1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * This file is part of UBIFS. 4 * 5 * Copyright (C) 2006-2008 Nokia Corporation. 6 * 7 * Authors: Adrian Hunter 8 * Artem Bityutskiy (Битюцкий Артём) 9 */ 10 11 /* 12 * This file implements the LEB properties tree (LPT) area. The LPT area 13 * contains the LEB properties tree, a table of LPT area eraseblocks (ltab), and 14 * (for the "big" model) a table of saved LEB numbers (lsave). The LPT area sits 15 * between the log and the orphan area. 16 * 17 * The LPT area is like a miniature self-contained file system. It is required 18 * that it never runs out of space, is fast to access and update, and scales 19 * logarithmically. The LEB properties tree is implemented as a wandering tree 20 * much like the TNC, and the LPT area has its own garbage collection. 21 * 22 * The LPT has two slightly different forms called the "small model" and the 23 * "big model". The small model is used when the entire LEB properties table 24 * can be written into a single eraseblock. In that case, garbage collection 25 * consists of just writing the whole table, which therefore makes all other 26 * eraseblocks reusable. In the case of the big model, dirty eraseblocks are 27 * selected for garbage collection, which consists of marking the clean nodes in 28 * that LEB as dirty, and then only the dirty nodes are written out. Also, in 29 * the case of the big model, a table of LEB numbers is saved so that the entire 30 * LPT does not to be scanned looking for empty eraseblocks when UBIFS is first 31 * mounted. 32 */ 33 34 #include "ubifs.h" 35 #ifndef __UBOOT__ 36 #include <linux/crc16.h> 37 #include <linux/math64.h> 38 #include <linux/slab.h> 39 #else 40 #include <linux/compat.h> 41 #include <linux/err.h> 42 #include <ubi_uboot.h> 43 #include "crc16.h" 44 #endif 45 46 /** 47 * do_calc_lpt_geom - calculate sizes for the LPT area. 48 * @c: the UBIFS file-system description object 49 * 50 * Calculate the sizes of LPT bit fields, nodes, and tree, based on the 51 * properties of the flash and whether LPT is "big" (c->big_lpt). 52 */ 53 static void do_calc_lpt_geom(struct ubifs_info *c) 54 { 55 int i, n, bits, per_leb_wastage, max_pnode_cnt; 56 long long sz, tot_wastage; 57 58 n = c->main_lebs + c->max_leb_cnt - c->leb_cnt; 59 max_pnode_cnt = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT); 60 61 c->lpt_hght = 1; 62 n = UBIFS_LPT_FANOUT; 63 while (n < max_pnode_cnt) { 64 c->lpt_hght += 1; 65 n <<= UBIFS_LPT_FANOUT_SHIFT; 66 } 67 68 c->pnode_cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT); 69 70 n = DIV_ROUND_UP(c->pnode_cnt, UBIFS_LPT_FANOUT); 71 c->nnode_cnt = n; 72 for (i = 1; i < c->lpt_hght; i++) { 73 n = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT); 74 c->nnode_cnt += n; 75 } 76 77 c->space_bits = fls(c->leb_size) - 3; 78 c->lpt_lnum_bits = fls(c->lpt_lebs); 79 c->lpt_offs_bits = fls(c->leb_size - 1); 80 c->lpt_spc_bits = fls(c->leb_size); 81 82 n = DIV_ROUND_UP(c->max_leb_cnt, UBIFS_LPT_FANOUT); 83 c->pcnt_bits = fls(n - 1); 84 85 c->lnum_bits = fls(c->max_leb_cnt - 1); 86 87 bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS + 88 (c->big_lpt ? c->pcnt_bits : 0) + 89 (c->space_bits * 2 + 1) * UBIFS_LPT_FANOUT; 90 c->pnode_sz = (bits + 7) / 8; 91 92 bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS + 93 (c->big_lpt ? c->pcnt_bits : 0) + 94 (c->lpt_lnum_bits + c->lpt_offs_bits) * UBIFS_LPT_FANOUT; 95 c->nnode_sz = (bits + 7) / 8; 96 97 bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS + 98 c->lpt_lebs * c->lpt_spc_bits * 2; 99 c->ltab_sz = (bits + 7) / 8; 100 101 bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS + 102 c->lnum_bits * c->lsave_cnt; 103 c->lsave_sz = (bits + 7) / 8; 104 105 /* Calculate the minimum LPT size */ 106 c->lpt_sz = (long long)c->pnode_cnt * c->pnode_sz; 107 c->lpt_sz += (long long)c->nnode_cnt * c->nnode_sz; 108 c->lpt_sz += c->ltab_sz; 109 if (c->big_lpt) 110 c->lpt_sz += c->lsave_sz; 111 112 /* Add wastage */ 113 sz = c->lpt_sz; 114 per_leb_wastage = max_t(int, c->pnode_sz, c->nnode_sz); 115 sz += per_leb_wastage; 116 tot_wastage = per_leb_wastage; 117 while (sz > c->leb_size) { 118 sz += per_leb_wastage; 119 sz -= c->leb_size; 120 tot_wastage += per_leb_wastage; 121 } 122 tot_wastage += ALIGN(sz, c->min_io_size) - sz; 123 c->lpt_sz += tot_wastage; 124 } 125 126 /** 127 * ubifs_calc_lpt_geom - calculate and check sizes for the LPT area. 128 * @c: the UBIFS file-system description object 129 * 130 * This function returns %0 on success and a negative error code on failure. 131 */ 132 int ubifs_calc_lpt_geom(struct ubifs_info *c) 133 { 134 int lebs_needed; 135 long long sz; 136 137 do_calc_lpt_geom(c); 138 139 /* Verify that lpt_lebs is big enough */ 140 sz = c->lpt_sz * 2; /* Must have at least 2 times the size */ 141 lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size); 142 if (lebs_needed > c->lpt_lebs) { 143 ubifs_err(c, "too few LPT LEBs"); 144 return -EINVAL; 145 } 146 147 /* Verify that ltab fits in a single LEB (since ltab is a single node */ 148 if (c->ltab_sz > c->leb_size) { 149 ubifs_err(c, "LPT ltab too big"); 150 return -EINVAL; 151 } 152 153 c->check_lpt_free = c->big_lpt; 154 return 0; 155 } 156 157 /** 158 * calc_dflt_lpt_geom - calculate default LPT geometry. 159 * @c: the UBIFS file-system description object 160 * @main_lebs: number of main area LEBs is passed and returned here 161 * @big_lpt: whether the LPT area is "big" is returned here 162 * 163 * The size of the LPT area depends on parameters that themselves are dependent 164 * on the size of the LPT area. This function, successively recalculates the LPT 165 * area geometry until the parameters and resultant geometry are consistent. 166 * 167 * This function returns %0 on success and a negative error code on failure. 168 */ 169 static int calc_dflt_lpt_geom(struct ubifs_info *c, int *main_lebs, 170 int *big_lpt) 171 { 172 int i, lebs_needed; 173 long long sz; 174 175 /* Start by assuming the minimum number of LPT LEBs */ 176 c->lpt_lebs = UBIFS_MIN_LPT_LEBS; 177 c->main_lebs = *main_lebs - c->lpt_lebs; 178 if (c->main_lebs <= 0) 179 return -EINVAL; 180 181 /* And assume we will use the small LPT model */ 182 c->big_lpt = 0; 183 184 /* 185 * Calculate the geometry based on assumptions above and then see if it 186 * makes sense 187 */ 188 do_calc_lpt_geom(c); 189 190 /* Small LPT model must have lpt_sz < leb_size */ 191 if (c->lpt_sz > c->leb_size) { 192 /* Nope, so try again using big LPT model */ 193 c->big_lpt = 1; 194 do_calc_lpt_geom(c); 195 } 196 197 /* Now check there are enough LPT LEBs */ 198 for (i = 0; i < 64 ; i++) { 199 sz = c->lpt_sz * 4; /* Allow 4 times the size */ 200 lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size); 201 if (lebs_needed > c->lpt_lebs) { 202 /* Not enough LPT LEBs so try again with more */ 203 c->lpt_lebs = lebs_needed; 204 c->main_lebs = *main_lebs - c->lpt_lebs; 205 if (c->main_lebs <= 0) 206 return -EINVAL; 207 do_calc_lpt_geom(c); 208 continue; 209 } 210 if (c->ltab_sz > c->leb_size) { 211 ubifs_err(c, "LPT ltab too big"); 212 return -EINVAL; 213 } 214 *main_lebs = c->main_lebs; 215 *big_lpt = c->big_lpt; 216 return 0; 217 } 218 return -EINVAL; 219 } 220 221 /** 222 * pack_bits - pack bit fields end-to-end. 223 * @addr: address at which to pack (passed and next address returned) 224 * @pos: bit position at which to pack (passed and next position returned) 225 * @val: value to pack 226 * @nrbits: number of bits of value to pack (1-32) 227 */ 228 static void pack_bits(uint8_t **addr, int *pos, uint32_t val, int nrbits) 229 { 230 uint8_t *p = *addr; 231 int b = *pos; 232 233 ubifs_assert(nrbits > 0); 234 ubifs_assert(nrbits <= 32); 235 ubifs_assert(*pos >= 0); 236 ubifs_assert(*pos < 8); 237 ubifs_assert((val >> nrbits) == 0 || nrbits == 32); 238 if (b) { 239 *p |= ((uint8_t)val) << b; 240 nrbits += b; 241 if (nrbits > 8) { 242 *++p = (uint8_t)(val >>= (8 - b)); 243 if (nrbits > 16) { 244 *++p = (uint8_t)(val >>= 8); 245 if (nrbits > 24) { 246 *++p = (uint8_t)(val >>= 8); 247 if (nrbits > 32) 248 *++p = (uint8_t)(val >>= 8); 249 } 250 } 251 } 252 } else { 253 *p = (uint8_t)val; 254 if (nrbits > 8) { 255 *++p = (uint8_t)(val >>= 8); 256 if (nrbits > 16) { 257 *++p = (uint8_t)(val >>= 8); 258 if (nrbits > 24) 259 *++p = (uint8_t)(val >>= 8); 260 } 261 } 262 } 263 b = nrbits & 7; 264 if (b == 0) 265 p++; 266 *addr = p; 267 *pos = b; 268 } 269 270 /** 271 * ubifs_unpack_bits - unpack bit fields. 