xref: /openbmc/u-boot/fs/ubifs/lpt.c (revision cbd2fba1)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  *
7  * Authors: Adrian Hunter
8  *          Artem Bityutskiy (Битюцкий Артём)
9  */
10 
11 /*
12  * This file implements the LEB properties tree (LPT) area. The LPT area
13  * contains the LEB properties tree, a table of LPT area eraseblocks (ltab), and
14  * (for the "big" model) a table of saved LEB numbers (lsave). The LPT area sits
15  * between the log and the orphan area.
16  *
17  * The LPT area is like a miniature self-contained file system. It is required
18  * that it never runs out of space, is fast to access and update, and scales
19  * logarithmically. The LEB properties tree is implemented as a wandering tree
20  * much like the TNC, and the LPT area has its own garbage collection.
21  *
22  * The LPT has two slightly different forms called the "small model" and the
23  * "big model". The small model is used when the entire LEB properties table
24  * can be written into a single eraseblock. In that case, garbage collection
25  * consists of just writing the whole table, which therefore makes all other
26  * eraseblocks reusable. In the case of the big model, dirty eraseblocks are
27  * selected for garbage collection, which consists of marking the clean nodes in
28  * that LEB as dirty, and then only the dirty nodes are written out. Also, in
29  * the case of the big model, a table of LEB numbers is saved so that the entire
30  * LPT does not to be scanned looking for empty eraseblocks when UBIFS is first
31  * mounted.
32  */
33 
34 #include "ubifs.h"
35 #ifndef __UBOOT__
36 #include <linux/crc16.h>
37 #include <linux/math64.h>
38 #include <linux/slab.h>
39 #else
40 #include <linux/compat.h>
41 #include <linux/err.h>
42 #include <ubi_uboot.h>
43 #include "crc16.h"
44 #endif
45 
46 /**
47  * do_calc_lpt_geom - calculate sizes for the LPT area.
48  * @c: the UBIFS file-system description object
49  *
50  * Calculate the sizes of LPT bit fields, nodes, and tree, based on the
51  * properties of the flash and whether LPT is "big" (c->big_lpt).
52  */
53 static void do_calc_lpt_geom(struct ubifs_info *c)
54 {
55 	int i, n, bits, per_leb_wastage, max_pnode_cnt;
56 	long long sz, tot_wastage;
57 
58 	n = c->main_lebs + c->max_leb_cnt - c->leb_cnt;
59 	max_pnode_cnt = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
60 
61 	c->lpt_hght = 1;
62 	n = UBIFS_LPT_FANOUT;
63 	while (n < max_pnode_cnt) {
64 		c->lpt_hght += 1;
65 		n <<= UBIFS_LPT_FANOUT_SHIFT;
66 	}
67 
68 	c->pnode_cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
69 
70 	n = DIV_ROUND_UP(c->pnode_cnt, UBIFS_LPT_FANOUT);
71 	c->nnode_cnt = n;
72 	for (i = 1; i < c->lpt_hght; i++) {
73 		n = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
74 		c->nnode_cnt += n;
75 	}
76 
77 	c->space_bits = fls(c->leb_size) - 3;
78 	c->lpt_lnum_bits = fls(c->lpt_lebs);
79 	c->lpt_offs_bits = fls(c->leb_size - 1);
80 	c->lpt_spc_bits = fls(c->leb_size);
81 
82 	n = DIV_ROUND_UP(c->max_leb_cnt, UBIFS_LPT_FANOUT);
83 	c->pcnt_bits = fls(n - 1);
84 
85 	c->lnum_bits = fls(c->max_leb_cnt - 1);
86 
87 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
88 	       (c->big_lpt ? c->pcnt_bits : 0) +
89 	       (c->space_bits * 2 + 1) * UBIFS_LPT_FANOUT;
90 	c->pnode_sz = (bits + 7) / 8;
91 
92 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
93 	       (c->big_lpt ? c->pcnt_bits : 0) +
94 	       (c->lpt_lnum_bits + c->lpt_offs_bits) * UBIFS_LPT_FANOUT;
95 	c->nnode_sz = (bits + 7) / 8;
96 
97 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
98 	       c->lpt_lebs * c->lpt_spc_bits * 2;
99 	c->ltab_sz = (bits + 7) / 8;
100 
101 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
102 	       c->lnum_bits * c->lsave_cnt;
103 	c->lsave_sz = (bits + 7) / 8;
104 
105 	/* Calculate the minimum LPT size */
106 	c->lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
107 	c->lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
108 	c->lpt_sz += c->ltab_sz;
109 	if (c->big_lpt)
110 		c->lpt_sz += c->lsave_sz;
111 
112 	/* Add wastage */
113 	sz = c->lpt_sz;
114 	per_leb_wastage = max_t(int, c->pnode_sz, c->nnode_sz);
115 	sz += per_leb_wastage;
116 	tot_wastage = per_leb_wastage;
117 	while (sz > c->leb_size) {
118 		sz += per_leb_wastage;
119 		sz -= c->leb_size;
120 		tot_wastage += per_leb_wastage;
121 	}
122 	tot_wastage += ALIGN(sz, c->min_io_size) - sz;
123 	c->lpt_sz += tot_wastage;
124 }
125 
126 /**
127  * ubifs_calc_lpt_geom - calculate and check sizes for the LPT area.
128  * @c: the UBIFS file-system description object
129  *
130  * This function returns %0 on success and a negative error code on failure.
131  */
132 int ubifs_calc_lpt_geom(struct ubifs_info *c)
133 {
134 	int lebs_needed;
135 	long long sz;
136 
137 	do_calc_lpt_geom(c);
138 
139 	/* Verify that lpt_lebs is big enough */
140 	sz = c->lpt_sz * 2; /* Must have at least 2 times the size */
141 	lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
142 	if (lebs_needed > c->lpt_lebs) {
143 		ubifs_err(c, "too few LPT LEBs");
144 		return -EINVAL;
145 	}
146 
147 	/* Verify that ltab fits in a single LEB (since ltab is a single node */
148 	if (c->ltab_sz > c->leb_size) {
149 		ubifs_err(c, "LPT ltab too big");
150 		return -EINVAL;
151 	}
152 
153 	c->check_lpt_free = c->big_lpt;
154 	return 0;
155 }
156 
157 /**
158  * calc_dflt_lpt_geom - calculate default LPT geometry.
159  * @c: the UBIFS file-system description object
160  * @main_lebs: number of main area LEBs is passed and returned here
161  * @big_lpt: whether the LPT area is "big" is returned here
162  *
163  * The size of the LPT area depends on parameters that themselves are dependent
164  * on the size of the LPT area. This function, successively recalculates the LPT
165  * area geometry until the parameters and resultant geometry are consistent.
166  *
167  * This function returns %0 on success and a negative error code on failure.
168  */
169 static int calc_dflt_lpt_geom(struct ubifs_info *c, int *main_lebs,
170 			      int *big_lpt)
171 {
172 	int i, lebs_needed;
173 	long long sz;
174 
175 	/* Start by assuming the minimum number of LPT LEBs */
176 	c->lpt_lebs = UBIFS_MIN_LPT_LEBS;
177 	c->main_lebs = *main_lebs - c->lpt_lebs;
178 	if (c->main_lebs <= 0)
179 		return -EINVAL;
180 
181 	/* And assume we will use the small LPT model */
182 	c->big_lpt = 0;
183 
184 	/*
185 	 * Calculate the geometry based on assumptions above and then see if it
186 	 * makes sense
187 	 */
188 	do_calc_lpt_geom(c);
189 
190 	/* Small LPT model must have lpt_sz < leb_size */
191 	if (c->lpt_sz > c->leb_size) {
192 		/* Nope, so try again using big LPT model */
193 		c->big_lpt = 1;
194 		do_calc_lpt_geom(c);
195 	}
196 
197 	/* Now check there are enough LPT LEBs */
198 	for (i = 0; i < 64 ; i++) {
199 		sz = c->lpt_sz * 4; /* Allow 4 times the size */
200 		lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
201 		if (lebs_needed > c->lpt_lebs) {
202 			/* Not enough LPT LEBs so try again with more */
203 			c->lpt_lebs = lebs_needed;
204 			c->main_lebs = *main_lebs - c->lpt_lebs;
205 			if (c->main_lebs <= 0)
206 				return -EINVAL;
207 			do_calc_lpt_geom(c);
208 			continue;
209 		}
210 		if (c->ltab_sz > c->leb_size) {
211 			ubifs_err(c, "LPT ltab too big");
212 			return -EINVAL;
213 		}
214 		*main_lebs = c->main_lebs;
215 		*big_lpt = c->big_lpt;
216 		return 0;
217 	}
218 	return -EINVAL;
219 }
220 
221 /**
222  * pack_bits - pack bit fields end-to-end.
223  * @addr: address at which to pack (passed and next address returned)
224  * @pos: bit position at which to pack (passed and next position returned)
225  * @val: value to pack
226  * @nrbits: number of bits of value to pack (1-32)
227  */
228 static void pack_bits(uint8_t **addr, int *pos, uint32_t val, int nrbits)
229 {
230 	uint8_t *p = *addr;
231 	int b = *pos;
232 
233 	ubifs_assert(nrbits > 0);
234 	ubifs_assert(nrbits <= 32);
235 	ubifs_assert(*pos >= 0);
236 	ubifs_assert(*pos < 8);
237 	ubifs_assert((val >> nrbits) == 0 || nrbits == 32);
238 	if (b) {
239 		*p |= ((uint8_t)val) << b;
240 		nrbits += b;
241 		if (nrbits > 8) {
242 			*++p = (uint8_t)(val >>= (8 - b));
243 			if (nrbits > 16) {
244 				*++p = (uint8_t)(val >>= 8);
245 				if (nrbits > 24) {
246 					*++p = (uint8_t)(val >>= 8);
247 					if (nrbits > 32)
248 						*++p = (uint8_t)(val >>= 8);
249 				}
250 			}
251 		}
252 	} else {
253 		*p = (uint8_t)val;
254 		if (nrbits > 8) {
255 			*++p = (uint8_t)(val >>= 8);
256 			if (nrbits > 16) {
257 				*++p = (uint8_t)(val >>= 8);
258 				if (nrbits > 24)
259 					*++p = (uint8_t)(val >>= 8);
260 			}
261 		}
262 	}
263 	b = nrbits & 7;
264 	if (b == 0)
265 		p++;
266 	*addr = p;
267 	*pos = b;
268 }
269 
270 /**
271  * ubifs_unpack_bits - unpack bit fields.
272  * @addr: address at which to unpack (passed and next address returned)
273  * @pos: bit position at which to unpack (passed and next position returned)
274  * @nrbits: number of bits of value to unpack (1-32)
275  *
276  * This functions returns the value unpacked.
