xref: /openbmc/u-boot/fs/ubifs/lpt.c (revision c6af2e7d)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements the LEB properties tree (LPT) area. The LPT area
25  * contains the LEB properties tree, a table of LPT area eraseblocks (ltab), and
26  * (for the "big" model) a table of saved LEB numbers (lsave). The LPT area sits
27  * between the log and the orphan area.
28  *
29  * The LPT area is like a miniature self-contained file system. It is required
30  * that it never runs out of space, is fast to access and update, and scales
31  * logarithmically. The LEB properties tree is implemented as a wandering tree
32  * much like the TNC, and the LPT area has its own garbage collection.
33  *
34  * The LPT has two slightly different forms called the "small model" and the
35  * "big model". The small model is used when the entire LEB properties table
36  * can be written into a single eraseblock. In that case, garbage collection
37  * consists of just writing the whole table, which therefore makes all other
38  * eraseblocks reusable. In the case of the big model, dirty eraseblocks are
39  * selected for garbage collection, which consists of marking the clean nodes in
40  * that LEB as dirty, and then only the dirty nodes are written out. Also, in
41  * the case of the big model, a table of LEB numbers is saved so that the entire
42  * LPT does not to be scanned looking for empty eraseblocks when UBIFS is first
43  * mounted.
44  */
45 
46 #include "ubifs.h"
47 #include "crc16.h"
48 #include <linux/math64.h>
49 
50 /**
51  * do_calc_lpt_geom - calculate sizes for the LPT area.
52  * @c: the UBIFS file-system description object
53  *
54  * Calculate the sizes of LPT bit fields, nodes, and tree, based on the
55  * properties of the flash and whether LPT is "big" (c->big_lpt).
56  */
57 static void do_calc_lpt_geom(struct ubifs_info *c)
58 {
59 	int i, n, bits, per_leb_wastage, max_pnode_cnt;
60 	long long sz, tot_wastage;
61 
62 	n = c->main_lebs + c->max_leb_cnt - c->leb_cnt;
63 	max_pnode_cnt = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
64 
65 	c->lpt_hght = 1;
66 	n = UBIFS_LPT_FANOUT;
67 	while (n < max_pnode_cnt) {
68 		c->lpt_hght += 1;
69 		n <<= UBIFS_LPT_FANOUT_SHIFT;
70 	}
71 
72 	c->pnode_cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
73 
74 	n = DIV_ROUND_UP(c->pnode_cnt, UBIFS_LPT_FANOUT);
75 	c->nnode_cnt = n;
76 	for (i = 1; i < c->lpt_hght; i++) {
77 		n = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
78 		c->nnode_cnt += n;
79 	}
80 
81 	c->space_bits = fls(c->leb_size) - 3;
82 	c->lpt_lnum_bits = fls(c->lpt_lebs);
83 	c->lpt_offs_bits = fls(c->leb_size - 1);
84 	c->lpt_spc_bits = fls(c->leb_size);
85 
86 	n = DIV_ROUND_UP(c->max_leb_cnt, UBIFS_LPT_FANOUT);
87 	c->pcnt_bits = fls(n - 1);
88 
89 	c->lnum_bits = fls(c->max_leb_cnt - 1);
90 
91 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
92 	       (c->big_lpt ? c->pcnt_bits : 0) +
93 	       (c->space_bits * 2 + 1) * UBIFS_LPT_FANOUT;
94 	c->pnode_sz = (bits + 7) / 8;
95 
96 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
97 	       (c->big_lpt ? c->pcnt_bits : 0) +
98 	       (c->lpt_lnum_bits + c->lpt_offs_bits) * UBIFS_LPT_FANOUT;
99 	c->nnode_sz = (bits + 7) / 8;
100 
101 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
102 	       c->lpt_lebs * c->lpt_spc_bits * 2;
103 	c->ltab_sz = (bits + 7) / 8;
104 
105 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
106 	       c->lnum_bits * c->lsave_cnt;
107 	c->lsave_sz = (bits + 7) / 8;
108 
109 	/* Calculate the minimum LPT size */
110 	c->lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
111 	c->lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
112 	c->lpt_sz += c->ltab_sz;
113 	if (c->big_lpt)
114 		c->lpt_sz += c->lsave_sz;
115 
116 	/* Add wastage */
117 	sz = c->lpt_sz;
118 	per_leb_wastage = max_t(int, c->pnode_sz, c->nnode_sz);
119 	sz += per_leb_wastage;
120 	tot_wastage = per_leb_wastage;
121 	while (sz > c->leb_size) {
122 		sz += per_leb_wastage;
123 		sz -= c->leb_size;
124 		tot_wastage += per_leb_wastage;
125 	}
126 	tot_wastage += ALIGN(sz, c->min_io_size) - sz;
127 	c->lpt_sz += tot_wastage;
128 }
129 
130 /**
131  * ubifs_calc_lpt_geom - calculate and check sizes for the LPT area.