272 * @addr: address at which to unpack (passed and next address returned) 273 * @pos: bit position at which to unpack (passed and next position returned) 274 * @nrbits: number of bits of value to unpack (1-32) 275 * 276 * This functions returns the value unpacked. 277 */ 278 uint32_t ubifs_unpack_bits(uint8_t **addr, int *pos, int nrbits) 279 { 280 const int k = 32 - nrbits; 281 uint8_t *p = *addr; 282 int b = *pos; 283 uint32_t uninitialized_var(val); 284 const int bytes = (nrbits + b + 7) >> 3; 285 286 ubifs_assert(nrbits > 0); 287 ubifs_assert(nrbits <= 32); 288 ubifs_assert(*pos >= 0); 289 ubifs_assert(*pos < 8); 290 if (b) { 291 switch (bytes) { 292 case 2: 293 val = p[1]; 294 break; 295 case 3: 296 val = p[1] | ((uint32_t)p[2] << 8); 297 break; 298 case 4: 299 val = p[1] | ((uint32_t)p[2] << 8) | 300 ((uint32_t)p[3] << 16); 301 break; 302 case 5: 303 val = p[1] | ((uint32_t)p[2] << 8) | 304 ((uint32_t)p[3] << 16) | 305 ((uint32_t)p[4] << 24); 306 } 307 val <<= (8 - b); 308 val |= *p >> b; 309 nrbits += b; 310 } else { 311 switch (bytes) { 312 case 1: 313 val = p[0]; 314 break; 315 case 2: 316 val = p[0] | ((uint32_t)p[1] << 8); 317 break; 318 case 3: 319 val = p[0] | ((uint32_t)p[1] << 8) | 320 ((uint32_t)p[2] << 16); 321 break; 322 case 4: 323 val = p[0] | ((uint32_t)p[1] << 8) | 324 ((uint32_t)p[2] << 16) | 325 ((uint32_t)p[3] << 24); 326 break; 327 } 328 } 329 val <<= k; 330 val >>= k; 331 b = nrbits & 7; 332 p += nrbits >> 3; 333 *addr = p; 334 *pos = b; 335 ubifs_assert((val >> nrbits) == 0 || nrbits - b == 32); 336 return val; 337 } 338 339 /** 340 * ubifs_pack_pnode - pack all the bit fields of a pnode. 341 * @c: UBIFS file-system description object 342 * @buf: buffer into which to pack 343 * @pnode: pnode to pack 344 */ 345 void ubifs_pack_pnode(struct ubifs_info *c, void *buf, 346 struct ubifs_pnode *pnode) 347 { 348 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; 349 int i, pos = 0; 350 uint16_t crc; 351 352 pack_bits(&addr, &pos, UBIFS_LPT_PNODE, UBIFS_LPT_TYPE_BITS); 353 if (c->big_lpt) 354 pack_bits(&addr, &pos, pnode->num, c->pcnt_bits); 355 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 356 pack_bits(&addr, &pos, pnode->lprops[i].free >> 3, 357 c->space_bits); 358 pack_bits(&addr, &pos, pnode->lprops[i].dirty >> 3, 359 c->space_bits); 360 if (pnode->lprops[i].flags & LPROPS_INDEX) 361 pack_bits(&addr, &pos, 1, 1); 362 else 363 pack_bits(&addr, &pos, 0, 1); 364 } 365 crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES, 366 c->pnode_sz - UBIFS_LPT_CRC_BYTES); 367 addr = buf; 368 pos = 0; 369 pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS); 370 } 371 372 /** 373 * ubifs_pack_nnode - pack all the bit fields of a nnode. 374 * @c: UBIFS file-system description object 375 * @buf: buffer into which to pack 376 * @nnode: nnode to pack 377 */ 378 void ubifs_pack_nnode(struct ubifs_info *c, void *buf, 379 struct ubifs_nnode *nnode) 380 { 381 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; 382 int i, pos = 0; 383 uint16_t crc; 384 385 pack_bits(&addr, &pos, UBIFS_LPT_NNODE, UBIFS_LPT_TYPE_BITS); 386 if (c->big_lpt) 387 pack_bits(&addr, &pos, nnode->num, c->pcnt_bits); 388 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 389 int lnum = nnode->nbranch[i].lnum; 390 391 if (lnum == 0) 392 lnum = c->lpt_last + 1; 393 pack_bits(&addr, &pos, lnum - c->lpt_first, c->lpt_lnum_bits); 394 pack_bits(&addr, &pos, nnode->nbranch[i].offs, 395 c->lpt_offs_bits); 396 } 397 crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES, 398 c->nnode_sz - UBIFS_LPT_CRC_BYTES); 399 addr = buf; 400 pos = 0; 401 pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS); 402 } 403 404 /** 405 * ubifs_pack_ltab - pack the LPT's own lprops table. 406 * @c: UBIFS file-system description object 407 * @buf: buffer into which to pack 408 * @ltab: LPT's own lprops table to pack 409 */ 410 void ubifs_pack_ltab(struct ubifs_info *c, void *buf, 411 struct ubifs_lpt_lprops *ltab) 412 { 413 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; 414 int i, pos = 0; 415 uint16_t crc; 416 417 pack_bits(&addr, &pos, UBIFS_LPT_LTAB, UBIFS_LPT_TYPE_BITS); 418 for (i = 0; i < c->lpt_lebs; i++) { 419 pack_bits(&addr, &pos, ltab[i].free, c->lpt_spc_bits); 420 pack_bits(&addr, &pos, ltab[i].dirty, c->lpt_spc_bits); 421 } 422 crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES, 423 c->ltab_sz - UBIFS_LPT_CRC_BYTES); 424 addr = buf; 425 pos = 0; 426 pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS); 427 } 428 429 /** 430 * ubifs_pack_lsave - pack the LPT's save table. 431 * @c: UBIFS file-system description object 432 * @buf: buffer into which to pack 433 * @lsave: LPT's save table to pack 434 */ 435 void ubifs_pack_lsave(struct ubifs_info *c, void *buf, int *lsave) 436 { 437 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; 438 int i, pos = 0; 439 uint16_t crc; 440 441 pack_bits(&addr, &pos, UBIFS_LPT_LSAVE, UBIFS_LPT_TYPE_BITS); 442 for (i = 0; i < c->lsave_cnt; i++) 443 pack_bits(&addr, &pos, lsave[i], c->lnum_bits); 444 crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES, 445 c->lsave_sz - UBIFS_LPT_CRC_BYTES); 446 addr = buf; 447 pos = 0; 448 pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS); 449 } 450 451 /** 452 * ubifs_add_lpt_dirt - add dirty space to LPT LEB properties. 453 * @c: UBIFS file-system description object 454 * @lnum: LEB number to which to add dirty space 455 * @dirty: amount of dirty space to add 456 */ 457 void ubifs_add_lpt_dirt(struct ubifs_info *c, int lnum, int dirty) 458 { 459 if (!dirty || !lnum) 460 return; 461 dbg_lp("LEB %d add %d to %d", 462 lnum, dirty, c->ltab[lnum - c->lpt_first].dirty); 463 ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last); 464 c->ltab[lnum - c->lpt_first].dirty += dirty; 465 } 466 467 /** 468 * set_ltab - set LPT LEB properties. 469 * @c: UBIFS file-system description object 470 * @lnum: LEB number 471 * @free: amount of free space 472 * @dirty: amount of dirty space 473 */ 474 static void set_ltab(struct ubifs_info *c, int lnum, int free, int dirty) 475 { 476 dbg_lp("LEB %d free %d dirty %d to %d %d", 477 lnum, c->ltab[lnum - c->lpt_first].free, 478 c->ltab[lnum - c->lpt_first].dirty, free, dirty); 479 ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last); 480 c->ltab[lnum - c->lpt_first].free = free; 481 c->ltab[lnum - c->lpt_first].dirty = dirty; 482 } 483 484 /** 485 * ubifs_add_nnode_dirt - add dirty space to LPT LEB properties. 486 * @c: UBIFS file-system description object 487 * @nnode: nnode for which to add dirt 488 */ 489 void ubifs_add_nnode_dirt(struct ubifs_info *c, struct ubifs_nnode *nnode) 490 { 491 struct ubifs_nnode *np = nnode->parent; 492 493 if (np) 494 ubifs_add_lpt_dirt(c, np->nbranch[nnode->iip].lnum, 495 c->nnode_sz); 496 else { 497 ubifs_add_lpt_dirt(c, c->lpt_lnum, c->nnode_sz); 498 if (!(c->lpt_drty_flgs & LTAB_DIRTY)) { 499 c->lpt_drty_flgs |= LTAB_DIRTY; 500 ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz); 501 } 502 } 503 } 504 505 /** 506 * add_pnode_dirt - add dirty space to LPT LEB properties. 507 * @c: UBIFS file-system description object 508 * @pnode: pnode for which to add dirt 509 */ 510 static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode) 511 { 512 ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum, 513 c->pnode_sz); 514 } 515 516 /** 517 * calc_nnode_num - calculate nnode number. 518 * @row: the row in the tree (root is zero) 519 * @col: the column in the row (leftmost is zero) 520 * 521 * The nnode number is a number that uniquely identifies a nnode and can be used 522 * easily to traverse the tree from the root to that nnode. 523 * 524 * This function calculates and returns the nnode number for the nnode at @row 525 * and @col. 526 */ 527 static int calc_nnode_num(int row, int col) 528 { 529 int num, bits; 530 531 num = 1; 532 while (row--) { 533 bits = (col & (UBIFS_LPT_FANOUT - 1)); 534 col >>= UBIFS_LPT_FANOUT_SHIFT; 535 num <<= UBIFS_LPT_FANOUT_SHIFT; 536 num |= bits; 537 } 538 return num; 539 } 540 541 /** 542 * calc_nnode_num_from_parent - calculate nnode number. 543 * @c: UBIFS file-system description object 544 * @parent: parent nnode 545 * @iip: index in parent 546 * 547 * The nnode number is a number that uniquely identifies a nnode and can be used 548 * easily to traverse the tree from the root to that nnode. 