277  */
278 uint32_t ubifs_unpack_bits(uint8_t **addr, int *pos, int nrbits)
279 {
280 	const int k = 32 - nrbits;
281 	uint8_t *p = *addr;
282 	int b = *pos;
283 	uint32_t uninitialized_var(val);
284 	const int bytes = (nrbits + b + 7) >> 3;
285 
286 	ubifs_assert(nrbits > 0);
287 	ubifs_assert(nrbits <= 32);
288 	ubifs_assert(*pos >= 0);
289 	ubifs_assert(*pos < 8);
290 	if (b) {
291 		switch (bytes) {
292 		case 2:
293 			val = p[1];
294 			break;
295 		case 3:
296 			val = p[1] | ((uint32_t)p[2] << 8);
297 			break;
298 		case 4:
299 			val = p[1] | ((uint32_t)p[2] << 8) |
300 				     ((uint32_t)p[3] << 16);
301 			break;
302 		case 5:
303 			val = p[1] | ((uint32_t)p[2] << 8) |
304 				     ((uint32_t)p[3] << 16) |
305 				     ((uint32_t)p[4] << 24);
306 		}
307 		val <<= (8 - b);
308 		val |= *p >> b;
309 		nrbits += b;
310 	} else {
311 		switch (bytes) {
312 		case 1:
313 			val = p[0];
314 			break;
315 		case 2:
316 			val = p[0] | ((uint32_t)p[1] << 8);
317 			break;
318 		case 3:
319 			val = p[0] | ((uint32_t)p[1] << 8) |
320 				     ((uint32_t)p[2] << 16);
321 			break;
322 		case 4:
323 			val = p[0] | ((uint32_t)p[1] << 8) |
324 				     ((uint32_t)p[2] << 16) |
325 				     ((uint32_t)p[3] << 24);
326 			break;
327 		}
328 	}
329 	val <<= k;
330 	val >>= k;
331 	b = nrbits & 7;
332 	p += nrbits >> 3;
333 	*addr = p;
334 	*pos = b;
335 	ubifs_assert((val >> nrbits) == 0 || nrbits - b == 32);
336 	return val;
337 }
338 
339 /**
340  * ubifs_pack_pnode - pack all the bit fields of a pnode.
341  * @c: UBIFS file-system description object
342  * @buf: buffer into which to pack
343  * @pnode: pnode to pack
344  */
345 void ubifs_pack_pnode(struct ubifs_info *c, void *buf,
346 		      struct ubifs_pnode *pnode)
347 {
348 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
349 	int i, pos = 0;
350 	uint16_t crc;
351 
352 	pack_bits(&addr, &pos, UBIFS_LPT_PNODE, UBIFS_LPT_TYPE_BITS);
353 	if (c->big_lpt)
354 		pack_bits(&addr, &pos, pnode->num, c->pcnt_bits);
355 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
356 		pack_bits(&addr, &pos, pnode->lprops[i].free >> 3,
357 			  c->space_bits);
358 		pack_bits(&addr, &pos, pnode->lprops[i].dirty >> 3,
359 			  c->space_bits);
360 		if (pnode->lprops[i].flags & LPROPS_INDEX)
361 			pack_bits(&addr, &pos, 1, 1);
362 		else
363 			pack_bits(&addr, &pos, 0, 1);
364 	}
365 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
366 		    c->pnode_sz - UBIFS_LPT_CRC_BYTES);
367 	addr = buf;
368 	pos = 0;
369 	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
370 }
371 
372 /**
373  * ubifs_pack_nnode - pack all the bit fields of a nnode.
374  * @c: UBIFS file-system description object
375  * @buf: buffer into which to pack
376  * @nnode: nnode to pack
377  */
378 void ubifs_pack_nnode(struct ubifs_info *c, void *buf,
379 		      struct ubifs_nnode *nnode)
380 {
381 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
382 	int i, pos = 0;
383 	uint16_t crc;
384 
385 	pack_bits(&addr, &pos, UBIFS_LPT_NNODE, UBIFS_LPT_TYPE_BITS);
386 	if (c->big_lpt)
387 		pack_bits(&addr, &pos, nnode->num, c->pcnt_bits);
388 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
389 		int lnum = nnode->nbranch[i].lnum;
390 
391 		if (lnum == 0)
392 			lnum = c->lpt_last + 1;
393 		pack_bits(&addr, &pos, lnum - c->lpt_first, c->lpt_lnum_bits);
394 		pack_bits(&addr, &pos, nnode->nbranch[i].offs,
395 			  c->lpt_offs_bits);
396 	}
397 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
398 		    c->nnode_sz - UBIFS_LPT_CRC_BYTES);
399 	addr = buf;
400 	pos = 0;
401 	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
402 }
403 
404 /**
405  * ubifs_pack_ltab - pack the LPT's own lprops table.
406  * @c: UBIFS file-system description object
407  * @buf: buffer into which to pack
408  * @ltab: LPT's own lprops table to pack
409  */
410 void ubifs_pack_ltab(struct ubifs_info *c, void *buf,
411 		     struct ubifs_lpt_lprops *ltab)
412 {
413 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
414 	int i, pos = 0;
415 	uint16_t crc;
416 
417 	pack_bits(&addr, &pos, UBIFS_LPT_LTAB, UBIFS_LPT_TYPE_BITS);
418 	for (i = 0; i < c->lpt_lebs; i++) {
419 		pack_bits(&addr, &pos, ltab[i].free, c->lpt_spc_bits);
420 		pack_bits(&addr, &pos, ltab[i].dirty, c->lpt_spc_bits);
421 	}
422 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
423 		    c->ltab_sz - UBIFS_LPT_CRC_BYTES);
424 	addr = buf;
425 	pos = 0;
426 	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
427 }
428 
429 /**
430  * ubifs_pack_lsave - pack the LPT's save table.
431  * @c: UBIFS file-system description object
432  * @buf: buffer into which to pack
433  * @lsave: LPT's save table to pack
434  */
435 void ubifs_pack_lsave(struct ubifs_info *c, void *buf, int *lsave)
436 {
437 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
438 	int i, pos = 0;
439 	uint16_t crc;
440 
441 	pack_bits(&addr, &pos, UBIFS_LPT_LSAVE, UBIFS_LPT_TYPE_BITS);
442 	for (i = 0; i < c->lsave_cnt; i++)
443 		pack_bits(&addr, &pos, lsave[i], c->lnum_bits);
444 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
445 		    c->lsave_sz - UBIFS_LPT_CRC_BYTES);
446 	addr = buf;
447 	pos = 0;
448 	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
449 }
450 
451 /**
452  * ubifs_add_lpt_dirt - add dirty space to LPT LEB properties.
453  * @c: UBIFS file-system description object
454  * @lnum: LEB number to which to add dirty space
455  * @dirty: amount of dirty space to add
456  */
457 void ubifs_add_lpt_dirt(struct ubifs_info *c, int lnum, int dirty)
458 {
459 	if (!dirty || !lnum)
460 		return;
461 	dbg_lp("LEB %d add %d to %d",
462 	       lnum, dirty, c->ltab[lnum - c->lpt_first].dirty);
463 	ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
464 	c->ltab[lnum - c->lpt_first].dirty += dirty;
465 }
466 
467 /**
468  * set_ltab - set LPT LEB properties.
469  * @c: UBIFS file-system description object
470  * @lnum: LEB number
471  * @free: amount of free space
472  * @dirty: amount of dirty space
473  */
474 static void set_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
475 {
476 	dbg_lp("LEB %d free %d dirty %d to %d %d",
477 	       lnum, c->ltab[lnum - c->lpt_first].free,
478 	       c->ltab[lnum - c->lpt_first].dirty, free, dirty);
479 	ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
480 	c->ltab[lnum - c->lpt_first].free = free;
481 	c->ltab[lnum - c->lpt_first].dirty = dirty;
482 }
483 
484 /**
485  * ubifs_add_nnode_dirt - add dirty space to LPT LEB properties.
486  * @c: UBIFS file-system description object
487  * @nnode: nnode for which to add dirt
488  */
489 void ubifs_add_nnode_dirt(struct ubifs_info *c, struct ubifs_nnode *nnode)
490 {
491 	struct ubifs_nnode *np = nnode->parent;
492 
493 	if (np)
494 		ubifs_add_lpt_dirt(c, np->nbranch[nnode->iip].lnum,
495 				   c->nnode_sz);
496 	else {
497 		ubifs_add_lpt_dirt(c, c->lpt_lnum, c->nnode_sz);
498 		if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
499 			c->lpt_drty_flgs |= LTAB_DIRTY;
500 			ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
501 		}
502 	}
503 }
504 
505 /**
506  * add_pnode_dirt - add dirty space to LPT LEB properties.
507  * @c: UBIFS file-system description object
508  * @pnode: pnode for which to add dirt
509  */
510 static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
511 {
512 	ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
513 			   c->pnode_sz);
514 }
515 
516 /**
517  * calc_nnode_num - calculate nnode number.
518  * @row: the row in the tree (root is zero)
519  * @col: the column in the row (leftmost is zero)
520  *
521  * The nnode number is a number that uniquely identifies a nnode and can be used
522  * easily to traverse the tree from the root to that nnode.
523  *
524  * This function calculates and returns the nnode number for the nnode at @row
525  * and @col.
526  */
527 static int calc_nnode_num(int row, int col)
528 {
529 	int num, bits;
530 
531 	num = 1;
532 	while (row--) {
533 		bits = (col & (UBIFS_LPT_FANOUT - 1));
534 		col >>= UBIFS_LPT_FANOUT_SHIFT;
535 		num <<= UBIFS_LPT_FANOUT_SHIFT;
536 		num |= bits;
537 	}
538 	return num;
539 }
540 
541 /**
542  * calc_nnode_num_from_parent - calculate nnode number.
543  * @c: UBIFS file-system description object
544  * @parent: parent nnode
545  * @iip: index in parent
546  *
547  * The nnode number is a number that uniquely identifies a nnode and can be used
548  * easily to traverse the tree from the root to that nnode.
549  *
550  * This function calculates and returns the nnode number based on the parent's
551  * nnode number and the index in parent.
552  */
553 static int calc_nnode_num_from_parent(const struct ubifs_info *c,
554 				      struct ubifs_nnode *parent, int iip)
555 {
556 	int num, shft;
557 
558 	if (!parent)
559 		return 1;
560 	shft = (c->lpt_hght - parent->level) * UBIFS_LPT_FANOUT_SHIFT;
561 	num = parent->num ^ (1 << shft);
562 	num |= (UBIFS_LPT_FANOUT + iip) << shft;
563 	return num;
564 }
565 
566 /**
567  * calc_pnode_num_from_parent - calculate pnode number.