132  * @c: the UBIFS file-system description object
133  *
134  * This function returns %0 on success and a negative error code on failure.
135  */
136 int ubifs_calc_lpt_geom(struct ubifs_info *c)
137 {
138 	int lebs_needed;
139 	long long sz;
140 
141 	do_calc_lpt_geom(c);
142 
143 	/* Verify that lpt_lebs is big enough */
144 	sz = c->lpt_sz * 2; /* Must have at least 2 times the size */
145 	lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
146 	if (lebs_needed > c->lpt_lebs) {
147 		ubifs_err("too few LPT LEBs");
148 		return -EINVAL;
149 	}
150 
151 	/* Verify that ltab fits in a single LEB (since ltab is a single node */
152 	if (c->ltab_sz > c->leb_size) {
153 		ubifs_err("LPT ltab too big");
154 		return -EINVAL;
155 	}
156 
157 	c->check_lpt_free = c->big_lpt;
158 	return 0;
159 }
160 
161 /**
162  * ubifs_unpack_bits - unpack bit fields.
163  * @addr: address at which to unpack (passed and next address returned)
164  * @pos: bit position at which to unpack (passed and next position returned)
165  * @nrbits: number of bits of value to unpack (1-32)
166  *
167  * This functions returns the value unpacked.
168  */
169 uint32_t ubifs_unpack_bits(uint8_t **addr, int *pos, int nrbits)
170 {
171 	const int k = 32 - nrbits;
172 	uint8_t *p = *addr;
173 	int b = *pos;
174 	uint32_t uninitialized_var(val);
175 	const int bytes = (nrbits + b + 7) >> 3;
176 
177 	ubifs_assert(nrbits > 0);
178 	ubifs_assert(nrbits <= 32);
179 	ubifs_assert(*pos >= 0);
180 	ubifs_assert(*pos < 8);
181 	if (b) {
182 		switch (bytes) {
183 		case 2:
184 			val = p[1];
185 			break;
186 		case 3:
187 			val = p[1] | ((uint32_t)p[2] << 8);
188 			break;
189 		case 4:
190 			val = p[1] | ((uint32_t)p[2] << 8) |
191 				     ((uint32_t)p[3] << 16);
192 			break;
193 		case 5:
194 			val = p[1] | ((uint32_t)p[2] << 8) |
195 				     ((uint32_t)p[3] << 16) |
196 				     ((uint32_t)p[4] << 24);
197 		}
198 		val <<= (8 - b);
199 		val |= *p >> b;
200 		nrbits += b;
201 	} else {
202 		switch (bytes) {
203 		case 1:
204 			val = p[0];
205 			break;
206 		case 2:
207 			val = p[0] | ((uint32_t)p[1] << 8);
208 			break;
209 		case 3:
210 			val = p[0] | ((uint32_t)p[1] << 8) |
211 				     ((uint32_t)p[2] << 16);
212 			break;
213 		case 4:
214 			val = p[0] | ((uint32_t)p[1] << 8) |
215 				     ((uint32_t)p[2] << 16) |
216 				     ((uint32_t)p[3] << 24);
217 			break;
218 		}
219 	}
220 	val <<= k;
221 	val >>= k;
222 	b = nrbits & 7;
223 	p += nrbits >> 3;
224 	*addr = p;
225 	*pos = b;
226 	ubifs_assert((val >> nrbits) == 0 || nrbits - b == 32);
227 	return val;
228 }
229 
230 /**
231  * ubifs_add_lpt_dirt - add dirty space to LPT LEB properties.
232  * @c: UBIFS file-system description object
233  * @lnum: LEB number to which to add dirty space
234  * @dirty: amount of dirty space to add
235  */
236 void ubifs_add_lpt_dirt(struct ubifs_info *c, int lnum, int dirty)
237 {
238 	if (!dirty || !lnum)
239 		return;
240 	dbg_lp("LEB %d add %d to %d",
241 	       lnum, dirty, c->ltab[lnum - c->lpt_first].dirty);
242 	ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
243 	c->ltab[lnum - c->lpt_first].dirty += dirty;
244 }
245 
246 /**
247  * ubifs_add_nnode_dirt - add dirty space to LPT LEB properties.
248  * @c: UBIFS file-system description object
249  * @nnode: nnode for which to add dirt
250  */
251 void ubifs_add_nnode_dirt(struct ubifs_info *c, struct ubifs_nnode *nnode)
252 {
253 	struct ubifs_nnode *np = nnode->parent;
254 
255 	if (np)
256 		ubifs_add_lpt_dirt(c, np->nbranch[nnode->iip].lnum,
257 				   c->nnode_sz);
258 	else {
259 		ubifs_add_lpt_dirt(c, c->lpt_lnum, c->nnode_sz);
260 		if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
261 			c->lpt_drty_flgs |= LTAB_DIRTY;
262 			ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
263 		}
264 	}
265 }
266 
267 /**
268  * add_pnode_dirt - add dirty space to LPT LEB properties.