549 * 550 * This function calculates and returns the nnode number based on the parent's 551 * nnode number and the index in parent. 552 */ 553 static int calc_nnode_num_from_parent(const struct ubifs_info *c, 554 struct ubifs_nnode *parent, int iip) 555 { 556 int num, shft; 557 558 if (!parent) 559 return 1; 560 shft = (c->lpt_hght - parent->level) * UBIFS_LPT_FANOUT_SHIFT; 561 num = parent->num ^ (1 << shft); 562 num |= (UBIFS_LPT_FANOUT + iip) << shft; 563 return num; 564 } 565 566 /** 567 * calc_pnode_num_from_parent - calculate pnode number. 568 * @c: UBIFS file-system description object 569 * @parent: parent nnode 570 * @iip: index in parent 571 * 572 * The pnode number is a number that uniquely identifies a pnode and can be used 573 * easily to traverse the tree from the root to that pnode. 574 * 575 * This function calculates and returns the pnode number based on the parent's 576 * nnode number and the index in parent. 577 */ 578 static int calc_pnode_num_from_parent(const struct ubifs_info *c, 579 struct ubifs_nnode *parent, int iip) 580 { 581 int i, n = c->lpt_hght - 1, pnum = parent->num, num = 0; 582 583 for (i = 0; i < n; i++) { 584 num <<= UBIFS_LPT_FANOUT_SHIFT; 585 num |= pnum & (UBIFS_LPT_FANOUT - 1); 586 pnum >>= UBIFS_LPT_FANOUT_SHIFT; 587 } 588 num <<= UBIFS_LPT_FANOUT_SHIFT; 589 num |= iip; 590 return num; 591 } 592 593 /** 594 * ubifs_create_dflt_lpt - create default LPT. 595 * @c: UBIFS file-system description object 596 * @main_lebs: number of main area LEBs is passed and returned here 597 * @lpt_first: LEB number of first LPT LEB 598 * @lpt_lebs: number of LEBs for LPT is passed and returned here 599 * @big_lpt: use big LPT model is passed and returned here 600 * 601 * This function returns %0 on success and a negative error code on failure. 602 */ 603 int ubifs_create_dflt_lpt(struct ubifs_info *c, int *main_lebs, int lpt_first, 604 int *lpt_lebs, int *big_lpt) 605 { 606 int lnum, err = 0, node_sz, iopos, i, j, cnt, len, alen, row; 607 int blnum, boffs, bsz, bcnt; 608 struct ubifs_pnode *pnode = NULL; 609 struct ubifs_nnode *nnode = NULL; 610 void *buf = NULL, *p; 611 struct ubifs_lpt_lprops *ltab = NULL; 612 int *lsave = NULL; 613 614 err = calc_dflt_lpt_geom(c, main_lebs, big_lpt); 615 if (err) 616 return err; 617 *lpt_lebs = c->lpt_lebs; 618 619 /* Needed by 'ubifs_pack_nnode()' and 'set_ltab()' */ 620 c->lpt_first = lpt_first; 621 /* Needed by 'set_ltab()' */ 622 c->lpt_last = lpt_first + c->lpt_lebs - 1; 623 /* Needed by 'ubifs_pack_lsave()' */ 624 c->main_first = c->leb_cnt - *main_lebs; 625 626 lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_KERNEL); 627 pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_KERNEL); 628 nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_KERNEL); 629 buf = vmalloc(c->leb_size); 630 ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs); 631 if (!pnode || !nnode || !buf || !ltab || !lsave) { 632 err = -ENOMEM; 633 goto out; 634 } 635 636 ubifs_assert(!c->ltab); 637 c->ltab = ltab; /* Needed by set_ltab */ 638 639 /* Initialize LPT's own lprops */ 640 for (i = 0; i < c->lpt_lebs; i++) { 641 ltab[i].free = c->leb_size; 642 ltab[i].dirty = 0; 643 ltab[i].tgc = 0; 644 ltab[i].cmt = 0; 645 } 646 647 lnum = lpt_first; 648 p = buf; 649 /* Number of leaf nodes (pnodes) */ 650 cnt = c->pnode_cnt; 651 652 /* 653 * The first pnode contains the LEB properties for the LEBs that contain 654 * the root inode node and the root index node of the index tree. 655 */ 656 node_sz = ALIGN(ubifs_idx_node_sz(c, 1), 8); 657 iopos = ALIGN(node_sz, c->min_io_size); 658 pnode->lprops[0].free = c->leb_size - iopos; 659 pnode->lprops[0].dirty = iopos - node_sz; 660 pnode->lprops[0].flags = LPROPS_INDEX; 661 662 node_sz = UBIFS_INO_NODE_SZ; 663 iopos = ALIGN(node_sz, c->min_io_size); 664 pnode->lprops[1].free = c->leb_size - iopos; 665 pnode->lprops[1].dirty = iopos - node_sz; 666 667 for (i = 2; i < UBIFS_LPT_FANOUT; i++) 668 pnode->lprops[i].free = c->leb_size; 669 670 /* Add first pnode */ 671 ubifs_pack_pnode(c, p, pnode); 672 p += c->pnode_sz; 673 len = c->pnode_sz; 674 pnode->num += 1; 675 676 /* Reset pnode values for remaining pnodes */ 677 pnode->lprops[0].free = c->leb_size; 678 pnode->lprops[0].dirty = 0; 679 pnode->lprops[0].flags = 0; 680 681 pnode->lprops[1].free = c->leb_size; 682 pnode->lprops[1].dirty = 0; 683 684 /* 685 * To calculate the internal node branches, we keep information about 686 * the level below. 687 */ 688 blnum = lnum; /* LEB number of level below */ 689 boffs = 0; /* Offset of level below */ 690 bcnt = cnt; /* Number of nodes in level below */ 691 bsz = c->pnode_sz; /* Size of nodes in level below */ 692 693 /* Add all remaining pnodes */ 694 for (i = 1; i < cnt; i++) { 695 if (len + c->pnode_sz > c->leb_size) { 696 alen = ALIGN(len, c->min_io_size); 697 set_ltab(c, lnum, c->leb_size - alen, alen - len); 698 memset(p, 0xff, alen - len); 699 err = ubifs_leb_change(c, lnum++, buf, alen); 700 if (err) 701 goto out; 702 p = buf; 703 len = 0; 704 } 705 ubifs_pack_pnode(c, p, pnode); 706 p += c->pnode_sz; 707 len += c->pnode_sz; 708 /* 709 * pnodes are simply numbered left to right starting at zero, 710 * which means the pnode number can be used easily to traverse 711 * down the tree to the corresponding pnode. 712 */ 713 pnode->num += 1; 714 } 715 716 row = 0; 717 for (i = UBIFS_LPT_FANOUT; cnt > i; i <<= UBIFS_LPT_FANOUT_SHIFT) 718 row += 1; 719 /* Add all nnodes, one level at a time */ 720 while (1) { 721 /* Number of internal nodes (nnodes) at next level */ 722 cnt = DIV_ROUND_UP(cnt, UBIFS_LPT_FANOUT); 723 for (i = 0; i < cnt; i++) { 724 if (len + c->nnode_sz > c->leb_size) { 725 alen = ALIGN(len, c->min_io_size); 726 set_ltab(c, lnum, c->leb_size - alen, 727 alen - len); 728 memset(p, 0xff, alen - len); 729 err = ubifs_leb_change(c, lnum++, buf, alen); 730 if (err) 731 goto out; 732 p = buf; 733 len = 0; 734 } 735 /* Only 1 nnode at this level, so it is the root */ 736 if (cnt == 1) { 737 c->lpt_lnum = lnum; 738 c->lpt_offs = len; 739 } 740 /* Set branches to the level below */ 741 for (j = 0; j < UBIFS_LPT_FANOUT; j++) { 742 if (bcnt) { 743 if (boffs + bsz > c->leb_size) { 744 blnum += 1; 745 boffs = 0; 746 } 747 nnode->nbranch[j].lnum = blnum; 748 nnode->nbranch[j].offs = boffs; 749 boffs += bsz; 750 bcnt--; 751 } else { 752 nnode->nbranch[j].lnum = 0; 753 nnode->nbranch[j].offs = 0; 754 } 755 } 756 nnode->num = calc_nnode_num(row, i); 757 ubifs_pack_nnode(c, p, nnode); 758 p += c->nnode_sz; 759 len += c->nnode_sz; 760 } 761 /* Only 1 nnode at this level, so it is the root */ 762 if (cnt == 1) 763 break; 764 /* Update the information about the level below */ 765 bcnt = cnt; 766 bsz = c->nnode_sz; 767 row -= 1; 768 } 769 770 if (*big_lpt) { 771 /* Need to add LPT's save table */ 772 if (len + c->lsave_sz > c->leb_size) { 773 alen = ALIGN(len, c->min_io_size); 774 set_ltab(c, lnum, c->leb_size - alen, alen - len); 775 memset(p, 0xff, alen - len); 776 err = ubifs_leb_change(c, lnum++, buf, alen); 777 if (err) 778 goto out; 779 p = buf; 780 len = 0; 781 } 782 783 c->lsave_lnum = lnum; 784 c->lsave_offs = len; 785 786 for (i = 0; i < c->lsave_cnt && i < *main_lebs; i++) 787 lsave[i] = c->main_first + i; 788 for (; i < c->lsave_cnt; i++) 789 lsave[i] = c->main_first; 790 791 ubifs_pack_lsave(c, p, lsave); 792 p += c->lsave_sz; 793 len += c->lsave_sz; 794 } 795 796 /* Need to add LPT's own LEB properties table */ 797 if (len + c->ltab_sz > c->leb_size) { 798 alen = ALIGN(len, c->min_io_size); 799 set_ltab(c, lnum, c->leb_size - alen, alen - len); 800 memset(p, 0xff, alen - len); 801 err = ubifs_leb_change(c, lnum++, buf, alen); 802 if (err) 803 goto out; 804 p = buf; 805 len = 0; 806 } 807 808 c->ltab_lnum = lnum; 809 c->ltab_offs = len; 810 811 /* Update ltab before packing it */ 812 len += c->ltab_sz; 813 alen = ALIGN(len, c->min_io_size); 814 set_ltab(c, lnum, c->leb_size - alen, alen - len); 815 816 ubifs_pack_ltab(c, p, ltab); 817 p += c->ltab_sz; 818 819 /* Write remaining buffer */ 820 memset(p, 0xff, alen - len); 821 err = ubifs_leb_change(c, lnum, buf, alen); 822 if (err) 823 goto out; 824 825 c->nhead_lnum = lnum; 826 c->nhead_offs = ALIGN(len, c->min_io_size); 827 828 dbg_lp("space_bits %d", c->space_bits); 829 dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits); 830 dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits); 831 dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits); 832 dbg_lp("pcnt_bits %d", c->pcnt_bits); 833 dbg_lp("lnum_bits %d", c->lnum_bits); 834 dbg_lp("pnode_sz %d", c->pnode_sz); 835 dbg_lp("nnode_sz %d", c->nnode_sz); 836 dbg_lp("ltab_sz %d", c->ltab_sz); 837 dbg_lp("lsave_sz %d", c->lsave_sz); 838 dbg_lp("lsave_cnt %d", c->lsave_cnt); 839 dbg_lp("lpt_hght %d", c->lpt_hght); 840 dbg_lp("big_lpt %d", c->big_lpt); 841 dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs); 842 dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs); 843 dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs); 844 if (c->big_lpt) 845 dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs); 846 out: 847 c->ltab = NULL; 848 kfree(lsave); 849 vfree(ltab); 850 vfree(buf); 851 kfree(nnode); 852 kfree(pnode); 853 return err; 854 } 855 856 /** 857 * update_cats - add LEB properties of a pnode to LEB category lists and heaps. 