568  * @c: UBIFS file-system description object
569  * @parent: parent nnode
570  * @iip: index in parent
571  *
572  * The pnode number is a number that uniquely identifies a pnode and can be used
573  * easily to traverse the tree from the root to that pnode.
574  *
575  * This function calculates and returns the pnode number based on the parent's
576  * nnode number and the index in parent.
577  */
578 static int calc_pnode_num_from_parent(const struct ubifs_info *c,
579 				      struct ubifs_nnode *parent, int iip)
580 {
581 	int i, n = c->lpt_hght - 1, pnum = parent->num, num = 0;
582 
583 	for (i = 0; i < n; i++) {
584 		num <<= UBIFS_LPT_FANOUT_SHIFT;
585 		num |= pnum & (UBIFS_LPT_FANOUT - 1);
586 		pnum >>= UBIFS_LPT_FANOUT_SHIFT;
587 	}
588 	num <<= UBIFS_LPT_FANOUT_SHIFT;
589 	num |= iip;
590 	return num;
591 }
592 
593 /**
594  * ubifs_create_dflt_lpt - create default LPT.
595  * @c: UBIFS file-system description object
596  * @main_lebs: number of main area LEBs is passed and returned here
597  * @lpt_first: LEB number of first LPT LEB
598  * @lpt_lebs: number of LEBs for LPT is passed and returned here
599  * @big_lpt: use big LPT model is passed and returned here
600  *
601  * This function returns %0 on success and a negative error code on failure.
602  */
603 int ubifs_create_dflt_lpt(struct ubifs_info *c, int *main_lebs, int lpt_first,
604 			  int *lpt_lebs, int *big_lpt)
605 {
606 	int lnum, err = 0, node_sz, iopos, i, j, cnt, len, alen, row;
607 	int blnum, boffs, bsz, bcnt;
608 	struct ubifs_pnode *pnode = NULL;
609 	struct ubifs_nnode *nnode = NULL;
610 	void *buf = NULL, *p;
611 	struct ubifs_lpt_lprops *ltab = NULL;
612 	int *lsave = NULL;
613 
614 	err = calc_dflt_lpt_geom(c, main_lebs, big_lpt);
615 	if (err)
616 		return err;
617 	*lpt_lebs = c->lpt_lebs;
618 
619 	/* Needed by 'ubifs_pack_nnode()' and 'set_ltab()' */
620 	c->lpt_first = lpt_first;
621 	/* Needed by 'set_ltab()' */
622 	c->lpt_last = lpt_first + c->lpt_lebs - 1;
623 	/* Needed by 'ubifs_pack_lsave()' */
624 	c->main_first = c->leb_cnt - *main_lebs;
625 
626 	lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_KERNEL);
627 	pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_KERNEL);
628 	nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_KERNEL);
629 	buf = vmalloc(c->leb_size);
630 	ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
631 	if (!pnode || !nnode || !buf || !ltab || !lsave) {
632 		err = -ENOMEM;
633 		goto out;
634 	}
635 
636 	ubifs_assert(!c->ltab);
637 	c->ltab = ltab; /* Needed by set_ltab */
638 
639 	/* Initialize LPT's own lprops */
640 	for (i = 0; i < c->lpt_lebs; i++) {
641 		ltab[i].free = c->leb_size;
642 		ltab[i].dirty = 0;
643 		ltab[i].tgc = 0;
644 		ltab[i].cmt = 0;
645 	}
646 
647 	lnum = lpt_first;
648 	p = buf;
649 	/* Number of leaf nodes (pnodes) */
650 	cnt = c->pnode_cnt;
651 
652 	/*
653 	 * The first pnode contains the LEB properties for the LEBs that contain
654 	 * the root inode node and the root index node of the index tree.
655 	 */
656 	node_sz = ALIGN(ubifs_idx_node_sz(c, 1), 8);
657 	iopos = ALIGN(node_sz, c->min_io_size);
658 	pnode->lprops[0].free = c->leb_size - iopos;
659 	pnode->lprops[0].dirty = iopos - node_sz;
660 	pnode->lprops[0].flags = LPROPS_INDEX;
661 
662 	node_sz = UBIFS_INO_NODE_SZ;
663 	iopos = ALIGN(node_sz, c->min_io_size);
664 	pnode->lprops[1].free = c->leb_size - iopos;
665 	pnode->lprops[1].dirty = iopos - node_sz;
666 
667 	for (i = 2; i < UBIFS_LPT_FANOUT; i++)
668 		pnode->lprops[i].free = c->leb_size;
669 
670 	/* Add first pnode */
671 	ubifs_pack_pnode(c, p, pnode);
672 	p += c->pnode_sz;
673 	len = c->pnode_sz;
674 	pnode->num += 1;
675 
676 	/* Reset pnode values for remaining pnodes */
677 	pnode->lprops[0].free = c->leb_size;
678 	pnode->lprops[0].dirty = 0;
679 	pnode->lprops[0].flags = 0;
680 
681 	pnode->lprops[1].free = c->leb_size;
682 	pnode->lprops[1].dirty = 0;
683 
684 	/*
685 	 * To calculate the internal node branches, we keep information about
686 	 * the level below.
687 	 */
688 	blnum = lnum; /* LEB number of level below */
689 	boffs = 0; /* Offset of level below */
690 	bcnt = cnt; /* Number of nodes in level below */
691 	bsz = c->pnode_sz; /* Size of nodes in level below */
692 
693 	/* Add all remaining pnodes */
694 	for (i = 1; i < cnt; i++) {
695 		if (len + c->pnode_sz > c->leb_size) {
696 			alen = ALIGN(len, c->min_io_size);
697 			set_ltab(c, lnum, c->leb_size - alen, alen - len);
698 			memset(p, 0xff, alen - len);
699 			err = ubifs_leb_change(c, lnum++, buf, alen);
700 			if (err)
701 				goto out;
702 			p = buf;
703 			len = 0;
704 		}
705 		ubifs_pack_pnode(c, p, pnode);
706 		p += c->pnode_sz;
707 		len += c->pnode_sz;
708 		/*
709 		 * pnodes are simply numbered left to right starting at zero,
710 		 * which means the pnode number can be used easily to traverse
711 		 * down the tree to the corresponding pnode.
712 		 */
713 		pnode->num += 1;
714 	}
715 
716 	row = 0;
717 	for (i = UBIFS_LPT_FANOUT; cnt > i; i <<= UBIFS_LPT_FANOUT_SHIFT)
718 		row += 1;
719 	/* Add all nnodes, one level at a time */
720 	while (1) {
721 		/* Number of internal nodes (nnodes) at next level */
722 		cnt = DIV_ROUND_UP(cnt, UBIFS_LPT_FANOUT);
723 		for (i = 0; i < cnt; i++) {
724 			if (len + c->nnode_sz > c->leb_size) {
725 				alen = ALIGN(len, c->min_io_size);
726 				set_ltab(c, lnum, c->leb_size - alen,
727 					    alen - len);
728 				memset(p, 0xff, alen - len);
729 				err = ubifs_leb_change(c, lnum++, buf, alen);
730 				if (err)
731 					goto out;
732 				p = buf;
733 				len = 0;
734 			}
735 			/* Only 1 nnode at this level, so it is the root */
736 			if (cnt == 1) {
737 				c->lpt_lnum = lnum;
738 				c->lpt_offs = len;
739 			}
740 			/* Set branches to the level below */
741 			for (j = 0; j < UBIFS_LPT_FANOUT; j++) {
742 				if (bcnt) {
743 					if (boffs + bsz > c->leb_size) {
744 						blnum += 1;
745 						boffs = 0;
746 					}
747 					nnode->nbranch[j].lnum = blnum;
748 					nnode->nbranch[j].offs = boffs;
749 					boffs += bsz;
750 					bcnt--;
751 				} else {
752 					nnode->nbranch[j].lnum = 0;
753 					nnode->nbranch[j].offs = 0;
754 				}
755 			}
756 			nnode->num = calc_nnode_num(row, i);
757 			ubifs_pack_nnode(c, p, nnode);
758 			p += c->nnode_sz;
759 			len += c->nnode_sz;
760 		}
761 		/* Only 1 nnode at this level, so it is the root */
762 		if (cnt == 1)
763 			break;
764 		/* Update the information about the level below */
765 		bcnt = cnt;
766 		bsz = c->nnode_sz;
767 		row -= 1;
768 	}
769 
770 	if (*big_lpt) {
771 		/* Need to add LPT's save table */
772 		if (len + c->lsave_sz > c->leb_size) {
773 			alen = ALIGN(len, c->min_io_size);
774 			set_ltab(c, lnum, c->leb_size - alen, alen - len);
775 			memset(p, 0xff, alen - len);
776 			err = ubifs_leb_change(c, lnum++, buf, alen);
777 			if (err)
778 				goto out;
779 			p = buf;
780 			len = 0;
781 		}
782 
783 		c->lsave_lnum = lnum;
784 		c->lsave_offs = len;
785 
786 		for (i = 0; i < c->lsave_cnt && i < *main_lebs; i++)
787 			lsave[i] = c->main_first + i;
788 		for (; i < c->lsave_cnt; i++)
789 			lsave[i] = c->main_first;
790 
791 		ubifs_pack_lsave(c, p, lsave);
792 		p += c->lsave_sz;
793 		len += c->lsave_sz;
794 	}
795 
796 	/* Need to add LPT's own LEB properties table */
797 	if (len + c->ltab_sz > c->leb_size) {
798 		alen = ALIGN(len, c->min_io_size);
799 		set_ltab(c, lnum, c->leb_size - alen, alen - len);
800 		memset(p, 0xff, alen - len);
801 		err = ubifs_leb_change(c, lnum++, buf, alen);
802 		if (err)
803 			goto out;
804 		p = buf;
805 		len = 0;
806 	}
807 
808 	c->ltab_lnum = lnum;
809 	c->ltab_offs = len;
810 
811 	/* Update ltab before packing it */
812 	len += c->ltab_sz;
813 	alen = ALIGN(len, c->min_io_size);
814 	set_ltab(c, lnum, c->leb_size - alen, alen - len);
815 
816 	ubifs_pack_ltab(c, p, ltab);
817 	p += c->ltab_sz;
818 
819 	/* Write remaining buffer */
820 	memset(p, 0xff, alen - len);
821 	err = ubifs_leb_change(c, lnum, buf, alen);
822 	if (err)
823 		goto out;
824 
825 	c->nhead_lnum = lnum;
826 	c->nhead_offs = ALIGN(len, c->min_io_size);
827 
828 	dbg_lp("space_bits %d", c->space_bits);
829 	dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
830 	dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
831 	dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
832 	dbg_lp("pcnt_bits %d", c->pcnt_bits);
833 	dbg_lp("lnum_bits %d", c->lnum_bits);
834 	dbg_lp("pnode_sz %d", c->pnode_sz);
835 	dbg_lp("nnode_sz %d", c->nnode_sz);
836 	dbg_lp("ltab_sz %d", c->ltab_sz);
837 	dbg_lp("lsave_sz %d", c->lsave_sz);
838 	dbg_lp("lsave_cnt %d", c->lsave_cnt);
839 	dbg_lp("lpt_hght %d", c->lpt_hght);
840 	dbg_lp("big_lpt %d", c->big_lpt);
841 	dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
842 	dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
843 	dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
844 	if (c->big_lpt)
845 		dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
846 out:
847 	c->ltab = NULL;
848 	kfree(lsave);
849 	vfree(ltab);
850 	vfree(buf);
851 	kfree(nnode);
852 	kfree(pnode);
853 	return err;
854 }
855 
856 /**
857  * update_cats - add LEB properties of a pnode to LEB category lists and heaps.