269  * @c: UBIFS file-system description object
270  * @pnode: pnode for which to add dirt
271  */
272 static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
273 {
274 	ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
275 			   c->pnode_sz);
276 }
277 
278 /**
279  * calc_nnode_num_from_parent - calculate nnode number.
280  * @c: UBIFS file-system description object
281  * @parent: parent nnode
282  * @iip: index in parent
283  *
284  * The nnode number is a number that uniquely identifies a nnode and can be used
285  * easily to traverse the tree from the root to that nnode.
286  *
287  * This function calculates and returns the nnode number based on the parent's
288  * nnode number and the index in parent.
289  */
290 static int calc_nnode_num_from_parent(const struct ubifs_info *c,
291 				      struct ubifs_nnode *parent, int iip)
292 {
293 	int num, shft;
294 
295 	if (!parent)
296 		return 1;
297 	shft = (c->lpt_hght - parent->level) * UBIFS_LPT_FANOUT_SHIFT;
298 	num = parent->num ^ (1 << shft);
299 	num |= (UBIFS_LPT_FANOUT + iip) << shft;
300 	return num;
301 }
302 
303 /**
304  * calc_pnode_num_from_parent - calculate pnode number.
305  * @c: UBIFS file-system description object
306  * @parent: parent nnode
307  * @iip: index in parent
308  *
309  * The pnode number is a number that uniquely identifies a pnode and can be used
310  * easily to traverse the tree from the root to that pnode.
311  *
312  * This function calculates and returns the pnode number based on the parent's
313  * nnode number and the index in parent.
314  */
315 static int calc_pnode_num_from_parent(const struct ubifs_info *c,
316 				      struct ubifs_nnode *parent, int iip)
317 {
318 	int i, n = c->lpt_hght - 1, pnum = parent->num, num = 0;
319 
320 	for (i = 0; i < n; i++) {
321 		num <<= UBIFS_LPT_FANOUT_SHIFT;
322 		num |= pnum & (UBIFS_LPT_FANOUT - 1);
323 		pnum >>= UBIFS_LPT_FANOUT_SHIFT;
324 	}
325 	num <<= UBIFS_LPT_FANOUT_SHIFT;
326 	num |= iip;
327 	return num;
328 }
329 
330 /**
331  * update_cats - add LEB properties of a pnode to LEB category lists and heaps.
332  * @c: UBIFS file-system description object
333  * @pnode: pnode
334  *
335  * When a pnode is loaded into memory, the LEB properties it contains are added,
336  * by this function, to the LEB category lists and heaps.
337  */
338 static void update_cats(struct ubifs_info *c, struct ubifs_pnode *pnode)
339 {
340 	int i;
341 
342 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
343 		int cat = pnode->lprops[i].flags & LPROPS_CAT_MASK;
344 		int lnum = pnode->lprops[i].lnum;
345 
346 		if (!lnum)
347 			return;
348 		ubifs_add_to_cat(c, &pnode->lprops[i], cat);
349 	}
350 }
351 
352 /**
353  * replace_cats - add LEB properties of a pnode to LEB category lists and heaps.
354  * @c: UBIFS file-system description object
355  * @old_pnode: pnode copied
356  * @new_pnode: pnode copy
357  *
358  * During commit it is sometimes necessary to copy a pnode
359  * (see dirty_cow_pnode).  When that happens, references in
360  * category lists and heaps must be replaced.  This function does that.
361  */
362 static void replace_cats(struct ubifs_info *c, struct ubifs_pnode *old_pnode,
363 			 struct ubifs_pnode *new_pnode)
364 {
365 	int i;
366 
367 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
368 		if (!new_pnode->lprops[i].lnum)
369 			return;
370 		ubifs_replace_cat(c, &old_pnode->lprops[i],
371 				  &new_pnode->lprops[i]);
372 	}
373 }
374 
375 /**
376  * check_lpt_crc - check LPT node crc is correct.
377  * @c: UBIFS file-system description object
378  * @buf: buffer containing node
379  * @len: length of node
380  *
381  * This function returns %0 on success and a negative error code on failure.
382  */
383 static int check_lpt_crc(void *buf, int len)
384 {
385 	int pos = 0;
386 	uint8_t *addr = buf;
387 	uint16_t crc, calc_crc;
388 
389 	crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
390 	calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
391 			 len - UBIFS_LPT_CRC_BYTES);
392 	if (crc != calc_crc) {
393 		ubifs_err("invalid crc in LPT node: crc %hx calc %hx", crc,
394 			  calc_crc);
395 		dbg_dump_stack();
396 		return -EINVAL;
397 	}
398 	return 0;
399 }
400 
401 /**
402  * check_lpt_type - check LPT node type is correct.