858 * @c: UBIFS file-system description object 859 * @pnode: pnode 860 * 861 * When a pnode is loaded into memory, the LEB properties it contains are added, 862 * by this function, to the LEB category lists and heaps. 863 */ 864 static void update_cats(struct ubifs_info *c, struct ubifs_pnode *pnode) 865 { 866 int i; 867 868 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 869 int cat = pnode->lprops[i].flags & LPROPS_CAT_MASK; 870 int lnum = pnode->lprops[i].lnum; 871 872 if (!lnum) 873 return; 874 ubifs_add_to_cat(c, &pnode->lprops[i], cat); 875 } 876 } 877 878 /** 879 * replace_cats - add LEB properties of a pnode to LEB category lists and heaps. 880 * @c: UBIFS file-system description object 881 * @old_pnode: pnode copied 882 * @new_pnode: pnode copy 883 * 884 * During commit it is sometimes necessary to copy a pnode 885 * (see dirty_cow_pnode). When that happens, references in 886 * category lists and heaps must be replaced. This function does that. 887 */ 888 static void replace_cats(struct ubifs_info *c, struct ubifs_pnode *old_pnode, 889 struct ubifs_pnode *new_pnode) 890 { 891 int i; 892 893 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 894 if (!new_pnode->lprops[i].lnum) 895 return; 896 ubifs_replace_cat(c, &old_pnode->lprops[i], 897 &new_pnode->lprops[i]); 898 } 899 } 900 901 /** 902 * check_lpt_crc - check LPT node crc is correct. 903 * @c: UBIFS file-system description object 904 * @buf: buffer containing node 905 * @len: length of node 906 * 907 * This function returns %0 on success and a negative error code on failure. 908 */ 909 static int check_lpt_crc(const struct ubifs_info *c, void *buf, int len) 910 { 911 int pos = 0; 912 uint8_t *addr = buf; 913 uint16_t crc, calc_crc; 914 915 crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS); 916 calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES, 917 len - UBIFS_LPT_CRC_BYTES); 918 if (crc != calc_crc) { 919 ubifs_err(c, "invalid crc in LPT node: crc %hx calc %hx", 920 crc, calc_crc); 921 dump_stack(); 922 return -EINVAL; 923 } 924 return 0; 925 } 926 927 /** 928 * check_lpt_type - check LPT node type is correct. 929 * @c: UBIFS file-system description object 930 * @addr: address of type bit field is passed and returned updated here 931 * @pos: position of type bit field is passed and returned updated here 932 * @type: expected type 933 * 934 * This function returns %0 on success and a negative error code on failure. 935 */ 936 static int check_lpt_type(const struct ubifs_info *c, uint8_t **addr, 937 int *pos, int type) 938 { 939 int node_type; 940 941 node_type = ubifs_unpack_bits(addr, pos, UBIFS_LPT_TYPE_BITS); 942 if (node_type != type) { 943 ubifs_err(c, "invalid type (%d) in LPT node type %d", 944 node_type, type); 945 dump_stack(); 946 return -EINVAL; 947 } 948 return 0; 949 } 950 951 /** 952 * unpack_pnode - unpack a pnode. 953 * @c: UBIFS file-system description object 954 * @buf: buffer containing packed pnode to unpack 955 * @pnode: pnode structure to fill 956 * 957 * This function returns %0 on success and a negative error code on failure. 958 */ 959 static int unpack_pnode(const struct ubifs_info *c, void *buf, 960 struct ubifs_pnode *pnode) 961 { 962 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; 963 int i, pos = 0, err; 964 965 err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_PNODE); 966 if (err) 967 return err; 968 if (c->big_lpt) 969 pnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits); 970 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 971 struct ubifs_lprops * const lprops = &pnode->lprops[i]; 972 973 lprops->free = ubifs_unpack_bits(&addr, &pos, c->space_bits); 974 lprops->free <<= 3; 975 lprops->dirty = ubifs_unpack_bits(&addr, &pos, c->space_bits); 976 lprops->dirty <<= 3; 977 978 if (ubifs_unpack_bits(&addr, &pos, 1)) 979 lprops->flags = LPROPS_INDEX; 980 else 981 lprops->flags = 0; 982 lprops->flags |= ubifs_categorize_lprops(c, lprops); 983 } 984 err = check_lpt_crc(c, buf, c->pnode_sz); 985 return err; 986 } 987 988 /** 989 * ubifs_unpack_nnode - unpack a nnode. 990 * @c: UBIFS file-system description object 991 * @buf: buffer containing packed nnode to unpack 992 * @nnode: nnode structure to fill 993 * 994 * This function returns %0 on success and a negative error code on failure. 995 */ 996 int ubifs_unpack_nnode(const struct ubifs_info *c, void *buf, 997 struct ubifs_nnode *nnode) 998 { 999 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; 1000 int i, pos = 0, err; 1001 1002 err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_NNODE); 1003 if (err) 1004 return err; 1005 if (c->big_lpt) 1006 nnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits); 1007 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 1008 int lnum; 1009 1010 lnum = ubifs_unpack_bits(&addr, &pos, c->lpt_lnum_bits) + 1011 c->lpt_first; 1012 if (lnum == c->lpt_last + 1) 1013 lnum = 0; 1014 nnode->nbranch[i].lnum = lnum; 1015 nnode->nbranch[i].offs = ubifs_unpack_bits(&addr, &pos, 1016 c->lpt_offs_bits); 1017 } 1018 err = check_lpt_crc(c, buf, c->nnode_sz); 1019 return err; 1020 } 1021 1022 /** 1023 * unpack_ltab - unpack the LPT's own lprops table. 1024 * @c: UBIFS file-system description object 1025 * @buf: buffer from which to unpack 1026 * 1027 * This function returns %0 on success and a negative error code on failure. 1028 */ 1029 static int unpack_ltab(const struct ubifs_info *c, void *buf) 1030 { 1031 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; 1032 int i, pos = 0, err; 1033 1034 err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_LTAB); 1035 if (err) 1036 return err; 1037 for (i = 0; i < c->lpt_lebs; i++) { 1038 int free = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits); 1039 int dirty = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits); 1040 1041 if (free < 0 || free > c->leb_size || dirty < 0 || 1042 dirty > c->leb_size || free + dirty > c->leb_size) 1043 return -EINVAL; 1044 1045 c->ltab[i].free = free; 1046 c->ltab[i].dirty = dirty; 1047 c->ltab[i].tgc = 0; 1048 c->ltab[i].cmt = 0; 1049 } 1050 err = check_lpt_crc(c, buf, c->ltab_sz); 1051 return err; 1052 } 1053 1054 #ifndef __UBOOT__ 1055 /** 1056 * unpack_lsave - unpack the LPT's save table. 1057 * @c: UBIFS file-system description object 1058 * @buf: buffer from which to unpack 1059 * 1060 * This function returns %0 on success and a negative error code on failure. 1061 */ 1062 static int unpack_lsave(const struct ubifs_info *c, void *buf) 1063 { 1064 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; 1065 int i, pos = 0, err; 1066 1067 err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_LSAVE); 1068 if (err) 1069 return err; 1070 for (i = 0; i < c->lsave_cnt; i++) { 1071 int lnum = ubifs_unpack_bits(&addr, &pos, c->lnum_bits); 1072 1073 if (lnum < c->main_first || lnum >= c->leb_cnt) 1074 return -EINVAL; 1075 c->lsave[i] = lnum; 1076 } 1077 err = check_lpt_crc(c, buf, c->lsave_sz); 1078 return err; 1079 } 1080 #endif 1081 1082 /** 1083 * validate_nnode - validate a nnode. 1084 * @c: UBIFS file-system description object 1085 * @nnode: nnode to validate 1086 * @parent: parent nnode (or NULL for the root nnode) 1087 * @iip: index in parent 1088 * 1089 * This function returns %0 on success and a negative error code on failure. 