858  * @c: UBIFS file-system description object
859  * @pnode: pnode
860  *
861  * When a pnode is loaded into memory, the LEB properties it contains are added,
862  * by this function, to the LEB category lists and heaps.
863  */
864 static void update_cats(struct ubifs_info *c, struct ubifs_pnode *pnode)
865 {
866 	int i;
867 
868 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
869 		int cat = pnode->lprops[i].flags & LPROPS_CAT_MASK;
870 		int lnum = pnode->lprops[i].lnum;
871 
872 		if (!lnum)
873 			return;
874 		ubifs_add_to_cat(c, &pnode->lprops[i], cat);
875 	}
876 }
877 
878 /**
879  * replace_cats - add LEB properties of a pnode to LEB category lists and heaps.
880  * @c: UBIFS file-system description object
881  * @old_pnode: pnode copied
882  * @new_pnode: pnode copy
883  *
884  * During commit it is sometimes necessary to copy a pnode
885  * (see dirty_cow_pnode).  When that happens, references in
886  * category lists and heaps must be replaced.  This function does that.
887  */
888 static void replace_cats(struct ubifs_info *c, struct ubifs_pnode *old_pnode,
889 			 struct ubifs_pnode *new_pnode)
890 {
891 	int i;
892 
893 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
894 		if (!new_pnode->lprops[i].lnum)
895 			return;
896 		ubifs_replace_cat(c, &old_pnode->lprops[i],
897 				  &new_pnode->lprops[i]);
898 	}
899 }
900 
901 /**
902  * check_lpt_crc - check LPT node crc is correct.
903  * @c: UBIFS file-system description object
904  * @buf: buffer containing node
905  * @len: length of node
906  *
907  * This function returns %0 on success and a negative error code on failure.
908  */
909 static int check_lpt_crc(const struct ubifs_info *c, void *buf, int len)
910 {
911 	int pos = 0;
912 	uint8_t *addr = buf;
913 	uint16_t crc, calc_crc;
914 
915 	crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
916 	calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
917 			 len - UBIFS_LPT_CRC_BYTES);
918 	if (crc != calc_crc) {
919 		ubifs_err(c, "invalid crc in LPT node: crc %hx calc %hx",
920 			  crc, calc_crc);
921 		dump_stack();
922 		return -EINVAL;
923 	}
924 	return 0;
925 }
926 
927 /**
928  * check_lpt_type - check LPT node type is correct.
929  * @c: UBIFS file-system description object
930  * @addr: address of type bit field is passed and returned updated here
931  * @pos: position of type bit field is passed and returned updated here
932  * @type: expected type
933  *
934  * This function returns %0 on success and a negative error code on failure.
935  */
936 static int check_lpt_type(const struct ubifs_info *c, uint8_t **addr,
937 			  int *pos, int type)
938 {
939 	int node_type;
940 
941 	node_type = ubifs_unpack_bits(addr, pos, UBIFS_LPT_TYPE_BITS);
942 	if (node_type != type) {
943 		ubifs_err(c, "invalid type (%d) in LPT node type %d",
944 			  node_type, type);
945 		dump_stack();
946 		return -EINVAL;
947 	}
948 	return 0;
949 }
950 
951 /**
952  * unpack_pnode - unpack a pnode.
953  * @c: UBIFS file-system description object
954  * @buf: buffer containing packed pnode to unpack
955  * @pnode: pnode structure to fill
956  *
957  * This function returns %0 on success and a negative error code on failure.
958  */
959 static int unpack_pnode(const struct ubifs_info *c, void *buf,
960 			struct ubifs_pnode *pnode)
961 {
962 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
963 	int i, pos = 0, err;
964 
965 	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_PNODE);
966 	if (err)
967 		return err;
968 	if (c->big_lpt)
969 		pnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
970 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
971 		struct ubifs_lprops * const lprops = &pnode->lprops[i];
972 
973 		lprops->free = ubifs_unpack_bits(&addr, &pos, c->space_bits);
974 		lprops->free <<= 3;
975 		lprops->dirty = ubifs_unpack_bits(&addr, &pos, c->space_bits);
976 		lprops->dirty <<= 3;
977 
978 		if (ubifs_unpack_bits(&addr, &pos, 1))
979 			lprops->flags = LPROPS_INDEX;
980 		else
981 			lprops->flags = 0;
982 		lprops->flags |= ubifs_categorize_lprops(c, lprops);
983 	}
984 	err = check_lpt_crc(c, buf, c->pnode_sz);
985 	return err;
986 }
987 
988 /**
989  * ubifs_unpack_nnode - unpack a nnode.
990  * @c: UBIFS file-system description object
991  * @buf: buffer containing packed nnode to unpack
992  * @nnode: nnode structure to fill
993  *
994  * This function returns %0 on success and a negative error code on failure.
995  */
996 int ubifs_unpack_nnode(const struct ubifs_info *c, void *buf,
997 		       struct ubifs_nnode *nnode)
998 {
999 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1000 	int i, pos = 0, err;
1001 
1002 	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_NNODE);
1003 	if (err)
1004 		return err;
1005 	if (c->big_lpt)
1006 		nnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
1007 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1008 		int lnum;
1009 
1010 		lnum = ubifs_unpack_bits(&addr, &pos, c->lpt_lnum_bits) +
1011 		       c->lpt_first;
1012 		if (lnum == c->lpt_last + 1)
1013 			lnum = 0;
1014 		nnode->nbranch[i].lnum = lnum;
1015 		nnode->nbranch[i].offs = ubifs_unpack_bits(&addr, &pos,
1016 						     c->lpt_offs_bits);
1017 	}
1018 	err = check_lpt_crc(c, buf, c->nnode_sz);
1019 	return err;
1020 }
1021 
1022 /**
1023  * unpack_ltab - unpack the LPT's own lprops table.
1024  * @c: UBIFS file-system description object
1025  * @buf: buffer from which to unpack
1026  *
1027  * This function returns %0 on success and a negative error code on failure.
1028  */
1029 static int unpack_ltab(const struct ubifs_info *c, void *buf)
1030 {
1031 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1032 	int i, pos = 0, err;
1033 
1034 	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_LTAB);
1035 	if (err)
1036 		return err;
1037 	for (i = 0; i < c->lpt_lebs; i++) {
1038 		int free = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits);
1039 		int dirty = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits);
1040 
1041 		if (free < 0 || free > c->leb_size || dirty < 0 ||
1042 		    dirty > c->leb_size || free + dirty > c->leb_size)
1043 			return -EINVAL;
1044 
1045 		c->ltab[i].free = free;
1046 		c->ltab[i].dirty = dirty;
1047 		c->ltab[i].tgc = 0;
1048 		c->ltab[i].cmt = 0;
1049 	}
1050 	err = check_lpt_crc(c, buf, c->ltab_sz);
1051 	return err;
1052 }
1053 
1054 #ifndef __UBOOT__
1055 /**
1056  * unpack_lsave - unpack the LPT's save table.
1057  * @c: UBIFS file-system description object
1058  * @buf: buffer from which to unpack
1059  *
1060  * This function returns %0 on success and a negative error code on failure.
1061  */
1062 static int unpack_lsave(const struct ubifs_info *c, void *buf)
1063 {
1064 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1065 	int i, pos = 0, err;
1066 
1067 	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_LSAVE);
1068 	if (err)
1069 		return err;
1070 	for (i = 0; i < c->lsave_cnt; i++) {
1071 		int lnum = ubifs_unpack_bits(&addr, &pos, c->lnum_bits);
1072 
1073 		if (lnum < c->main_first || lnum >= c->leb_cnt)
1074 			return -EINVAL;
1075 		c->lsave[i] = lnum;
1076 	}
1077 	err = check_lpt_crc(c, buf, c->lsave_sz);
1078 	return err;
1079 }
1080 #endif
1081 
1082 /**
1083  * validate_nnode - validate a nnode.
1084  * @c: UBIFS file-system description object
1085  * @nnode: nnode to validate
1086  * @parent: parent nnode (or NULL for the root nnode)
1087  * @iip: index in parent
1088  *
1089  * This function returns %0 on success and a negative error code on failure.
1090  */
1091 static int validate_nnode(const struct ubifs_info *c, struct ubifs_nnode *nnode,
1092 			  struct ubifs_nnode *parent, int iip)
1093 {
1094 	int i, lvl, max_offs;
1095 
1096 	if (c->big_lpt) {
1097 		int num = calc_nnode_num_from_parent(c, parent, iip);
1098 
1099 		if (nnode->num != num)
1100 			return -EINVAL;
1101 	}
1102 	lvl = parent ? parent->level - 1 : c->lpt_hght;
1103 	if (lvl < 1)
1104 		return -EINVAL;
1105 	if (lvl == 1)
1106 		max_offs = c->leb_size - c->pnode_sz;
1107 	else
1108 		max_offs = c->leb_size - c->nnode_sz;
1109 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1110 		int lnum = nnode->nbranch[i].lnum;
1111 		int offs = nnode->nbranch[i].offs;
1112 
1113 		if (lnum == 0) {
1114 			if (offs != 0)
1115 				return -EINVAL;
1116 			continue;
1117 		}
1118 		if (lnum < c->lpt_first || lnum > c->lpt_last)
1119 			return -EINVAL;
1120 		if (offs < 0 || offs > max_offs)
1121 			return -EINVAL;
1122 	}
1123 	return 0;
1124 }
1125 
1126 /**
1127  * validate_pnode - validate a pnode.
1128  * @c: UBIFS file-system description object
1129  * @pnode: pnode to validate
1130  * @parent: parent nnode
1131  * @iip: index in parent
1132  *
1133  * This function returns %0 on success and a negative error code on failure.