403  * @c: UBIFS file-system description object
404  * @addr: address of type bit field is passed and returned updated here
405  * @pos: position of type bit field is passed and returned updated here
406  * @type: expected type
407  *
408  * This function returns %0 on success and a negative error code on failure.
409  */
410 static int check_lpt_type(uint8_t **addr, int *pos, int type)
411 {
412 	int node_type;
413 
414 	node_type = ubifs_unpack_bits(addr, pos, UBIFS_LPT_TYPE_BITS);
415 	if (node_type != type) {
416 		ubifs_err("invalid type (%d) in LPT node type %d", node_type,
417 			  type);
418 		dbg_dump_stack();
419 		return -EINVAL;
420 	}
421 	return 0;
422 }
423 
424 /**
425  * unpack_pnode - unpack a pnode.
426  * @c: UBIFS file-system description object
427  * @buf: buffer containing packed pnode to unpack
428  * @pnode: pnode structure to fill
429  *
430  * This function returns %0 on success and a negative error code on failure.
431  */
432 static int unpack_pnode(const struct ubifs_info *c, void *buf,
433 			struct ubifs_pnode *pnode)
434 {
435 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
436 	int i, pos = 0, err;
437 
438 	err = check_lpt_type(&addr, &pos, UBIFS_LPT_PNODE);
439 	if (err)
440 		return err;
441 	if (c->big_lpt)
442 		pnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
443 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
444 		struct ubifs_lprops * const lprops = &pnode->lprops[i];
445 
446 		lprops->free = ubifs_unpack_bits(&addr, &pos, c->space_bits);
447 		lprops->free <<= 3;
448 		lprops->dirty = ubifs_unpack_bits(&addr, &pos, c->space_bits);
449 		lprops->dirty <<= 3;
450 
451 		if (ubifs_unpack_bits(&addr, &pos, 1))
452 			lprops->flags = LPROPS_INDEX;
453 		else
454 			lprops->flags = 0;
455 		lprops->flags |= ubifs_categorize_lprops(c, lprops);
456 	}
457 	err = check_lpt_crc(buf, c->pnode_sz);
458 	return err;
459 }
460 
461 /**
462  * ubifs_unpack_nnode - unpack a nnode.
463  * @c: UBIFS file-system description object
464  * @buf: buffer containing packed nnode to unpack
465  * @nnode: nnode structure to fill
466  *
467  * This function returns %0 on success and a negative error code on failure.
468  */
469 int ubifs_unpack_nnode(const struct ubifs_info *c, void *buf,
470 		       struct ubifs_nnode *nnode)
471 {
472 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
473 	int i, pos = 0, err;
474 
475 	err = check_lpt_type(&addr, &pos, UBIFS_LPT_NNODE);
476 	if (err)
477 		return err;
478 	if (c->big_lpt)
479 		nnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
480 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
481 		int lnum;
482 
483 		lnum = ubifs_unpack_bits(&addr, &pos, c->lpt_lnum_bits) +
484 		       c->lpt_first;
485 		if (lnum == c->lpt_last + 1)
486 			lnum = 0;
487 		nnode->nbranch[i].lnum = lnum;
488 		nnode->nbranch[i].offs = ubifs_unpack_bits(&addr, &pos,
489 						     c->lpt_offs_bits);
490 	}
491 	err = check_lpt_crc(buf, c->nnode_sz);
492 	return err;
493 }
494 
495 /**
496  * unpack_ltab - unpack the LPT's own lprops table.
497  * @c: UBIFS file-system description object
498  * @buf: buffer from which to unpack
499  *
500  * This function returns %0 on success and a negative error code on failure.
501  */
502 static int unpack_ltab(const struct ubifs_info *c, void *buf)
503 {
504 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
505 	int i, pos = 0, err;
506 
507 	err = check_lpt_type(&addr, &pos, UBIFS_LPT_LTAB);
508 	if (err)
509 		return err;
510 	for (i = 0; i < c->lpt_lebs; i++) {
511 		int free = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits);
512 		int dirty = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits);
513 
514 		if (free < 0 || free > c->leb_size || dirty < 0 ||
515 		    dirty > c->leb_size || free + dirty > c->leb_size)
516 			return -EINVAL;
517 
518 		c->ltab[i].free = free;
519 		c->ltab[i].dirty = dirty;
520 		c->ltab[i].tgc = 0;
521 		c->ltab[i].cmt = 0;
522 	}
523 	err = check_lpt_crc(buf, c->ltab_sz);
524 	return err;
525 }
526 
527 /**
528  * validate_nnode - validate a nnode.