1090 */ 1091 static int validate_nnode(const struct ubifs_info *c, struct ubifs_nnode *nnode, 1092 struct ubifs_nnode *parent, int iip) 1093 { 1094 int i, lvl, max_offs; 1095 1096 if (c->big_lpt) { 1097 int num = calc_nnode_num_from_parent(c, parent, iip); 1098 1099 if (nnode->num != num) 1100 return -EINVAL; 1101 } 1102 lvl = parent ? parent->level - 1 : c->lpt_hght; 1103 if (lvl < 1) 1104 return -EINVAL; 1105 if (lvl == 1) 1106 max_offs = c->leb_size - c->pnode_sz; 1107 else 1108 max_offs = c->leb_size - c->nnode_sz; 1109 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 1110 int lnum = nnode->nbranch[i].lnum; 1111 int offs = nnode->nbranch[i].offs; 1112 1113 if (lnum == 0) { 1114 if (offs != 0) 1115 return -EINVAL; 1116 continue; 1117 } 1118 if (lnum < c->lpt_first || lnum > c->lpt_last) 1119 return -EINVAL; 1120 if (offs < 0 || offs > max_offs) 1121 return -EINVAL; 1122 } 1123 return 0; 1124 } 1125 1126 /** 1127 * validate_pnode - validate a pnode. 1128 * @c: UBIFS file-system description object 1129 * @pnode: pnode to validate 1130 * @parent: parent nnode 1131 * @iip: index in parent 1132 * 1133 * This function returns %0 on success and a negative error code on failure. 1134 */ 1135 static int validate_pnode(const struct ubifs_info *c, struct ubifs_pnode *pnode, 1136 struct ubifs_nnode *parent, int iip) 1137 { 1138 int i; 1139 1140 if (c->big_lpt) { 1141 int num = calc_pnode_num_from_parent(c, parent, iip); 1142 1143 if (pnode->num != num) 1144 return -EINVAL; 1145 } 1146 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 1147 int free = pnode->lprops[i].free; 1148 int dirty = pnode->lprops[i].dirty; 1149 1150 if (free < 0 || free > c->leb_size || free % c->min_io_size || 1151 (free & 7)) 1152 return -EINVAL; 1153 if (dirty < 0 || dirty > c->leb_size || (dirty & 7)) 1154 return -EINVAL; 1155 if (dirty + free > c->leb_size) 1156 return -EINVAL; 1157 } 1158 return 0; 1159 } 1160 1161 /** 1162 * set_pnode_lnum - set LEB numbers on a pnode. 1163 * @c: UBIFS file-system description object 1164 * @pnode: pnode to update 1165 * 1166 * This function calculates the LEB numbers for the LEB properties it contains 1167 * based on the pnode number. 1168 */ 1169 static void set_pnode_lnum(const struct ubifs_info *c, 1170 struct ubifs_pnode *pnode) 1171 { 1172 int i, lnum; 1173 1174 lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + c->main_first; 1175 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 1176 if (lnum >= c->leb_cnt) 1177 return; 1178 pnode->lprops[i].lnum = lnum++; 1179 } 1180 } 1181 1182 /** 1183 * ubifs_read_nnode - read a nnode from flash and link it to the tree in memory. 1184 * @c: UBIFS file-system description object 1185 * @parent: parent nnode (or NULL for the root) 1186 * @iip: index in parent 1187 * 1188 * This function returns %0 on success and a negative error code on failure. 1189 */ 1190 int ubifs_read_nnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip) 1191 { 1192 struct ubifs_nbranch *branch = NULL; 1193 struct ubifs_nnode *nnode = NULL; 1194 void *buf = c->lpt_nod_buf; 1195 int err, lnum, offs; 1196 1197 if (parent) { 1198 branch = &parent->nbranch[iip]; 1199 lnum = branch->lnum; 1200 offs = branch->offs; 1201 } else { 1202 lnum = c->lpt_lnum; 1203 offs = c->lpt_offs; 1204 } 1205 nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_NOFS); 1206 if (!nnode) { 1207 err = -ENOMEM; 1208 goto out; 1209 } 1210 if (lnum == 0) { 1211 /* 1212 * This nnode was not written which just means that the LEB 1213 * properties in the subtree below it describe empty LEBs. We 1214 * make the nnode as though we had read it, which in fact means 1215 * doing almost nothing. 1216 */ 1217 if (c->big_lpt) 1218 nnode->num = calc_nnode_num_from_parent(c, parent, iip); 1219 } else { 1220 err = ubifs_leb_read(c, lnum, buf, offs, c->nnode_sz, 1); 1221 if (err) 1222 goto out; 1223 err = ubifs_unpack_nnode(c, buf, nnode); 1224 if (err) 1225 goto out; 1226 } 1227 err = validate_nnode(c, nnode, parent, iip); 1228 if (err) 1229 goto out; 1230 if (!c->big_lpt) 1231 nnode->num = calc_nnode_num_from_parent(c, parent, iip); 1232 if (parent) { 1233 branch->nnode = nnode; 1234 nnode->level = parent->level - 1; 1235 } else { 1236 c->nroot = nnode; 1237 nnode->level = c->lpt_hght; 1238 } 1239 nnode->parent = parent; 1240 nnode->iip = iip; 1241 return 0; 1242 1243 out: 1244 ubifs_err(c, "error %d reading nnode at %d:%d", err, lnum, offs); 1245 dump_stack(); 1246 kfree(nnode); 1247 return err; 1248 } 1249 1250 /** 1251 * read_pnode - read a pnode from flash and link it to the tree in memory. 1252 * @c: UBIFS file-system description object 1253 * @parent: parent nnode 1254 * @iip: index in parent 1255 * 1256 * This function returns %0 on success and a negative error code on failure. 1257 */ 1258 static int read_pnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip) 1259 { 1260 struct ubifs_nbranch *branch; 1261 struct ubifs_pnode *pnode = NULL; 1262 void *buf = c->lpt_nod_buf; 1263 int err, lnum, offs; 1264 1265 branch = &parent->nbranch[iip]; 1266 lnum = branch->lnum; 1267 offs = branch->offs; 1268 pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_NOFS); 1269 if (!pnode) 1270 return -ENOMEM; 1271 1272 if (lnum == 0) { 1273 /* 1274 * This pnode was not written which just means that the LEB 1275 * properties in it describe empty LEBs. We make the pnode as 1276 * though we had read it. 1277 */ 1278 int i; 1279 1280 if (c->big_lpt) 1281 pnode->num = calc_pnode_num_from_parent(c, parent, iip); 1282 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 1283 struct ubifs_lprops * const lprops = &pnode->lprops[i]; 1284 1285 lprops->free = c->leb_size; 1286 lprops->flags = ubifs_categorize_lprops(c, lprops); 1287 } 1288 } else { 1289 err = ubifs_leb_read(c, lnum, buf, offs, c->pnode_sz, 1); 1290 if (err) 1291 goto out; 1292 err = unpack_pnode(c, buf, pnode); 1293 if (err) 1294 goto out; 1295 } 1296 err = validate_pnode(c, pnode, parent, iip); 1297 if (err) 1298 goto out; 1299 if (!c->big_lpt) 1300 pnode->num = calc_pnode_num_from_parent(c, parent, iip); 1301 branch->pnode = pnode; 1302 pnode->parent = parent; 1303 pnode->iip = iip; 1304 set_pnode_lnum(c, pnode); 1305 c->pnodes_have += 1; 1306 return 0; 1307 1308 out: 1309 ubifs_err(c, "error %d reading pnode at %d:%d", err, lnum, offs); 1310 ubifs_dump_pnode(c, pnode, parent, iip); 1311 dump_stack(); 1312 ubifs_err(c, "calc num: %d", calc_pnode_num_from_parent(c, parent, iip)); 1313 kfree(pnode); 1314 return err; 1315 } 1316 1317 /** 1318 * read_ltab - read LPT's own lprops table. 1319 * @c: UBIFS file-system description object 1320 * 1321 * This function returns %0 on success and a negative error code on failure. 1322 */ 1323 static int read_ltab(struct ubifs_info *c) 1324 { 1325 int err; 1326 void *buf; 1327 1328 buf = vmalloc(c->ltab_sz); 1329 if (!buf) 1330 return -ENOMEM; 1331 err = ubifs_leb_read(c, c->ltab_lnum, buf, c->ltab_offs, c->ltab_sz, 1); 1332 if (err) 1333 goto out; 1334 err = unpack_ltab(c, buf); 1335 out: 1336 vfree(buf); 1337 return err; 1338 } 1339 1340 #ifndef __UBOOT__ 1341 /** 1342 * read_lsave - read LPT's save table. 1343 * @c: UBIFS file-system description object 1344 * 1345 * This function returns %0 on success and a negative error code on failure. 1346 */ 1347 static int read_lsave(struct ubifs_info *c) 1348 { 1349 int err, i; 1350 void *buf; 1351 1352 buf = vmalloc(c->lsave_sz); 1353 if (!buf) 1354 return -ENOMEM; 1355 err = ubifs_leb_read(c, c->lsave_lnum, buf, c->lsave_offs, 1356 c->lsave_sz, 1); 1357 if (err) 1358 goto out; 1359 err = unpack_lsave(c, buf); 1360 if (err) 1361 goto out; 1362 for (i = 0; i < c->lsave_cnt; i++) { 1363 int lnum = c->lsave[i]; 1364 struct ubifs_lprops *lprops; 1365 1366 /* 1367 * Due to automatic resizing, the values in the lsave table 1368 * could be beyond the volume size - just ignore them. 1369 */ 1370 if (lnum >= c->leb_cnt) 1371 continue; 1372 lprops = ubifs_lpt_lookup(c, lnum); 1373 if (IS_ERR(lprops)) { 1374 err = PTR_ERR(lprops); 1375 goto out; 1376 } 1377 } 1378 out: 1379 vfree(buf); 1380 return err; 1381 } 1382 #endif 1383 1384 /** 1385 * ubifs_get_nnode - get a nnode. 1386 * @c: UBIFS file-system description object 1387 * @parent: parent nnode (or NULL for the root) 1388 * @iip: index in parent 1389 * 1390 * This function returns a pointer to the nnode on success or a negative error 1391 * code on failure. 