1134  */
1135 static int validate_pnode(const struct ubifs_info *c, struct ubifs_pnode *pnode,
1136 			  struct ubifs_nnode *parent, int iip)
1137 {
1138 	int i;
1139 
1140 	if (c->big_lpt) {
1141 		int num = calc_pnode_num_from_parent(c, parent, iip);
1142 
1143 		if (pnode->num != num)
1144 			return -EINVAL;
1145 	}
1146 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1147 		int free = pnode->lprops[i].free;
1148 		int dirty = pnode->lprops[i].dirty;
1149 
1150 		if (free < 0 || free > c->leb_size || free % c->min_io_size ||
1151 		    (free & 7))
1152 			return -EINVAL;
1153 		if (dirty < 0 || dirty > c->leb_size || (dirty & 7))
1154 			return -EINVAL;
1155 		if (dirty + free > c->leb_size)
1156 			return -EINVAL;
1157 	}
1158 	return 0;
1159 }
1160 
1161 /**
1162  * set_pnode_lnum - set LEB numbers on a pnode.
1163  * @c: UBIFS file-system description object
1164  * @pnode: pnode to update
1165  *
1166  * This function calculates the LEB numbers for the LEB properties it contains
1167  * based on the pnode number.
1168  */
1169 static void set_pnode_lnum(const struct ubifs_info *c,
1170 			   struct ubifs_pnode *pnode)
1171 {
1172 	int i, lnum;
1173 
1174 	lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + c->main_first;
1175 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1176 		if (lnum >= c->leb_cnt)
1177 			return;
1178 		pnode->lprops[i].lnum = lnum++;
1179 	}
1180 }
1181 
1182 /**
1183  * ubifs_read_nnode - read a nnode from flash and link it to the tree in memory.
1184  * @c: UBIFS file-system description object
1185  * @parent: parent nnode (or NULL for the root)
1186  * @iip: index in parent
1187  *
1188  * This function returns %0 on success and a negative error code on failure.
1189  */
1190 int ubifs_read_nnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
1191 {
1192 	struct ubifs_nbranch *branch = NULL;
1193 	struct ubifs_nnode *nnode = NULL;
1194 	void *buf = c->lpt_nod_buf;
1195 	int err, lnum, offs;
1196 
1197 	if (parent) {
1198 		branch = &parent->nbranch[iip];
1199 		lnum = branch->lnum;
1200 		offs = branch->offs;
1201 	} else {
1202 		lnum = c->lpt_lnum;
1203 		offs = c->lpt_offs;
1204 	}
1205 	nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_NOFS);
1206 	if (!nnode) {
1207 		err = -ENOMEM;
1208 		goto out;
1209 	}
1210 	if (lnum == 0) {
1211 		/*
1212 		 * This nnode was not written which just means that the LEB
1213 		 * properties in the subtree below it describe empty LEBs. We
1214 		 * make the nnode as though we had read it, which in fact means
1215 		 * doing almost nothing.
1216 		 */
1217 		if (c->big_lpt)
1218 			nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1219 	} else {
1220 		err = ubifs_leb_read(c, lnum, buf, offs, c->nnode_sz, 1);
1221 		if (err)
1222 			goto out;
1223 		err = ubifs_unpack_nnode(c, buf, nnode);
1224 		if (err)
1225 			goto out;
1226 	}
1227 	err = validate_nnode(c, nnode, parent, iip);
1228 	if (err)
1229 		goto out;
1230 	if (!c->big_lpt)
1231 		nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1232 	if (parent) {
1233 		branch->nnode = nnode;
1234 		nnode->level = parent->level - 1;
1235 	} else {
1236 		c->nroot = nnode;
1237 		nnode->level = c->lpt_hght;
1238 	}
1239 	nnode->parent = parent;
1240 	nnode->iip = iip;
1241 	return 0;
1242 
1243 out:
1244 	ubifs_err(c, "error %d reading nnode at %d:%d", err, lnum, offs);
1245 	dump_stack();
1246 	kfree(nnode);
1247 	return err;
1248 }
1249 
1250 /**
1251  * read_pnode - read a pnode from flash and link it to the tree in memory.
1252  * @c: UBIFS file-system description object
1253  * @parent: parent nnode
1254  * @iip: index in parent
1255  *
1256  * This function returns %0 on success and a negative error code on failure.
1257  */
1258 static int read_pnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
1259 {
1260 	struct ubifs_nbranch *branch;
1261 	struct ubifs_pnode *pnode = NULL;
1262 	void *buf = c->lpt_nod_buf;
1263 	int err, lnum, offs;
1264 
1265 	branch = &parent->nbranch[iip];
1266 	lnum = branch->lnum;
1267 	offs = branch->offs;
1268 	pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_NOFS);
1269 	if (!pnode)
1270 		return -ENOMEM;
1271 
1272 	if (lnum == 0) {
1273 		/*
1274 		 * This pnode was not written which just means that the LEB
1275 		 * properties in it describe empty LEBs. We make the pnode as
1276 		 * though we had read it.
1277 		 */
1278 		int i;
1279 
1280 		if (c->big_lpt)
1281 			pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1282 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1283 			struct ubifs_lprops * const lprops = &pnode->lprops[i];
1284 
1285 			lprops->free = c->leb_size;
1286 			lprops->flags = ubifs_categorize_lprops(c, lprops);
1287 		}
1288 	} else {
1289 		err = ubifs_leb_read(c, lnum, buf, offs, c->pnode_sz, 1);
1290 		if (err)
1291 			goto out;
1292 		err = unpack_pnode(c, buf, pnode);
1293 		if (err)
1294 			goto out;
1295 	}
1296 	err = validate_pnode(c, pnode, parent, iip);
1297 	if (err)
1298 		goto out;
1299 	if (!c->big_lpt)
1300 		pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1301 	branch->pnode = pnode;
1302 	pnode->parent = parent;
1303 	pnode->iip = iip;
1304 	set_pnode_lnum(c, pnode);
1305 	c->pnodes_have += 1;
1306 	return 0;
1307 
1308 out:
1309 	ubifs_err(c, "error %d reading pnode at %d:%d", err, lnum, offs);
1310 	ubifs_dump_pnode(c, pnode, parent, iip);
1311 	dump_stack();
1312 	ubifs_err(c, "calc num: %d", calc_pnode_num_from_parent(c, parent, iip));
1313 	kfree(pnode);
1314 	return err;
1315 }
1316 
1317 /**
1318  * read_ltab - read LPT's own lprops table.
1319  * @c: UBIFS file-system description object
1320  *
1321  * This function returns %0 on success and a negative error code on failure.
1322  */
1323 static int read_ltab(struct ubifs_info *c)
1324 {
1325 	int err;
1326 	void *buf;
1327 
1328 	buf = vmalloc(c->ltab_sz);
1329 	if (!buf)
1330 		return -ENOMEM;
1331 	err = ubifs_leb_read(c, c->ltab_lnum, buf, c->ltab_offs, c->ltab_sz, 1);
1332 	if (err)
1333 		goto out;
1334 	err = unpack_ltab(c, buf);
1335 out:
1336 	vfree(buf);
1337 	return err;
1338 }
1339 
1340 #ifndef __UBOOT__
1341 /**
1342  * read_lsave - read LPT's save table.
1343  * @c: UBIFS file-system description object
1344  *
1345  * This function returns %0 on success and a negative error code on failure.
1346  */
1347 static int read_lsave(struct ubifs_info *c)
1348 {
1349 	int err, i;
1350 	void *buf;
1351 
1352 	buf = vmalloc(c->lsave_sz);
1353 	if (!buf)
1354 		return -ENOMEM;
1355 	err = ubifs_leb_read(c, c->lsave_lnum, buf, c->lsave_offs,
1356 			     c->lsave_sz, 1);
1357 	if (err)
1358 		goto out;
1359 	err = unpack_lsave(c, buf);
1360 	if (err)
1361 		goto out;
1362 	for (i = 0; i < c->lsave_cnt; i++) {
1363 		int lnum = c->lsave[i];
1364 		struct ubifs_lprops *lprops;
1365 
1366 		/*
1367 		 * Due to automatic resizing, the values in the lsave table
1368 		 * could be beyond the volume size - just ignore them.
1369 		 */
1370 		if (lnum >= c->leb_cnt)
1371 			continue;
1372 		lprops = ubifs_lpt_lookup(c, lnum);
1373 		if (IS_ERR(lprops)) {
1374 			err = PTR_ERR(lprops);
1375 			goto out;
1376 		}
1377 	}
1378 out:
1379 	vfree(buf);
1380 	return err;
1381 }
1382 #endif
1383 
1384 /**
1385  * ubifs_get_nnode - get a nnode.
1386  * @c: UBIFS file-system description object
1387  * @parent: parent nnode (or NULL for the root)
1388  * @iip: index in parent
1389  *
1390  * This function returns a pointer to the nnode on success or a negative error
1391  * code on failure.
1392  */
1393 struct ubifs_nnode *ubifs_get_nnode(struct ubifs_info *c,
1394 				    struct ubifs_nnode *parent, int iip)
1395 {
1396 	struct ubifs_nbranch *branch;
1397 	struct ubifs_nnode *nnode;
1398 	int err;
1399 
1400 	branch = &parent->nbranch[iip];
1401 	nnode = branch->nnode;
1402 	if (nnode)
1403 		return nnode;
1404 	err = ubifs_read_nnode(c, parent, iip);
1405 	if (err)
1406 		return ERR_PTR(err);
1407 	return branch->nnode;
1408 }
1409 
1410 /**
1411  * ubifs_get_pnode - get a pnode.
1412  * @c: UBIFS file-system description object
1413  * @parent: parent nnode
1414  * @iip: index in parent
1415  *
1416  * This function returns a pointer to the pnode on success or a negative error
1417  * code on failure.
1418  */
1419 struct ubifs_pnode *ubifs_get_pnode(struct ubifs_info *c,
1420 				    struct ubifs_nnode *parent, int iip)
1421 {
1422 	struct ubifs_nbranch *branch;
1423 	struct ubifs_pnode *pnode;
1424 	int err;
1425 
1426 	branch = &parent->nbranch[iip];
1427 	pnode = branch->pnode;
1428 	if (pnode)
1429 		return pnode;
1430 	err = read_pnode(c, parent, iip);
1431 	if (err)
1432 		return ERR_PTR(err);
1433 	update_cats(c, branch->pnode);
1434 	return branch->pnode;
1435 }
1436 
1437 /**
1438  * ubifs_lpt_lookup - lookup LEB properties in the LPT.
1439  * @c: UBIFS file-system description object
1440  * @lnum: LEB number to lookup
1441  *
1442  * This function returns a pointer to the LEB properties on success or a
1443  * negative error code on failure.