529  * @c: UBIFS file-system description object
530  * @nnode: nnode to validate
531  * @parent: parent nnode (or NULL for the root nnode)
532  * @iip: index in parent
533  *
534  * This function returns %0 on success and a negative error code on failure.
535  */
536 static int validate_nnode(const struct ubifs_info *c, struct ubifs_nnode *nnode,
537 			  struct ubifs_nnode *parent, int iip)
538 {
539 	int i, lvl, max_offs;
540 
541 	if (c->big_lpt) {
542 		int num = calc_nnode_num_from_parent(c, parent, iip);
543 
544 		if (nnode->num != num)
545 			return -EINVAL;
546 	}
547 	lvl = parent ? parent->level - 1 : c->lpt_hght;
548 	if (lvl < 1)
549 		return -EINVAL;
550 	if (lvl == 1)
551 		max_offs = c->leb_size - c->pnode_sz;
552 	else
553 		max_offs = c->leb_size - c->nnode_sz;
554 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
555 		int lnum = nnode->nbranch[i].lnum;
556 		int offs = nnode->nbranch[i].offs;
557 
558 		if (lnum == 0) {
559 			if (offs != 0)
560 				return -EINVAL;
561 			continue;
562 		}
563 		if (lnum < c->lpt_first || lnum > c->lpt_last)
564 			return -EINVAL;
565 		if (offs < 0 || offs > max_offs)
566 			return -EINVAL;
567 	}
568 	return 0;
569 }
570 
571 /**
572  * validate_pnode - validate a pnode.
573  * @c: UBIFS file-system description object
574  * @pnode: pnode to validate
575  * @parent: parent nnode
576  * @iip: index in parent
577  *
578  * This function returns %0 on success and a negative error code on failure.
579  */
580 static int validate_pnode(const struct ubifs_info *c, struct ubifs_pnode *pnode,
581 			  struct ubifs_nnode *parent, int iip)
582 {
583 	int i;
584 
585 	if (c->big_lpt) {
586 		int num = calc_pnode_num_from_parent(c, parent, iip);
587 
588 		if (pnode->num != num)
589 			return -EINVAL;
590 	}
591 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
592 		int free = pnode->lprops[i].free;
593 		int dirty = pnode->lprops[i].dirty;
594 
595 		if (free < 0 || free > c->leb_size || free % c->min_io_size ||
596 		    (free & 7))
597 			return -EINVAL;
598 		if (dirty < 0 || dirty > c->leb_size || (dirty & 7))
599 			return -EINVAL;
600 		if (dirty + free > c->leb_size)
601 			return -EINVAL;
602 	}
603 	return 0;
604 }
605 
606 /**
607  * set_pnode_lnum - set LEB numbers on a pnode.
608  * @c: UBIFS file-system description object
609  * @pnode: pnode to update
610  *
611  * This function calculates the LEB numbers for the LEB properties it contains
612  * based on the pnode number.
613  */
614 static void set_pnode_lnum(const struct ubifs_info *c,
615 			   struct ubifs_pnode *pnode)
616 {
617 	int i, lnum;
618 
619 	lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + c->main_first;
620 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
621 		if (lnum >= c->leb_cnt)
622 			return;
623 		pnode->lprops[i].lnum = lnum++;
624 	}
625 }
626 
627 /**
628  * ubifs_read_nnode - read a nnode from flash and link it to the tree in memory.
629  * @c: UBIFS file-system description object
630  * @parent: parent nnode (or NULL for the root)
631  * @iip: index in parent
632  *
633  * This function returns %0 on success and a negative error code on failure.
634  */
635 int ubifs_read_nnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
636 {
637 	struct ubifs_nbranch *branch = NULL;
638 	struct ubifs_nnode *nnode = NULL;
639 	void *buf = c->lpt_nod_buf;
640 	int err, lnum, offs;
641 
642 	if (parent) {
643 		branch = &parent->nbranch[iip];
644 		lnum = branch->lnum;
645 		offs = branch->offs;
646 	} else {
647 		lnum = c->lpt_lnum;
648 		offs = c->lpt_offs;
649 	}
650 	nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_NOFS);
651 	if (!nnode) {
652 		err = -ENOMEM;
653 		goto out;
654 	}
655 	if (lnum == 0) {
656 		/*
657 		 * This nnode was not written which just means that the LEB
658 		 * properties in the subtree below it describe empty LEBs. We
659 		 * make the nnode as though we had read it, which in fact means
660 		 * doing almost nothing.