1392 */ 1393 struct ubifs_nnode *ubifs_get_nnode(struct ubifs_info *c, 1394 struct ubifs_nnode *parent, int iip) 1395 { 1396 struct ubifs_nbranch *branch; 1397 struct ubifs_nnode *nnode; 1398 int err; 1399 1400 branch = &parent->nbranch[iip]; 1401 nnode = branch->nnode; 1402 if (nnode) 1403 return nnode; 1404 err = ubifs_read_nnode(c, parent, iip); 1405 if (err) 1406 return ERR_PTR(err); 1407 return branch->nnode; 1408 } 1409 1410 /** 1411 * ubifs_get_pnode - get a pnode. 1412 * @c: UBIFS file-system description object 1413 * @parent: parent nnode 1414 * @iip: index in parent 1415 * 1416 * This function returns a pointer to the pnode on success or a negative error 1417 * code on failure. 1418 */ 1419 struct ubifs_pnode *ubifs_get_pnode(struct ubifs_info *c, 1420 struct ubifs_nnode *parent, int iip) 1421 { 1422 struct ubifs_nbranch *branch; 1423 struct ubifs_pnode *pnode; 1424 int err; 1425 1426 branch = &parent->nbranch[iip]; 1427 pnode = branch->pnode; 1428 if (pnode) 1429 return pnode; 1430 err = read_pnode(c, parent, iip); 1431 if (err) 1432 return ERR_PTR(err); 1433 update_cats(c, branch->pnode); 1434 return branch->pnode; 1435 } 1436 1437 /** 1438 * ubifs_lpt_lookup - lookup LEB properties in the LPT. 1439 * @c: UBIFS file-system description object 1440 * @lnum: LEB number to lookup 1441 * 1442 * This function returns a pointer to the LEB properties on success or a 1443 * negative error code on failure. 1444 */ 1445 struct ubifs_lprops *ubifs_lpt_lookup(struct ubifs_info *c, int lnum) 1446 { 1447 int err, i, h, iip, shft; 1448 struct ubifs_nnode *nnode; 1449 struct ubifs_pnode *pnode; 1450 1451 if (!c->nroot) { 1452 err = ubifs_read_nnode(c, NULL, 0); 1453 if (err) 1454 return ERR_PTR(err); 1455 } 1456 nnode = c->nroot; 1457 i = lnum - c->main_first; 1458 shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT; 1459 for (h = 1; h < c->lpt_hght; h++) { 1460 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); 1461 shft -= UBIFS_LPT_FANOUT_SHIFT; 1462 nnode = ubifs_get_nnode(c, nnode, iip); 1463 if (IS_ERR(nnode)) 1464 return ERR_CAST(nnode); 1465 } 1466 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); 1467 pnode = ubifs_get_pnode(c, nnode, iip); 1468 if (IS_ERR(pnode)) 1469 return ERR_CAST(pnode); 1470 iip = (i & (UBIFS_LPT_FANOUT - 1)); 1471 dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum, 1472 pnode->lprops[iip].free, pnode->lprops[iip].dirty, 1473 pnode->lprops[iip].flags); 1474 return &pnode->lprops[iip]; 1475 } 1476 1477 /** 1478 * dirty_cow_nnode - ensure a nnode is not being committed. 1479 * @c: UBIFS file-system description object 1480 * @nnode: nnode to check 1481 * 1482 * Returns dirtied nnode on success or negative error code on failure. 1483 */ 1484 static struct ubifs_nnode *dirty_cow_nnode(struct ubifs_info *c, 1485 struct ubifs_nnode *nnode) 1486 { 1487 struct ubifs_nnode *n; 1488 int i; 1489 1490 if (!test_bit(COW_CNODE, &nnode->flags)) { 1491 /* nnode is not being committed */ 1492 if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) { 1493 c->dirty_nn_cnt += 1; 1494 ubifs_add_nnode_dirt(c, nnode); 1495 } 1496 return nnode; 1497 } 1498 1499 /* nnode is being committed, so copy it */ 1500 n = kmalloc(sizeof(struct ubifs_nnode), GFP_NOFS); 1501 if (unlikely(!n)) 1502 return ERR_PTR(-ENOMEM); 1503 1504 memcpy(n, nnode, sizeof(struct ubifs_nnode)); 1505 n->cnext = NULL; 1506 __set_bit(DIRTY_CNODE, &n->flags); 1507 __clear_bit(COW_CNODE, &n->flags); 1508 1509 /* The children now have new parent */ 1510 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 1511 struct ubifs_nbranch *branch = &n->nbranch[i]; 1512 1513 if (branch->cnode) 1514 branch->cnode->parent = n; 1515 } 1516 1517 ubifs_assert(!test_bit(OBSOLETE_CNODE, &nnode->flags)); 1518 __set_bit(OBSOLETE_CNODE, &nnode->flags); 1519 1520 c->dirty_nn_cnt += 1; 1521 ubifs_add_nnode_dirt(c, nnode); 1522 if (nnode->parent) 1523 nnode->parent->nbranch[n->iip].nnode = n; 1524 else 1525 c->nroot = n; 1526 return n; 1527 } 1528 1529 /** 1530 * dirty_cow_pnode - ensure a pnode is not being committed. 1531 * @c: UBIFS file-system description object 1532 * @pnode: pnode to check 1533 * 1534 * Returns dirtied pnode on success or negative error code on failure. 1535 */ 1536 static struct ubifs_pnode *dirty_cow_pnode(struct ubifs_info *c, 1537 struct ubifs_pnode *pnode) 1538 { 1539 struct ubifs_pnode *p; 1540 1541 if (!test_bit(COW_CNODE, &pnode->flags)) { 1542 /* pnode is not being committed */ 1543 if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) { 1544 c->dirty_pn_cnt += 1; 1545 add_pnode_dirt(c, pnode); 1546 } 1547 return pnode; 1548 } 1549 1550 /* pnode is being committed, so copy it */ 1551 p = kmalloc(sizeof(struct ubifs_pnode), GFP_NOFS); 1552 if (unlikely(!p)) 1553 return ERR_PTR(-ENOMEM); 1554 1555 memcpy(p, pnode, sizeof(struct ubifs_pnode)); 1556 p->cnext = NULL; 1557 __set_bit(DIRTY_CNODE, &p->flags); 1558 __clear_bit(COW_CNODE, &p->flags); 1559 replace_cats(c, pnode, p); 1560 1561 ubifs_assert(!test_bit(OBSOLETE_CNODE, &pnode->flags)); 1562 __set_bit(OBSOLETE_CNODE, &pnode->flags); 1563 1564 c->dirty_pn_cnt += 1; 1565 add_pnode_dirt(c, pnode); 1566 pnode->parent->nbranch[p->iip].pnode = p; 1567 return p; 1568 } 1569 1570 /** 1571 * ubifs_lpt_lookup_dirty - lookup LEB properties in the LPT. 1572 * @c: UBIFS file-system description object 1573 * @lnum: LEB number to lookup 1574 * 1575 * This function returns a pointer to the LEB properties on success or a 1576 * negative error code on failure. 1577 */ 1578 struct ubifs_lprops *ubifs_lpt_lookup_dirty(struct ubifs_info *c, int lnum) 1579 { 1580 int err, i, h, iip, shft; 1581 struct ubifs_nnode *nnode; 1582 struct ubifs_pnode *pnode; 1583 1584 if (!c->nroot) { 1585 err = ubifs_read_nnode(c, NULL, 0); 1586 if (err) 1587 return ERR_PTR(err); 1588 } 1589 nnode = c->nroot; 1590 nnode = dirty_cow_nnode(c, nnode); 1591 if (IS_ERR(nnode)) 1592 return ERR_CAST(nnode); 1593 i = lnum - c->main_first; 1594 shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT; 1595 for (h = 1; h < c->lpt_hght; h++) { 1596 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); 1597 shft -= UBIFS_LPT_FANOUT_SHIFT; 1598 nnode = ubifs_get_nnode(c, nnode, iip); 1599 if (IS_ERR(nnode)) 1600 return ERR_CAST(nnode); 1601 nnode = dirty_cow_nnode(c, nnode); 1602 if (IS_ERR(nnode)) 1603 return ERR_CAST(nnode); 1604 } 1605 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); 1606 pnode = ubifs_get_pnode(c, nnode, iip); 1607 if (IS_ERR(pnode)) 1608 return ERR_CAST(pnode); 1609 pnode = dirty_cow_pnode(c, pnode); 1610 if (IS_ERR(pnode)) 1611 return ERR_CAST(pnode); 1612 iip = (i & (UBIFS_LPT_FANOUT - 1)); 1613 dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum, 1614 pnode->lprops[iip].free, pnode->lprops[iip].dirty, 1615 pnode->lprops[iip].flags); 1616 ubifs_assert(test_bit(DIRTY_CNODE, &pnode->flags)); 1617 return &pnode->lprops[iip]; 1618 } 1619 1620 /** 1621 * lpt_init_rd - initialize the LPT for reading. 1622 * @c: UBIFS file-system description object 1623 * 1624 * This function returns %0 on success and a negative error code on failure. 1625 */ 1626 static int lpt_init_rd(struct ubifs_info *c) 1627 { 1628 int err, i; 1629 1630 c->ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs); 1631 if (!c->ltab) 1632 return -ENOMEM; 1633 1634 i = max_t(int, c->nnode_sz, c->pnode_sz); 1635 c->lpt_nod_buf = kmalloc(i, GFP_KERNEL); 1636 if (!c->lpt_nod_buf) 1637 return -ENOMEM; 1638 1639 for (i = 0; i < LPROPS_HEAP_CNT; i++) { 1640 c->lpt_heap[i].arr = kmalloc(sizeof(void *) * LPT_HEAP_SZ, 1641 GFP_KERNEL); 1642 if (!c->lpt_heap[i].arr) 1643 return -ENOMEM; 1644 c->lpt_heap[i].cnt = 0; 1645 c->lpt_heap[i].max_cnt = LPT_HEAP_SZ; 1646 } 1647 1648 c->dirty_idx.arr = kmalloc(sizeof(void *) * LPT_HEAP_SZ, GFP_KERNEL); 1649 if (!c->dirty_idx.arr) 1650 return -ENOMEM; 1651 c->dirty_idx.cnt = 0; 1652 c->dirty_idx.max_cnt = LPT_HEAP_SZ; 1653 1654 err = read_ltab(c); 1655 if (err) 1656 return err; 1657 1658 dbg_lp("space_bits %d", c->space_bits); 1659 dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits); 1660 dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits); 1661 dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits); 1662 dbg_lp("pcnt_bits %d", c->pcnt_bits); 1663 dbg_lp("lnum_bits %d", c->lnum_bits); 1664 dbg_lp("pnode_sz %d", c->pnode_sz); 1665 dbg_lp("nnode_sz %d", c->nnode_sz); 1666 dbg_lp("ltab_sz %d", c->ltab_sz); 1667 dbg_lp("lsave_sz %d", c->lsave_sz); 1668 dbg_lp("lsave_cnt %d", c->lsave_cnt); 1669 dbg_lp("lpt_hght %d", c->lpt_hght); 1670 dbg_lp("big_lpt %d", c->big_lpt); 1671 dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs); 1672 dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs); 1673 dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs); 1674 if (c->big_lpt) 1675 dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs); 1676 1677 return 0; 1678 } 1679 1680 #ifndef __UBOOT__ 1681 /** 1682 * lpt_init_wr - initialize the LPT for writing. 