 orph = snod->node; 858 n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3; 859 for (i = 0; i < n; i++) { 860 inum = le64_to_cpu(orph->inos[i]); 861 err = dbg_ins_check_orphan(&ci->root, inum); 862 if (err) 863 return err; 864 } 865 } 866 return 0; 867 } 868 869 static int dbg_scan_orphans(struct ubifs_info *c, struct check_info *ci) 870 { 871 int lnum, err = 0; 872 void *buf; 873 874 /* Check no-orphans flag and skip this if no orphans */ 875 if (c->no_orphs) 876 return 0; 877 878 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL); 879 if (!buf) { 880 ubifs_err(c, "cannot allocate memory to check orphans"); 881 return 0; 882 } 883 884 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) { 885 struct ubifs_scan_leb *sleb; 886 887 sleb = ubifs_scan(c, lnum, 0, buf, 0); 888 if (IS_ERR(sleb)) { 889 err = PTR_ERR(sleb); 890 break; 891 } 892 893 err = dbg_read_orphans(ci, sleb); 894 ubifs_scan_destroy(sleb); 895 if (err) 896 break; 897 } 898 899 vfree(buf); 900 return err; 901 } 902 903 static int dbg_check_orphans(struct ubifs_info *c) 904 { 905 struct check_info ci; 906 int err; 907 908 if (!dbg_is_chk_orph(c)) 909 return 0; 910 911 ci.last_ino = 0; 912 ci.tot_inos = 0; 913 ci.missing = 0; 914 ci.leaf_cnt = 0; 915 ci.root = RB_ROOT; 916 ci.node = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS); 917 if (!ci.node) { 918 ubifs_err(c, "out of memory"); 919 return -ENOMEM; 920 } 921 922 err = dbg_scan_orphans(c, &ci); 923 if (err) 924 goto out; 925 926 err = dbg_walk_index(c, &dbg_orphan_check, NULL, &ci); 927 if (err) { 928 ubifs_err(c, "cannot scan TNC, error %d", err); 929 goto out; 930 } 931 932 if (ci.missing) { 933 ubifs_err(c, "%lu missing orphan(s)", ci.missing); 934 err = -EINVAL; 935 goto out; 936 } 937 938 dbg_cmt("last inode number is %lu", ci.last_ino); 939 dbg_cmt("total number of inodes is %lu", ci.tot_inos); 940 dbg_cmt("total number of leaf nodes is %llu", ci.leaf_cnt); 941 942 out: 943 dbg_free_check_tree(&ci.root); 944 kfree(ci.node); 945 return err; 946 } 947