661 		 */
662 		if (c->big_lpt)
663 			nnode->num = calc_nnode_num_from_parent(c, parent, iip);
664 	} else {
665 		err = ubi_read(c->ubi, lnum, buf, offs, c->nnode_sz);
666 		if (err)
667 			goto out;
668 		err = ubifs_unpack_nnode(c, buf, nnode);
669 		if (err)
670 			goto out;
671 	}
672 	err = validate_nnode(c, nnode, parent, iip);
673 	if (err)
674 		goto out;
675 	if (!c->big_lpt)
676 		nnode->num = calc_nnode_num_from_parent(c, parent, iip);
677 	if (parent) {
678 		branch->nnode = nnode;
679 		nnode->level = parent->level - 1;
680 	} else {
681 		c->nroot = nnode;
682 		nnode->level = c->lpt_hght;
683 	}
684 	nnode->parent = parent;
685 	nnode->iip = iip;
686 	return 0;
687 
688 out:
689 	ubifs_err("error %d reading nnode at %d:%d", err, lnum, offs);
690 	kfree(nnode);
691 	return err;
692 }
693 
694 /**
695  * read_pnode - read a pnode from flash and link it to the tree in memory.
696  * @c: UBIFS file-system description object
697  * @parent: parent nnode
698  * @iip: index in parent
699  *
700  * This function returns %0 on success and a negative error code on failure.
701  */
702 static int read_pnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
703 {
704 	struct ubifs_nbranch *branch;
705 	struct ubifs_pnode *pnode = NULL;
706 	void *buf = c->lpt_nod_buf;
707 	int err, lnum, offs;
708 
709 	branch = &parent->nbranch[iip];
710 	lnum = branch->lnum;
711 	offs = branch->offs;
712 	pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_NOFS);
713 	if (!pnode) {
714 		err = -ENOMEM;
715 		goto out;
716 	}
717 	if (lnum == 0) {
718 		/*
719 		 * This pnode was not written which just means that the LEB
720 		 * properties in it describe empty LEBs. We make the pnode as
721 		 * though we had read it.
722 		 */
723 		int i;
724 
725 		if (c->big_lpt)
726 			pnode->num = calc_pnode_num_from_parent(c, parent, iip);
727 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
728 			struct ubifs_lprops * const lprops = &pnode->lprops[i];
729 
730 			lprops->free = c->leb_size;
731 			lprops->flags = ubifs_categorize_lprops(c, lprops);
732 		}
733 	} else {
734 		err = ubi_read(c->ubi, lnum, buf, offs, c->pnode_sz);
735 		if (err)
736 			goto out;
737 		err = unpack_pnode(c, buf, pnode);
738 		if (err)
739 			goto out;
740 	}
741 	err = validate_pnode(c, pnode, parent, iip);
742 	if (err)
743 		goto out;
744 	if (!c->big_lpt)
745 		pnode->num = calc_pnode_num_from_parent(c, parent, iip);
746 	branch->pnode = pnode;
747 	pnode->parent = parent;
748 	pnode->iip = iip;
749 	set_pnode_lnum(c, pnode);
750 	c->pnodes_have += 1;
751 	return 0;
752 
753 out:
754 	ubifs_err("error %d reading pnode at %d:%d", err, lnum, offs);
755 	dbg_dump_pnode(c, pnode, parent, iip);
756 	dbg_msg("calc num: %d", calc_pnode_num_from_parent(c, parent, iip));
757 	kfree(pnode);
758 	return err;
759 }
760 
761 /**
762  * read_ltab - read LPT's own lprops table.
763  * @c: UBIFS file-system description object
764  *
765  * This function returns %0 on success and a negative error code on failure.
766  */
767 static int read_ltab(struct ubifs_info *c)
768 {
769 	int err;
770 	void *buf;
771 
772 	buf = vmalloc(c->ltab_sz);
773 	if (!buf)
774 		return -ENOMEM;
775 	err = ubi_read(c->ubi, c->ltab_lnum, buf, c->ltab_offs, c->ltab_sz);
776 	if (err)
777 		goto out;
778 	err = unpack_ltab(c, buf);
779 out:
780 	vfree(buf);
781 	return err;
782 }
783 
784 /**
785  * ubifs_get_nnode - get a nnode.
786  * @c: UBIFS file-system description object
787  * @parent: parent nnode (or NULL for the root)
788  * @iip: index in parent
789  *
790  * This function returns a pointer to the nnode on success or a negative error
791  * code on failure.
792  */
793 struct ubifs_nnode *ubifs_get_nnode(struct ubifs_info *c,
794 				    struct ubifs_nnode *parent, int iip)
795 {
796 	struct ubifs_nbranch *branch;
797 	struct ubifs_nnode *nnode;
798 	int err;
799 
800 	branch = &parent->nbranch[iip];
801 	nnode = branch->nnode;
802 	if (nnode)
803 		return nnode;
804 	err = ubifs_read_nnode(c, parent, iip);
805 	if (err)
806 		return ERR_PTR(err);
807 	return branch->nnode;
808 }
809 
810 /**
811  * ubifs_get_pnode - get a pnode.
812  * @c: UBIFS file-system description object
813  * @parent: parent nnode
814  * @iip: index in parent
815  *
816  * This function returns a pointer to the pnode on success or a negative error
817  * code on failure.