1444  */
1445 struct ubifs_lprops *ubifs_lpt_lookup(struct ubifs_info *c, int lnum)
1446 {
1447 	int err, i, h, iip, shft;
1448 	struct ubifs_nnode *nnode;
1449 	struct ubifs_pnode *pnode;
1450 
1451 	if (!c->nroot) {
1452 		err = ubifs_read_nnode(c, NULL, 0);
1453 		if (err)
1454 			return ERR_PTR(err);
1455 	}
1456 	nnode = c->nroot;
1457 	i = lnum - c->main_first;
1458 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1459 	for (h = 1; h < c->lpt_hght; h++) {
1460 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1461 		shft -= UBIFS_LPT_FANOUT_SHIFT;
1462 		nnode = ubifs_get_nnode(c, nnode, iip);
1463 		if (IS_ERR(nnode))
1464 			return ERR_CAST(nnode);
1465 	}
1466 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1467 	pnode = ubifs_get_pnode(c, nnode, iip);
1468 	if (IS_ERR(pnode))
1469 		return ERR_CAST(pnode);
1470 	iip = (i & (UBIFS_LPT_FANOUT - 1));
1471 	dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
1472 	       pnode->lprops[iip].free, pnode->lprops[iip].dirty,
1473 	       pnode->lprops[iip].flags);
1474 	return &pnode->lprops[iip];
1475 }
1476 
1477 /**
1478  * dirty_cow_nnode - ensure a nnode is not being committed.
1479  * @c: UBIFS file-system description object
1480  * @nnode: nnode to check
1481  *
1482  * Returns dirtied nnode on success or negative error code on failure.
1483  */
1484 static struct ubifs_nnode *dirty_cow_nnode(struct ubifs_info *c,
1485 					   struct ubifs_nnode *nnode)
1486 {
1487 	struct ubifs_nnode *n;
1488 	int i;
1489 
1490 	if (!test_bit(COW_CNODE, &nnode->flags)) {
1491 		/* nnode is not being committed */
1492 		if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
1493 			c->dirty_nn_cnt += 1;
1494 			ubifs_add_nnode_dirt(c, nnode);
1495 		}
1496 		return nnode;
1497 	}
1498 
1499 	/* nnode is being committed, so copy it */
1500 	n = kmalloc(sizeof(struct ubifs_nnode), GFP_NOFS);
1501 	if (unlikely(!n))
1502 		return ERR_PTR(-ENOMEM);
1503 
1504 	memcpy(n, nnode, sizeof(struct ubifs_nnode));
1505 	n->cnext = NULL;
1506 	__set_bit(DIRTY_CNODE, &n->flags);
1507 	__clear_bit(COW_CNODE, &n->flags);
1508 
1509 	/* The children now have new parent */
1510 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1511 		struct ubifs_nbranch *branch = &n->nbranch[i];
1512 
1513 		if (branch->cnode)
1514 			branch->cnode->parent = n;
1515 	}
1516 
1517 	ubifs_assert(!test_bit(OBSOLETE_CNODE, &nnode->flags));
1518 	__set_bit(OBSOLETE_CNODE, &nnode->flags);
1519 
1520 	c->dirty_nn_cnt += 1;
1521 	ubifs_add_nnode_dirt(c, nnode);
1522 	if (nnode->parent)
1523 		nnode->parent->nbranch[n->iip].nnode = n;
1524 	else
1525 		c->nroot = n;
1526 	return n;
1527 }
1528 
1529 /**
1530  * dirty_cow_pnode - ensure a pnode is not being committed.
1531  * @c: UBIFS file-system description object
1532  * @pnode: pnode to check
1533  *
1534  * Returns dirtied pnode on success or negative error code on failure.
1535  */
1536 static struct ubifs_pnode *dirty_cow_pnode(struct ubifs_info *c,
1537 					   struct ubifs_pnode *pnode)
1538 {
1539 	struct ubifs_pnode *p;
1540 
1541 	if (!test_bit(COW_CNODE, &pnode->flags)) {
1542 		/* pnode is not being committed */
1543 		if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
1544 			c->dirty_pn_cnt += 1;
1545 			add_pnode_dirt(c, pnode);
1546 		}
1547 		return pnode;
1548 	}
1549 
1550 	/* pnode is being committed, so copy it */
1551 	p = kmalloc(sizeof(struct ubifs_pnode), GFP_NOFS);
1552 	if (unlikely(!p))
1553 		return ERR_PTR(-ENOMEM);
1554 
1555 	memcpy(p, pnode, sizeof(struct ubifs_pnode));
1556 	p->cnext = NULL;
1557 	__set_bit(DIRTY_CNODE, &p->flags);
1558 	__clear_bit(COW_CNODE, &p->flags);
1559 	replace_cats(c, pnode, p);
1560 
1561 	ubifs_assert(!test_bit(OBSOLETE_CNODE, &pnode->flags));
1562 	__set_bit(OBSOLETE_CNODE, &pnode->flags);
1563 
1564 	c->dirty_pn_cnt += 1;
1565 	add_pnode_dirt(c, pnode);
1566 	pnode->parent->nbranch[p->iip].pnode = p;
1567 	return p;
1568 }
1569 
1570 /**
1571  * ubifs_lpt_lookup_dirty - lookup LEB properties in the LPT.
1572  * @c: UBIFS file-system description object
1573  * @lnum: LEB number to lookup
1574  *
1575  * This function returns a pointer to the LEB properties on success or a
1576  * negative error code on failure.
1577  */
1578 struct ubifs_lprops *ubifs_lpt_lookup_dirty(struct ubifs_info *c, int lnum)
1579 {
1580 	int err, i, h, iip, shft;
1581 	struct ubifs_nnode *nnode;
1582 	struct ubifs_pnode *pnode;
1583 
1584 	if (!c->nroot) {
1585 		err = ubifs_read_nnode(c, NULL, 0);
1586 		if (err)
1587 			return ERR_PTR(err);
1588 	}
1589 	nnode = c->nroot;
1590 	nnode = dirty_cow_nnode(c, nnode);
1591 	if (IS_ERR(nnode))
1592 		return ERR_CAST(nnode);
1593 	i = lnum - c->main_first;
1594 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1595 	for (h = 1; h < c->lpt_hght; h++) {
1596 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1597 		shft -= UBIFS_LPT_FANOUT_SHIFT;
1598 		nnode = ubifs_get_nnode(c, nnode, iip);
1599 		if (IS_ERR(nnode))
1600 			return ERR_CAST(nnode);
1601 		nnode = dirty_cow_nnode(c, nnode);
1602 		if (IS_ERR(nnode))
1603 			return ERR_CAST(nnode);
1604 	}
1605 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1606 	pnode = ubifs_get_pnode(c, nnode, iip);
1607 	if (IS_ERR(pnode))
1608 		return ERR_CAST(pnode);
1609 	pnode = dirty_cow_pnode(c, pnode);
1610 	if (IS_ERR(pnode))
1611 		return ERR_CAST(pnode);
1612 	iip = (i & (UBIFS_LPT_FANOUT - 1));
1613 	dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
1614 	       pnode->lprops[iip].free, pnode->lprops[iip].dirty,
1615 	       pnode->lprops[iip].flags);
1616 	ubifs_assert(test_bit(DIRTY_CNODE, &pnode->flags));
1617 	return &pnode->lprops[iip];
1618 }
1619 
1620 /**
1621  * lpt_init_rd - initialize the LPT for reading.
1622  * @c: UBIFS file-system description object
1623  *
1624  * This function returns %0 on success and a negative error code on failure.
1625  */
1626 static int lpt_init_rd(struct ubifs_info *c)
1627 {
1628 	int err, i;
1629 
1630 	c->ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1631 	if (!c->ltab)
1632 		return -ENOMEM;
1633 
1634 	i = max_t(int, c->nnode_sz, c->pnode_sz);
1635 	c->lpt_nod_buf = kmalloc(i, GFP_KERNEL);
1636 	if (!c->lpt_nod_buf)
1637 		return -ENOMEM;
1638 
1639 	for (i = 0; i < LPROPS_HEAP_CNT; i++) {
1640 		c->lpt_heap[i].arr = kmalloc(sizeof(void *) * LPT_HEAP_SZ,
1641 					     GFP_KERNEL);
1642 		if (!c->lpt_heap[i].arr)
1643 			return -ENOMEM;
1644 		c->lpt_heap[i].cnt = 0;
1645 		c->lpt_heap[i].max_cnt = LPT_HEAP_SZ;
1646 	}
1647 
1648 	c->dirty_idx.arr = kmalloc(sizeof(void *) * LPT_HEAP_SZ, GFP_KERNEL);
1649 	if (!c->dirty_idx.arr)
1650 		return -ENOMEM;
1651 	c->dirty_idx.cnt = 0;
1652 	c->dirty_idx.max_cnt = LPT_HEAP_SZ;
1653 
1654 	err = read_ltab(c);
1655 	if (err)
1656 		return err;
1657 
1658 	dbg_lp("space_bits %d", c->space_bits);
1659 	dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
1660 	dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
1661 	dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
1662 	dbg_lp("pcnt_bits %d", c->pcnt_bits);
1663 	dbg_lp("lnum_bits %d", c->lnum_bits);
1664 	dbg_lp("pnode_sz %d", c->pnode_sz);
1665 	dbg_lp("nnode_sz %d", c->nnode_sz);
1666 	dbg_lp("ltab_sz %d", c->ltab_sz);
1667 	dbg_lp("lsave_sz %d", c->lsave_sz);
1668 	dbg_lp("lsave_cnt %d", c->lsave_cnt);
1669 	dbg_lp("lpt_hght %d", c->lpt_hght);
1670 	dbg_lp("big_lpt %d", c->big_lpt);
1671 	dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
1672 	dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
1673 	dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
1674 	if (c->big_lpt)
1675 		dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
1676 
1677 	return 0;
1678 }
1679 
1680 #ifndef __UBOOT__
1681 /**
1682  * lpt_init_wr - initialize the LPT for writing.
1683  * @c: UBIFS file-system description object
1684  *
1685  * 'lpt_init_rd()' must have been called already.
1686  *
1687  * This function returns %0 on success and a negative error code on failure.
1688  */
1689 static int lpt_init_wr(struct ubifs_info *c)
1690 {
1691 	int err, i;
1692 
1693 	c->ltab_cmt = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1694 	if (!c->ltab_cmt)
1695 		return -ENOMEM;
1696 
1697 	c->lpt_buf = vmalloc(c->leb_size);
1698 	if (!c->lpt_buf)
1699 		return -ENOMEM;
1700 
1701 	if (c->big_lpt) {
1702 		c->lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_NOFS);
1703 		if (!c->lsave)
1704 			return -ENOMEM;
1705 		err = read_lsave(c);
1706 		if (err)
1707 			return err;
1708 	}
1709 
1710 	for (i = 0; i < c->lpt_lebs; i++)
1711 		if (c->ltab[i].free == c->leb_size) {
1712 			err = ubifs_leb_unmap(c, i + c->lpt_first);
1713 			if (err)
1714 				return err;
1715 		}
1716 
1717 	return 0;
1718 }
1719 #endif
1720 
1721 /**
1722  * ubifs_lpt_init - initialize the LPT.