1683 * @c: UBIFS file-system description object 1684 * 1685 * 'lpt_init_rd()' must have been called already. 1686 * 1687 * This function returns %0 on success and a negative error code on failure. 1688 */ 1689 static int lpt_init_wr(struct ubifs_info *c) 1690 { 1691 int err, i; 1692 1693 c->ltab_cmt = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs); 1694 if (!c->ltab_cmt) 1695 return -ENOMEM; 1696 1697 c->lpt_buf = vmalloc(c->leb_size); 1698 if (!c->lpt_buf) 1699 return -ENOMEM; 1700 1701 if (c->big_lpt) { 1702 c->lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_NOFS); 1703 if (!c->lsave) 1704 return -ENOMEM; 1705 err = read_lsave(c); 1706 if (err) 1707 return err; 1708 } 1709 1710 for (i = 0; i < c->lpt_lebs; i++) 1711 if (c->ltab[i].free == c->leb_size) { 1712 err = ubifs_leb_unmap(c, i + c->lpt_first); 1713 if (err) 1714 return err; 1715 } 1716 1717 return 0; 1718 } 1719 #endif 1720 1721 /** 1722 * ubifs_lpt_init - initialize the LPT. 1723 * @c: UBIFS file-system description object 1724 * @rd: whether to initialize lpt for reading 1725 * @wr: whether to initialize lpt for writing 1726 * 1727 * For mounting 'rw', @rd and @wr are both true. For mounting 'ro', @rd is true 1728 * and @wr is false. For mounting from 'ro' to 'rw', @rd is false and @wr is 1729 * true. 1730 * 1731 * This function returns %0 on success and a negative error code on failure. 1732 */ 1733 int ubifs_lpt_init(struct ubifs_info *c, int rd, int wr) 1734 { 1735 int err; 1736 1737 if (rd) { 1738 err = lpt_init_rd(c); 1739 if (err) 1740 goto out_err; 1741 } 1742 1743 #ifndef __UBOOT__ 1744 if (wr) { 1745 err = lpt_init_wr(c); 1746 if (err) 1747 goto out_err; 1748 } 1749 #endif 1750 1751 return 0; 1752 1753 out_err: 1754 #ifndef __UBOOT__ 1755 if (wr) 1756 ubifs_lpt_free(c, 1); 1757 #endif 1758 if (rd) 1759 ubifs_lpt_free(c, 0); 1760 return err; 1761 } 1762 1763 /** 1764 * struct lpt_scan_node - somewhere to put nodes while we scan LPT. 1765 * @nnode: where to keep a nnode 1766 * @pnode: where to keep a pnode 1767 * @cnode: where to keep a cnode 1768 * @in_tree: is the node in the tree in memory 1769 * @ptr.nnode: pointer to the nnode (if it is an nnode) which may be here or in 1770 * the tree 1771 * @ptr.pnode: ditto for pnode 1772 * @ptr.cnode: ditto for cnode 1773 */ 1774 struct lpt_scan_node { 1775 union { 1776 struct ubifs_nnode nnode; 1777 struct ubifs_pnode pnode; 1778 struct ubifs_cnode cnode; 1779 }; 1780 int in_tree; 1781 union { 1782 struct ubifs_nnode *nnode; 1783 struct ubifs_pnode *pnode; 1784 struct ubifs_cnode *cnode; 1785 } ptr; 1786 }; 1787 1788 /** 1789 * scan_get_nnode - for the scan, get a nnode from either the tree or flash. 1790 * @c: the UBIFS file-system description object 1791 * @path: where to put the nnode 1792 * @parent: parent of the nnode 1793 * @iip: index in parent of the nnode 1794 * 1795 * This function returns a pointer to the nnode on success or a negative error 1796 * code on failure. 1797 */ 1798 static struct ubifs_nnode *scan_get_nnode(struct ubifs_info *c, 1799 struct lpt_scan_node *path, 1800 struct ubifs_nnode *parent, int iip) 1801 { 1802 struct ubifs_nbranch *branch; 1803 struct ubifs_nnode *nnode; 1804 void *buf = c->lpt_nod_buf; 1805 int err; 1806 1807 branch = &parent->nbranch[iip]; 1808 nnode = branch->nnode; 1809 if (nnode) { 1810 path->in_tree = 1; 1811 path->ptr.nnode = nnode; 1812 return nnode; 1813 } 1814 nnode = &path->nnode; 1815 path->in_tree = 0; 1816 path->ptr.nnode = nnode; 1817 memset(nnode, 0, sizeof(struct ubifs_nnode)); 1818 if (branch->lnum == 0) { 1819 /* 1820 * This nnode was not written which just means that the LEB 1821 * properties in the subtree below it describe empty LEBs. We 1822 * make the nnode as though we had read it, which in fact means 1823 * doing almost nothing. 1824 */ 1825 if (c->big_lpt) 1826 nnode->num = calc_nnode_num_from_parent(c, parent, iip); 1827 } else { 1828 err = ubifs_leb_read(c, branch->lnum, buf, branch->offs, 1829 c->nnode_sz, 1); 1830 if (err) 1831 return ERR_PTR(err); 1832 err = ubifs_unpack_nnode(c, buf, nnode); 1833 if (err) 1834 return ERR_PTR(err); 1835 } 1836 err = validate_nnode(c, nnode, parent, iip); 1837 if (err) 1838 return ERR_PTR(err); 1839 if (!c->big_lpt) 1840 nnode->num = calc_nnode_num_from_parent(c, parent, iip); 1841 nnode->level = parent->level - 1; 1842 nnode->parent = parent; 1843 nnode->iip = iip; 1844 return nnode; 1845 } 1846 1847 /** 1848 * scan_get_pnode - for the scan, get a pnode from either the tree or flash. 1849 * @c: the UBIFS file-system description object 1850 * @path: where to put the pnode 1851 * @parent: parent of the pnode 1852 * @iip: index in parent of the pnode 1853 * 1854 * This function returns a pointer to the pnode on success or a negative error 1855 * code on failure. 1856 */ 1857 static struct ubifs_pnode *scan_get_pnode(struct ubifs_info *c, 1858 struct lpt_scan_node *path, 1859 struct ubifs_nnode *parent, int iip) 1860 { 1861 struct ubifs_nbranch *branch; 1862 struct ubifs_pnode *pnode; 1863 void *buf = c->lpt_nod_buf; 1864 int err; 1865 1866 branch = &parent->nbranch[iip]; 1867 pnode = branch->pnode; 1868 if (pnode) { 1869 path->in_tree = 1; 1870 path->ptr.pnode = pnode; 1871 return pnode; 1872 } 1873 pnode = &path->pnode; 1874 path->in_tree = 0; 1875 path->ptr.pnode = pnode; 1876 memset(pnode, 0, sizeof(struct ubifs_pnode)); 1877 if (branch->lnum == 0) { 1878 /* 1879 * This pnode was not written which just means that the LEB 1880 * properties in it describe empty LEBs. We make the pnode as 1881 * though we had read it. 1882 */ 1883 int i; 1884 1885 if (c->big_lpt) 1886 pnode->num = calc_pnode_num_from_parent(c, parent, iip); 1887 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 1888 struct ubifs_lprops * const lprops = &pnode->lprops[i]; 1889 1890 lprops->free = c->leb_size; 1891 lprops->flags = ubifs_categorize_lprops(c, lprops); 1892 } 1893 } else { 1894 ubifs_assert(branch->lnum >= c->lpt_first && 1895 branch->lnum <= c->lpt_last); 1896 ubifs_assert(branch->offs >= 0 && branch->offs < c->leb_size); 1897 err = ubifs_leb_read(c, branch->lnum, buf, branch->offs, 1898 c->pnode_sz, 1); 1899 if (err) 1900 return ERR_PTR(err); 1901 err = unpack_pnode(c, buf, pnode); 1902 if (err) 1903 return ERR_PTR(err); 1904 } 1905 err = validate_pnode(c, pnode, parent, iip); 1906 if (err) 1907 return ERR_PTR(err); 1908 if (!c->big_lpt) 1909 pnode->num = calc_pnode_num_from_parent(c, parent, iip); 1910 pnode->parent = parent; 1911 pnode->iip = iip; 1912 set_pnode_lnum(c, pnode); 1913 return pnode; 1914 } 1915 1916 /** 1917 * ubifs_lpt_scan_nolock - scan the LPT. 1918 * @c: the UBIFS file-system description object 1919 * @start_lnum: LEB number from which to start scanning 1920 * @end_lnum: LEB number at which to stop scanning 1921 * @scan_cb: callback function called for each lprops 1922 * @data: data to be passed to the callback function 1923 * 1924 * This function returns %0 on success and a negative error code on failure. 