818  */
819 struct ubifs_pnode *ubifs_get_pnode(struct ubifs_info *c,
820 				    struct ubifs_nnode *parent, int iip)
821 {
822 	struct ubifs_nbranch *branch;
823 	struct ubifs_pnode *pnode;
824 	int err;
825 
826 	branch = &parent->nbranch[iip];
827 	pnode = branch->pnode;
828 	if (pnode)
829 		return pnode;
830 	err = read_pnode(c, parent, iip);
831 	if (err)
832 		return ERR_PTR(err);
833 	update_cats(c, branch->pnode);
834 	return branch->pnode;
835 }
836 
837 /**
838  * ubifs_lpt_lookup - lookup LEB properties in the LPT.
839  * @c: UBIFS file-system description object
840  * @lnum: LEB number to lookup
841  *
842  * This function returns a pointer to the LEB properties on success or a
843  * negative error code on failure.
844  */
845 struct ubifs_lprops *ubifs_lpt_lookup(struct ubifs_info *c, int lnum)
846 {
847 	int err, i, h, iip, shft;
848 	struct ubifs_nnode *nnode;
849 	struct ubifs_pnode *pnode;
850 
851 	if (!c->nroot) {
852 		err = ubifs_read_nnode(c, NULL, 0);
853 		if (err)
854 			return ERR_PTR(err);
855 	}
856 	nnode = c->nroot;
857 	i = lnum - c->main_first;
858 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
859 	for (h = 1; h < c->lpt_hght; h++) {
860 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
861 		shft -= UBIFS_LPT_FANOUT_SHIFT;
862 		nnode = ubifs_get_nnode(c, nnode, iip);
863 		if (IS_ERR(nnode))
864 			return ERR_PTR(PTR_ERR(nnode));
865 	}
866 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
867 	shft -= UBIFS_LPT_FANOUT_SHIFT;
868 	pnode = ubifs_get_pnode(c, nnode, iip);
869 	if (IS_ERR(pnode))
870 		return ERR_PTR(PTR_ERR(pnode));
871 	iip = (i & (UBIFS_LPT_FANOUT - 1));
872 	dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
873 	       pnode->lprops[iip].free, pnode->lprops[iip].dirty,
874 	       pnode->lprops[iip].flags);
875 	return &pnode->lprops[iip];
876 }
877 
878 /**
879  * dirty_cow_nnode - ensure a nnode is not being committed.
880  * @c: UBIFS file-system description object
881  * @nnode: nnode to check
882  *
883  * Returns dirtied nnode on success or negative error code on failure.
884  */
885 static struct ubifs_nnode *dirty_cow_nnode(struct ubifs_info *c,
886 					   struct ubifs_nnode *nnode)
887 {
888 	struct ubifs_nnode *n;
889 	int i;
890 
891 	if (!test_bit(COW_CNODE, &nnode->flags)) {
892 		/* nnode is not being committed */
893 		if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
894 			c->dirty_nn_cnt += 1;
895 			ubifs_add_nnode_dirt(c, nnode);
896 		}
897 		return nnode;
898 	}
899 
900 	/* nnode is being committed, so copy it */
901 	n = kmalloc(sizeof(struct ubifs_nnode), GFP_NOFS);
902 	if (unlikely(!n))
903 		return ERR_PTR(-ENOMEM);
904 
905 	memcpy(n, nnode, sizeof(struct ubifs_nnode));
906 	n->cnext = NULL;
907 	__set_bit(DIRTY_CNODE, &n->flags);
908 	__clear_bit(COW_CNODE, &n->flags);
909 
910 	/* The children now have new parent */
911 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
912 		struct ubifs_nbranch *branch = &n->nbranch[i];
913 
914 		if (branch->cnode)
915 			branch->cnode->parent = n;
916 	}
917 
918 	ubifs_assert(!test_bit(OBSOLETE_CNODE, &nnode->flags));
919 	__set_bit(OBSOLETE_CNODE, &nnode->flags);
920 
921 	c->dirty_nn_cnt += 1;
922 	ubifs_add_nnode_dirt(c, nnode);
923 	if (nnode->parent)
924 		nnode->parent->nbranch[n->iip].nnode = n;
925 	else
926 		c->nroot = n;
927 	return n;
928 }
929 
930 /**
931  * dirty_cow_pnode - ensure a pnode is not being committed.
932  * @c: UBIFS file-system description object
933  * @pnode: pnode to check
934  *
935  * Returns dirtied pnode on success or negative error code on failure.