1723  * @c: UBIFS file-system description object
1724  * @rd: whether to initialize lpt for reading
1725  * @wr: whether to initialize lpt for writing
1726  *
1727  * For mounting 'rw', @rd and @wr are both true. For mounting 'ro', @rd is true
1728  * and @wr is false. For mounting from 'ro' to 'rw', @rd is false and @wr is
1729  * true.
1730  *
1731  * This function returns %0 on success and a negative error code on failure.
1732  */
1733 int ubifs_lpt_init(struct ubifs_info *c, int rd, int wr)
1734 {
1735 	int err;
1736 
1737 	if (rd) {
1738 		err = lpt_init_rd(c);
1739 		if (err)
1740 			goto out_err;
1741 	}
1742 
1743 #ifndef __UBOOT__
1744 	if (wr) {
1745 		err = lpt_init_wr(c);
1746 		if (err)
1747 			goto out_err;
1748 	}
1749 #endif
1750 
1751 	return 0;
1752 
1753 out_err:
1754 #ifndef __UBOOT__
1755 	if (wr)
1756 		ubifs_lpt_free(c, 1);
1757 #endif
1758 	if (rd)
1759 		ubifs_lpt_free(c, 0);
1760 	return err;
1761 }
1762 
1763 /**
1764  * struct lpt_scan_node - somewhere to put nodes while we scan LPT.
1765  * @nnode: where to keep a nnode
1766  * @pnode: where to keep a pnode
1767  * @cnode: where to keep a cnode
1768  * @in_tree: is the node in the tree in memory
1769  * @ptr.nnode: pointer to the nnode (if it is an nnode) which may be here or in
1770  * the tree
1771  * @ptr.pnode: ditto for pnode
1772  * @ptr.cnode: ditto for cnode
1773  */
1774 struct lpt_scan_node {
1775 	union {
1776 		struct ubifs_nnode nnode;
1777 		struct ubifs_pnode pnode;
1778 		struct ubifs_cnode cnode;
1779 	};
1780 	int in_tree;
1781 	union {
1782 		struct ubifs_nnode *nnode;
1783 		struct ubifs_pnode *pnode;
1784 		struct ubifs_cnode *cnode;
1785 	} ptr;
1786 };
1787 
1788 /**
1789  * scan_get_nnode - for the scan, get a nnode from either the tree or flash.
1790  * @c: the UBIFS file-system description object
1791  * @path: where to put the nnode
1792  * @parent: parent of the nnode
1793  * @iip: index in parent of the nnode
1794  *
1795  * This function returns a pointer to the nnode on success or a negative error
1796  * code on failure.
1797  */
1798 static struct ubifs_nnode *scan_get_nnode(struct ubifs_info *c,
1799 					  struct lpt_scan_node *path,
1800 					  struct ubifs_nnode *parent, int iip)
1801 {
1802 	struct ubifs_nbranch *branch;
1803 	struct ubifs_nnode *nnode;
1804 	void *buf = c->lpt_nod_buf;
1805 	int err;
1806 
1807 	branch = &parent->nbranch[iip];
1808 	nnode = branch->nnode;
1809 	if (nnode) {
1810 		path->in_tree = 1;
1811 		path->ptr.nnode = nnode;
1812 		return nnode;
1813 	}
1814 	nnode = &path->nnode;
1815 	path->in_tree = 0;
1816 	path->ptr.nnode = nnode;
1817 	memset(nnode, 0, sizeof(struct ubifs_nnode));
1818 	if (branch->lnum == 0) {
1819 		/*
1820 		 * This nnode was not written which just means that the LEB
1821 		 * properties in the subtree below it describe empty LEBs. We
1822 		 * make the nnode as though we had read it, which in fact means
1823 		 * doing almost nothing.
1824 		 */
1825 		if (c->big_lpt)
1826 			nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1827 	} else {
1828 		err = ubifs_leb_read(c, branch->lnum, buf, branch->offs,
1829 				     c->nnode_sz, 1);
1830 		if (err)
1831 			return ERR_PTR(err);
1832 		err = ubifs_unpack_nnode(c, buf, nnode);
1833 		if (err)
1834 			return ERR_PTR(err);
1835 	}
1836 	err = validate_nnode(c, nnode, parent, iip);
1837 	if (err)
1838 		return ERR_PTR(err);
1839 	if (!c->big_lpt)
1840 		nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1841 	nnode->level = parent->level - 1;
1842 	nnode->parent = parent;
1843 	nnode->iip = iip;
1844 	return nnode;
1845 }
1846 
1847 /**
1848  * scan_get_pnode - for the scan, get a pnode from either the tree or flash.
1849  * @c: the UBIFS file-system description object
1850  * @path: where to put the pnode
1851  * @parent: parent of the pnode
1852  * @iip: index in parent of the pnode
1853  *
1854  * This function returns a pointer to the pnode on success or a negative error
1855  * code on failure.
1856  */
1857 static struct ubifs_pnode *scan_get_pnode(struct ubifs_info *c,
1858 					  struct lpt_scan_node *path,
1859 					  struct ubifs_nnode *parent, int iip)
1860 {
1861 	struct ubifs_nbranch *branch;
1862 	struct ubifs_pnode *pnode;
1863 	void *buf = c->lpt_nod_buf;
1864 	int err;
1865 
1866 	branch = &parent->nbranch[iip];
1867 	pnode = branch->pnode;
1868 	if (pnode) {
1869 		path->in_tree = 1;
1870 		path->ptr.pnode = pnode;
1871 		return pnode;
1872 	}
1873 	pnode = &path->pnode;
1874 	path->in_tree = 0;
1875 	path->ptr.pnode = pnode;
1876 	memset(pnode, 0, sizeof(struct ubifs_pnode));
1877 	if (branch->lnum == 0) {
1878 		/*
1879 		 * This pnode was not written which just means that the LEB
1880 		 * properties in it describe empty LEBs. We make the pnode as
1881 		 * though we had read it.
1882 		 */
1883 		int i;
1884 
1885 		if (c->big_lpt)
1886 			pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1887 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1888 			struct ubifs_lprops * const lprops = &pnode->lprops[i];
1889 
1890 			lprops->free = c->leb_size;
1891 			lprops->flags = ubifs_categorize_lprops(c, lprops);
1892 		}
1893 	} else {
1894 		ubifs_assert(branch->lnum >= c->lpt_first &&
1895 			     branch->lnum <= c->lpt_last);
1896 		ubifs_assert(branch->offs >= 0 && branch->offs < c->leb_size);
1897 		err = ubifs_leb_read(c, branch->lnum, buf, branch->offs,
1898 				     c->pnode_sz, 1);
1899 		if (err)
1900 			return ERR_PTR(err);
1901 		err = unpack_pnode(c, buf, pnode);
1902 		if (err)
1903 			return ERR_PTR(err);
1904 	}
1905 	err = validate_pnode(c, pnode, parent, iip);
1906 	if (err)
1907 		return ERR_PTR(err);
1908 	if (!c->big_lpt)
1909 		pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1910 	pnode->parent = parent;
1911 	pnode->iip = iip;
1912 	set_pnode_lnum(c, pnode);
1913 	return pnode;
1914 }
1915 
1916 /**
1917  * ubifs_lpt_scan_nolock - scan the LPT.
1918  * @c: the UBIFS file-system description object
1919  * @start_lnum: LEB number from which to start scanning
1920  * @end_lnum: LEB number at which to stop scanning
1921  * @scan_cb: callback function called for each lprops
1922  * @data: data to be passed to the callback function
1923  *
1924  * This function returns %0 on success and a negative error code on failure.