1925 */ 1926 int ubifs_lpt_scan_nolock(struct ubifs_info *c, int start_lnum, int end_lnum, 1927 ubifs_lpt_scan_callback scan_cb, void *data) 1928 { 1929 int err = 0, i, h, iip, shft; 1930 struct ubifs_nnode *nnode; 1931 struct ubifs_pnode *pnode; 1932 struct lpt_scan_node *path; 1933 1934 if (start_lnum == -1) { 1935 start_lnum = end_lnum + 1; 1936 if (start_lnum >= c->leb_cnt) 1937 start_lnum = c->main_first; 1938 } 1939 1940 ubifs_assert(start_lnum >= c->main_first && start_lnum < c->leb_cnt); 1941 ubifs_assert(end_lnum >= c->main_first && end_lnum < c->leb_cnt); 1942 1943 if (!c->nroot) { 1944 err = ubifs_read_nnode(c, NULL, 0); 1945 if (err) 1946 return err; 1947 } 1948 1949 path = kmalloc(sizeof(struct lpt_scan_node) * (c->lpt_hght + 1), 1950 GFP_NOFS); 1951 if (!path) 1952 return -ENOMEM; 1953 1954 path[0].ptr.nnode = c->nroot; 1955 path[0].in_tree = 1; 1956 again: 1957 /* Descend to the pnode containing start_lnum */ 1958 nnode = c->nroot; 1959 i = start_lnum - c->main_first; 1960 shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT; 1961 for (h = 1; h < c->lpt_hght; h++) { 1962 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); 1963 shft -= UBIFS_LPT_FANOUT_SHIFT; 1964 nnode = scan_get_nnode(c, path + h, nnode, iip); 1965 if (IS_ERR(nnode)) { 1966 err = PTR_ERR(nnode); 1967 goto out; 1968 } 1969 } 1970 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); 1971 pnode = scan_get_pnode(c, path + h, nnode, iip); 1972 if (IS_ERR(pnode)) { 1973 err = PTR_ERR(pnode); 1974 goto out; 1975 } 1976 iip = (i & (UBIFS_LPT_FANOUT - 1)); 1977 1978 /* Loop for each lprops */ 1979 while (1) { 1980 struct ubifs_lprops *lprops = &pnode->lprops[iip]; 1981 int ret, lnum = lprops->lnum; 1982 1983 ret = scan_cb(c, lprops, path[h].in_tree, data); 1984 if (ret < 0) { 1985 err = ret; 1986 goto out; 1987 } 1988 if (ret & LPT_SCAN_ADD) { 1989 /* Add all the nodes in path to the tree in memory */ 1990 for (h = 1; h < c->lpt_hght; h++) { 1991 const size_t sz = sizeof(struct ubifs_nnode); 1992 struct ubifs_nnode *parent; 1993 1994 if (path[h].in_tree) 1995 continue; 1996 nnode = kmemdup(&path[h].nnode, sz, GFP_NOFS); 1997 if (!nnode) { 1998 err = -ENOMEM; 1999 goto out; 2000 } 2001 parent = nnode->parent; 2002 parent->nbranch[nnode->iip].nnode = nnode; 2003 path[h].ptr.nnode = nnode; 2004 path[h].in_tree = 1; 2005 path[h + 1].cnode.parent = nnode; 2006 } 2007 if (path[h].in_tree) 2008 ubifs_ensure_cat(c, lprops); 2009 else { 2010 const size_t sz = sizeof(struct ubifs_pnode); 2011 struct ubifs_nnode *parent; 2012 2013 pnode = kmemdup(&path[h].pnode, sz, GFP_NOFS); 2014 if (!pnode) { 2015 err = -ENOMEM; 2016 goto out; 2017 } 2018 parent = pnode->parent; 2019 parent->nbranch[pnode->iip].pnode = pnode; 2020 path[h].ptr.pnode = pnode; 2021 path[h].in_tree = 1; 2022 update_cats(c, pnode); 2023 c->pnodes_have += 1; 2024 } 2025 err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *) 2026 c->nroot, 0, 0); 2027 if (err) 2028 goto out; 2029 err = dbg_check_cats(c); 2030 if (err) 2031 goto out; 2032 } 2033 if (ret & LPT_SCAN_STOP) { 2034 err = 0; 2035 break; 2036 } 2037 /* Get the next lprops */ 2038 if (lnum == end_lnum) { 2039 /* 2040 * We got to the end without finding what we were 2041 * looking for 2042 */ 2043 err = -ENOSPC; 2044 goto out; 2045 } 2046 if (lnum + 1 >= c->leb_cnt) { 2047 /* Wrap-around to the beginning */ 2048 start_lnum = c->main_first; 2049 goto again; 2050 } 2051 if (iip + 1 < UBIFS_LPT_FANOUT) { 2052 /* Next lprops is in the same pnode */ 2053 iip += 1; 2054 continue; 2055 } 2056 /* We need to get the next pnode. Go up until we can go right */ 2057 iip = pnode->iip; 2058 while (1) { 2059 h -= 1; 2060 ubifs_assert(h >= 0); 2061 nnode = path[h].ptr.nnode; 2062 if (iip + 1 < UBIFS_LPT_FANOUT) 2063 break; 2064 iip = nnode->iip; 2065 } 2066 /* Go right */ 2067 iip += 1; 2068 /* Descend to the pnode */ 2069 h += 1; 2070 for (; h < c->lpt_hght; h++) { 2071 nnode = scan_get_nnode(c, path + h, nnode, iip); 2072 if (IS_ERR(nnode)) { 2073 err = PTR_ERR(nnode); 2074 goto out; 2075 } 2076 iip = 0; 2077 } 2078 pnode = scan_get_pnode(c, path + h, nnode, iip); 2079 if (IS_ERR(pnode)) { 2080 err = PTR_ERR(pnode); 2081 goto out; 2082 } 2083 iip = 0; 2084 } 2085 out: 2086 kfree(path); 2087 return err; 2088 } 2089 2090 /** 2091 * dbg_chk_pnode - check a pnode. 2092 * @c: the UBIFS file-system description object 2093 * @pnode: pnode to check 2094 * @col: pnode column 2095 * 2096 * This function returns %0 on success and a negative error code on failure. 2097 */ 2098 static int dbg_chk_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode, 2099 int col) 2100 { 2101 int i; 2102 2103 if (pnode->num != col) { 2104 ubifs_err(c, "pnode num %d expected %d parent num %d iip %d", 2105 pnode->num, col, pnode->parent->num, pnode->iip); 2106 return -EINVAL; 2107 } 2108 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 2109 struct ubifs_lprops *lp, *lprops = &pnode->lprops[i]; 2110 int lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + i + 2111 c->main_first; 2112 int found, cat = lprops->flags & LPROPS_CAT_MASK; 2113 struct ubifs_lpt_heap *heap; 2114 struct list_head *list = NULL; 2115 2116 if (lnum >= c->leb_cnt) 2117 continue; 2118 if (lprops->lnum != lnum) { 2119 ubifs_err(c, "bad LEB number %d expected %d", 2120 lprops->lnum, lnum); 2121 return -EINVAL; 2122 } 2123 if (lprops->flags & LPROPS_TAKEN) { 2124 if (cat != LPROPS_UNCAT) { 2125 ubifs_err(c, "LEB %d taken but not uncat %d", 2126 lprops->lnum, cat); 2127 return -EINVAL; 2128 } 2129 continue; 2130 } 2131 if (lprops->flags & LPROPS_INDEX) { 2132 switch (cat) { 2133 case LPROPS_UNCAT: 2134 case LPROPS_DIRTY_IDX: 2135 case LPROPS_FRDI_IDX: 2136 break; 2137 default: 2138 ubifs_err(c, "LEB %d index but cat %d", 2139 lprops->lnum, cat); 2140 return -EINVAL; 2141 } 2142 } else { 2143 switch (cat) { 2144 case LPROPS_UNCAT: 2145 case LPROPS_DIRTY: 2146 case LPROPS_FREE: 2147 case LPROPS_EMPTY: 2148 case LPROPS_FREEABLE: 2149 break; 2150 default: 2151 ubifs_err(c, "LEB %d not index but cat %d", 2152 lprops->lnum, cat); 2153 return -EINVAL; 2154 } 2155 } 2156 switch (cat) { 2157 case LPROPS_UNCAT: 2158 list = &c->uncat_list; 2159 break; 2160 case LPROPS_EMPTY: 2161 list = &c->empty_list; 2162 break; 2163 case LPROPS_FREEABLE: 2164 list = &c->freeable_list; 2165 break; 2166 case LPROPS_FRDI_IDX: 2167 list = &c->frdi_idx_list; 2168 break; 2169 } 2170 found = 0; 2171 switch (cat) { 2172 case LPROPS_DIRTY: 2173 case LPROPS_DIRTY_IDX: 2174 case LPROPS_FREE: 2175 heap = &c->lpt_heap[cat - 1]; 2176 if (lprops->hpos < heap->cnt && 2177 heap->arr[lprops->hpos] == lprops) 2178 found = 1; 2179 break; 2180 case LPROPS_UNCAT: 2181 case LPROPS_EMPTY: 2182 case LPROPS_FREEABLE: 2183 case LPROPS_FRDI_IDX: 2184 list_for_each_entry(lp, list, list) 2185 if (lprops == lp) { 2186 found = 1; 2187 break; 2188 } 2189 break; 2190 } 2191 if (!found) { 2192 ubifs_err(c, "LEB %d cat %d not found in cat heap/list", 2193 lprops->lnum, cat); 2194 return -EINVAL; 2195 } 2196 switch (cat) { 2197 case LPROPS_EMPTY: 2198 if (lprops->free != c->leb_size) { 2199 ubifs_err(c, "LEB %d cat %d free %d dirty %d", 2200 lprops->lnum, cat, lprops->free, 2201 lprops->dirty); 2202 return -EINVAL; 2203 } 2204 break; 2205 case LPROPS_FREEABLE: 2206 case LPROPS_FRDI_IDX: 2207 if (lprops->free + lprops->dirty != c->leb_size) { 2208 ubifs_err(c, "LEB %d cat %d free %d dirty %d", 2209 lprops->lnum, cat, lprops->free, 2210 lprops->dirty); 2211 return -EINVAL; 2212 } 2213 break; 2214 } 2215 } 2216 return 0; 2217 } 2218 2219 /** 2220 * dbg_check_lpt_nodes - check nnodes and pnodes. 2221 * @c: the UBIFS file-system description object 2222 * @cnode: next cnode (nnode or pnode) to check 2223 * @row: row of cnode (root is zero) 2224 * @col: column of cnode (leftmost is zero) 2225 * 2226 * This function returns %0 on success and a negative error code on failure. 2227 */ 2228 int dbg_check_lpt_nodes(struct ubifs_info *c, struct ubifs_cnode *cnode, 2229 int row, int col) 2230 { 2231 struct ubifs_nnode *nnode, *nn; 2232 struct ubifs_cnode *cn; 2233 int num, iip = 0, err; 2234 2235 if (!dbg_is_chk_lprops(c)) 2236 return 0; 2237 2238 while (cnode) { 2239 ubifs_assert(row >= 0); 2240 nnode = cnode->parent; 2241 if (cnode->level) { 2242 /* cnode is a nnode */ 2243 num = calc_nnode_num(row, col); 2244 if (cnode->num != num) { 2245 ubifs_err(c, "nnode num %d expected %d parent num %d iip %d", 2246 cnode->num, num, 2247 (nnode ? nnode->num : 0), cnode->iip); 2248 return -EINVAL; 2249 } 2250 nn = (struct ubifs_nnode *)cnode; 2251 while (iip < UBIFS_LPT_FANOUT) { 2252 cn = nn->nbranch[iip].cnode; 2253 if (cn) { 2254 /* Go down */ 2255 row += 1; 2256 col <<= UBIFS_LPT_FANOUT_SHIFT; 2257 col += iip; 2258 iip = 0; 2259 cnode = cn; 2260 break; 2261 } 2262 /* Go right */ 2263 iip += 1; 2264 } 2265 if (iip < UBIFS_LPT_FANOUT) 2266 continue; 2267 } else { 2268 struct ubifs_pnode *pnode; 2269 2270 /* cnode is a pnode */ 2271 pnode = (struct ubifs_pnode *)cnode; 2272 err = dbg_chk_pnode(c, pnode, col); 2273 if (err) 2274 return err; 2275 } 2276 /* Go up and to the right */ 2277 row -= 1; 2278 col >>= UBIFS_LPT_FANOUT_SHIFT; 2279 iip = cnode->iip + 1; 2280 cnode = (struct ubifs_cnode *)nnode; 2281 } 2282 return 0; 2283 } 2284