1925  */
1926 int ubifs_lpt_scan_nolock(struct ubifs_info *c, int start_lnum, int end_lnum,
1927 			  ubifs_lpt_scan_callback scan_cb, void *data)
1928 {
1929 	int err = 0, i, h, iip, shft;
1930 	struct ubifs_nnode *nnode;
1931 	struct ubifs_pnode *pnode;
1932 	struct lpt_scan_node *path;
1933 
1934 	if (start_lnum == -1) {
1935 		start_lnum = end_lnum + 1;
1936 		if (start_lnum >= c->leb_cnt)
1937 			start_lnum = c->main_first;
1938 	}
1939 
1940 	ubifs_assert(start_lnum >= c->main_first && start_lnum < c->leb_cnt);
1941 	ubifs_assert(end_lnum >= c->main_first && end_lnum < c->leb_cnt);
1942 
1943 	if (!c->nroot) {
1944 		err = ubifs_read_nnode(c, NULL, 0);
1945 		if (err)
1946 			return err;
1947 	}
1948 
1949 	path = kmalloc(sizeof(struct lpt_scan_node) * (c->lpt_hght + 1),
1950 		       GFP_NOFS);
1951 	if (!path)
1952 		return -ENOMEM;
1953 
1954 	path[0].ptr.nnode = c->nroot;
1955 	path[0].in_tree = 1;
1956 again:
1957 	/* Descend to the pnode containing start_lnum */
1958 	nnode = c->nroot;
1959 	i = start_lnum - c->main_first;
1960 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1961 	for (h = 1; h < c->lpt_hght; h++) {
1962 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1963 		shft -= UBIFS_LPT_FANOUT_SHIFT;
1964 		nnode = scan_get_nnode(c, path + h, nnode, iip);
1965 		if (IS_ERR(nnode)) {
1966 			err = PTR_ERR(nnode);
1967 			goto out;
1968 		}
1969 	}
1970 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1971 	pnode = scan_get_pnode(c, path + h, nnode, iip);
1972 	if (IS_ERR(pnode)) {
1973 		err = PTR_ERR(pnode);
1974 		goto out;
1975 	}
1976 	iip = (i & (UBIFS_LPT_FANOUT - 1));
1977 
1978 	/* Loop for each lprops */
1979 	while (1) {
1980 		struct ubifs_lprops *lprops = &pnode->lprops[iip];
1981 		int ret, lnum = lprops->lnum;
1982 
1983 		ret = scan_cb(c, lprops, path[h].in_tree, data);
1984 		if (ret < 0) {
1985 			err = ret;
1986 			goto out;
1987 		}
1988 		if (ret & LPT_SCAN_ADD) {
1989 			/* Add all the nodes in path to the tree in memory */
1990 			for (h = 1; h < c->lpt_hght; h++) {
1991 				const size_t sz = sizeof(struct ubifs_nnode);
1992 				struct ubifs_nnode *parent;
1993 
1994 				if (path[h].in_tree)
1995 					continue;
1996 				nnode = kmemdup(&path[h].nnode, sz, GFP_NOFS);
1997 				if (!nnode) {
1998 					err = -ENOMEM;
1999 					goto out;
2000 				}
2001 				parent = nnode->parent;
2002 				parent->nbranch[nnode->iip].nnode = nnode;
2003 				path[h].ptr.nnode = nnode;
2004 				path[h].in_tree = 1;
2005 				path[h + 1].cnode.parent = nnode;
2006 			}
2007 			if (path[h].in_tree)
2008 				ubifs_ensure_cat(c, lprops);
2009 			else {
2010 				const size_t sz = sizeof(struct ubifs_pnode);
2011 				struct ubifs_nnode *parent;
2012 
2013 				pnode = kmemdup(&path[h].pnode, sz, GFP_NOFS);
2014 				if (!pnode) {
2015 					err = -ENOMEM;
2016 					goto out;
2017 				}
2018 				parent = pnode->parent;
2019 				parent->nbranch[pnode->iip].pnode = pnode;
2020 				path[h].ptr.pnode = pnode;
2021 				path[h].in_tree = 1;
2022 				update_cats(c, pnode);
2023 				c->pnodes_have += 1;
2024 			}
2025 			err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)
2026 						  c->nroot, 0, 0);
2027 			if (err)
2028 				goto out;
2029 			err = dbg_check_cats(c);
2030 			if (err)
2031 				goto out;
2032 		}
2033 		if (ret & LPT_SCAN_STOP) {
2034 			err = 0;
2035 			break;
2036 		}
2037 		/* Get the next lprops */
2038 		if (lnum == end_lnum) {
2039 			/*
2040 			 * We got to the end without finding what we were
2041 			 * looking for
2042 			 */
2043 			err = -ENOSPC;
2044 			goto out;
2045 		}
2046 		if (lnum + 1 >= c->leb_cnt) {
2047 			/* Wrap-around to the beginning */
2048 			start_lnum = c->main_first;
2049 			goto again;
2050 		}
2051 		if (iip + 1 < UBIFS_LPT_FANOUT) {
2052 			/* Next lprops is in the same pnode */
2053 			iip += 1;
2054 			continue;
2055 		}
2056 		/* We need to get the next pnode. Go up until we can go right */
2057 		iip = pnode->iip;
2058 		while (1) {
2059 			h -= 1;
2060 			ubifs_assert(h >= 0);
2061 			nnode = path[h].ptr.nnode;
2062 			if (iip + 1 < UBIFS_LPT_FANOUT)
2063 				break;
2064 			iip = nnode->iip;
2065 		}
2066 		/* Go right */
2067 		iip += 1;
2068 		/* Descend to the pnode */
2069 		h += 1;
2070 		for (; h < c->lpt_hght; h++) {
2071 			nnode = scan_get_nnode(c, path + h, nnode, iip);
2072 			if (IS_ERR(nnode)) {
2073 				err = PTR_ERR(nnode);
2074 				goto out;
2075 			}
2076 			iip = 0;
2077 		}
2078 		pnode = scan_get_pnode(c, path + h, nnode, iip);
2079 		if (IS_ERR(pnode)) {
2080 			err = PTR_ERR(pnode);
2081 			goto out;
2082 		}
2083 		iip = 0;
2084 	}
2085 out:
2086 	kfree(path);
2087 	return err;
2088 }
2089 
2090 /**
2091  * dbg_chk_pnode - check a pnode.
2092  * @c: the UBIFS file-system description object
2093  * @pnode: pnode to check
2094  * @col: pnode column
2095  *
2096  * This function returns %0 on success and a negative error code on failure.
2097  */
2098 static int dbg_chk_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
2099 			 int col)
2100 {
2101 	int i;
2102 
2103 	if (pnode->num != col) {
2104 		ubifs_err(c, "pnode num %d expected %d parent num %d iip %d",
2105 			  pnode->num, col, pnode->parent->num, pnode->iip);
2106 		return -EINVAL;
2107 	}
2108 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
2109 		struct ubifs_lprops *lp, *lprops = &pnode->lprops[i];
2110 		int lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + i +
2111 			   c->main_first;
2112 		int found, cat = lprops->flags & LPROPS_CAT_MASK;
2113 		struct ubifs_lpt_heap *heap;
2114 		struct list_head *list = NULL;
2115 
2116 		if (lnum >= c->leb_cnt)
2117 			continue;
2118 		if (lprops->lnum != lnum) {
2119 			ubifs_err(c, "bad LEB number %d expected %d",
2120 				  lprops->lnum, lnum);
2121 			return -EINVAL;
2122 		}
2123 		if (lprops->flags & LPROPS_TAKEN) {
2124 			if (cat != LPROPS_UNCAT) {
2125 				ubifs_err(c, "LEB %d taken but not uncat %d",
2126 					  lprops->lnum, cat);
2127 				return -EINVAL;
2128 			}
2129 			continue;
2130 		}
2131 		if (lprops->flags & LPROPS_INDEX) {
2132 			switch (cat) {
2133 			case LPROPS_UNCAT:
2134 			case LPROPS_DIRTY_IDX:
2135 			case LPROPS_FRDI_IDX:
2136 				break;
2137 			default:
2138 				ubifs_err(c, "LEB %d index but cat %d",
2139 					  lprops->lnum, cat);
2140 				return -EINVAL;
2141 			}
2142 		} else {
2143 			switch (cat) {
2144 			case LPROPS_UNCAT:
2145 			case LPROPS_DIRTY:
2146 			case LPROPS_FREE:
2147 			case LPROPS_EMPTY:
2148 			case LPROPS_FREEABLE:
2149 				break;
2150 			default:
2151 				ubifs_err(c, "LEB %d not index but cat %d",
2152 					  lprops->lnum, cat);
2153 				return -EINVAL;
2154 			}
2155 		}
2156 		switch (cat) {
2157 		case LPROPS_UNCAT:
2158 			list = &c->uncat_list;
2159 			break;
2160 		case LPROPS_EMPTY:
2161 			list = &c->empty_list;
2162 			break;
2163 		case LPROPS_FREEABLE:
2164 			list = &c->freeable_list;
2165 			break;
2166 		case LPROPS_FRDI_IDX:
2167 			list = &c->frdi_idx_list;
2168 			break;
2169 		}
2170 		found = 0;
2171 		switch (cat) {
2172 		case LPROPS_DIRTY:
2173 		case LPROPS_DIRTY_IDX:
2174 		case LPROPS_FREE:
2175 			heap = &c->lpt_heap[cat - 1];
2176 			if (lprops->hpos < heap->cnt &&
2177 			    heap->arr[lprops->hpos] == lprops)
2178 				found = 1;
2179 			break;
2180 		case LPROPS_UNCAT:
2181 		case LPROPS_EMPTY:
2182 		case LPROPS_FREEABLE:
2183 		case LPROPS_FRDI_IDX:
2184 			list_for_each_entry(lp, list, list)
2185 				if (lprops == lp) {
2186 					found = 1;
2187 					break;
2188 				}
2189 			break;
2190 		}
2191 		if (!found) {
2192 			ubifs_err(c, "LEB %d cat %d not found in cat heap/list",
2193 				  lprops->lnum, cat);
2194 			return -EINVAL;
2195 		}
2196 		switch (cat) {
2197 		case LPROPS_EMPTY:
2198 			if (lprops->free != c->leb_size) {
2199 				ubifs_err(c, "LEB %d cat %d free %d dirty %d",
2200 					  lprops->lnum, cat, lprops->free,
2201 					  lprops->dirty);
2202 				return -EINVAL;
2203 			}
2204 			break;
2205 		case LPROPS_FREEABLE:
2206 		case LPROPS_FRDI_IDX:
2207 			if (lprops->free + lprops->dirty != c->leb_size) {
2208 				ubifs_err(c, "LEB %d cat %d free %d dirty %d",
2209 					  lprops->lnum, cat, lprops->free,
2210 					  lprops->dirty);
2211 				return -EINVAL;
2212 			}
2213 			break;
2214 		}
2215 	}
2216 	return 0;
2217 }
2218 
2219 /**
2220  * dbg_check_lpt_nodes - check nnodes and pnodes.
2221  * @c: the UBIFS file-system description object
2222  * @cnode: next cnode (nnode or pnode) to check
2223  * @row: row of cnode (root is zero)
2224  * @col: column of cnode (leftmost is zero)
2225  *
2226  * This function returns %0 on success and a negative error code on failure.
2227  */
2228 int dbg_check_lpt_nodes(struct ubifs_info *c, struct ubifs_cnode *cnode,
2229 			int row, int col)
2230 {
2231 	struct ubifs_nnode *nnode, *nn;
2232 	struct ubifs_cnode *cn;
2233 	int num, iip = 0, err;
2234 
2235 	if (!dbg_is_chk_lprops(c))
2236 		return 0;
2237 
2238 	while (cnode) {
2239 		ubifs_assert(row >= 0);
2240 		nnode = cnode->parent;
2241 		if (cnode->level) {
2242 			/* cnode is a nnode */
2243 			num = calc_nnode_num(row, col);
2244 			if (cnode->num != num) {
2245 				ubifs_err(c, "nnode num %d expected %d parent num %d iip %d",
2246 					  cnode->num, num,
2247 					  (nnode ? nnode->num : 0), cnode->iip);
2248 				return -EINVAL;
2249 			}
2250 			nn = (struct ubifs_nnode *)cnode;
2251 			while (iip < UBIFS_LPT_FANOUT) {
2252 				cn = nn->nbranch[iip].cnode;
2253 				if (cn) {
2254 					/* Go down */
2255 					row += 1;
2256 					col <<= UBIFS_LPT_FANOUT_SHIFT;
2257 					col += iip;
2258 					iip = 0;
2259 					cnode = cn;
2260 					break;
2261 				}
2262 				/* Go right */
2263 				iip += 1;
2264 			}
2265 			if (iip < UBIFS_LPT_FANOUT)
2266 				continue;
2267 		} else {
2268 			struct ubifs_pnode *pnode;
2269 
2270 			/* cnode is a pnode */
2271 			pnode = (struct ubifs_pnode *)cnode;
2272 			err = dbg_chk_pnode(c, pnode, col);
2273 			if (err)
2274 				return err;
2275 		}
2276 		/* Go up and to the right */
2277 		row -= 1;
2278 		col >>= UBIFS_LPT_FANOUT_SHIFT;
2279 		iip = cnode->iip + 1;
2280 		cnode = (struct ubifs_cnode *)nnode;
2281 	}
2282 	return 0;
2283 }
2284