936  */
937 static struct ubifs_pnode *dirty_cow_pnode(struct ubifs_info *c,
938 					   struct ubifs_pnode *pnode)
939 {
940 	struct ubifs_pnode *p;
941 
942 	if (!test_bit(COW_CNODE, &pnode->flags)) {
943 		/* pnode is not being committed */
944 		if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
945 			c->dirty_pn_cnt += 1;
946 			add_pnode_dirt(c, pnode);
947 		}
948 		return pnode;
949 	}
950 
951 	/* pnode is being committed, so copy it */
952 	p = kmalloc(sizeof(struct ubifs_pnode), GFP_NOFS);
953 	if (unlikely(!p))
954 		return ERR_PTR(-ENOMEM);
955 
956 	memcpy(p, pnode, sizeof(struct ubifs_pnode));
957 	p->cnext = NULL;
958 	__set_bit(DIRTY_CNODE, &p->flags);
959 	__clear_bit(COW_CNODE, &p->flags);
960 	replace_cats(c, pnode, p);
961 
962 	ubifs_assert(!test_bit(OBSOLETE_CNODE, &pnode->flags));
963 	__set_bit(OBSOLETE_CNODE, &pnode->flags);
964 
965 	c->dirty_pn_cnt += 1;
966 	add_pnode_dirt(c, pnode);
967 	pnode->parent->nbranch[p->iip].pnode = p;
968 	return p;
969 }
970 
971 /**
972  * ubifs_lpt_lookup_dirty - lookup LEB properties in the LPT.
973  * @c: UBIFS file-system description object
974  * @lnum: LEB number to lookup
975  *
976  * This function returns a pointer to the LEB properties on success or a
977  * negative error code on failure.
978  */
979 struct ubifs_lprops *ubifs_lpt_lookup_dirty(struct ubifs_info *c, int lnum)
980 {
981 	int err, i, h, iip, shft;
982 	struct ubifs_nnode *nnode;
983 	struct ubifs_pnode *pnode;
984 
985 	if (!c->nroot) {
986 		err = ubifs_read_nnode(c, NULL, 0);
987 		if (err)
988 			return ERR_PTR(err);
989 	}
990 	nnode = c->nroot;
991 	nnode = dirty_cow_nnode(c, nnode);
992 	if (IS_ERR(nnode))
993 		return ERR_PTR(PTR_ERR(nnode));
994 	i = lnum - c->main_first;
995 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
996 	for (h = 1; h < c->lpt_hght; h++) {
997 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
998 		shft -= UBIFS_LPT_FANOUT_SHIFT;
999 		nnode = ubifs_get_nnode(c, nnode, iip);
1000 		if (IS_ERR(nnode))
1001 			return ERR_PTR(PTR_ERR(nnode));
1002 		nnode = dirty_cow_nnode(c, nnode);
1003 		if (IS_ERR(nnode))
1004 			return ERR_PTR(PTR_ERR(nnode));
1005 	}
1006 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1007 	shft -= UBIFS_LPT_FANOUT_SHIFT;
1008 	pnode = ubifs_get_pnode(c, nnode, iip);
1009 	if (IS_ERR(pnode))
1010 		return ERR_PTR(PTR_ERR(pnode));
1011 	pnode = dirty_cow_pnode(c, pnode);
1012 	if (IS_ERR(pnode))
1013 		return ERR_PTR(PTR_ERR(pnode));
1014 	iip = (i & (UBIFS_LPT_FANOUT - 1));
1015 	dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
1016 	       pnode->lprops[iip].free, pnode->lprops[iip].dirty,
1017 	       pnode->lprops[iip].flags);
1018 	ubifs_assert(test_bit(DIRTY_CNODE, &pnode->flags));
1019 	return &pnode->lprops[iip];
1020 }
1021 
1022 /**
1023  * lpt_init_rd - initialize the LPT for reading.
1024  * @c: UBIFS file-system description object
1025  *
1026  * This function returns %0 on success and a negative error code on failure.
1027  */
1028 static int lpt_init_rd(struct ubifs_info *c)
1029 {
1030 	int err, i;
1031 
1032 	c->ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1033 	if (!c->ltab)
1034 		return -ENOMEM;
1035 
1036 	i = max_t(int, c->nnode_sz, c->pnode_sz);
1037 	c->lpt_nod_buf = kmalloc(i, GFP_KERNEL);
1038 	if (!c->lpt_nod_buf)
1039 		return -ENOMEM;
1040 
1041 	for (i = 0; i < LPROPS_HEAP_CNT; i++) {
1042 		c->lpt_heap[i].arr = kmalloc(sizeof(void *) * LPT_HEAP_SZ,
1043 					     GFP_KERNEL);
1044 		if (!c->lpt_heap[i].arr)
1045 			return -ENOMEM;
1046 		c->lpt_heap[i].cnt = 0;
1047 		c->lpt_heap[i].max_cnt = LPT_HEAP_SZ;
1048 	}
1049 
1050 	c->dirty_idx.arr = kmalloc(sizeof(void *) * LPT_HEAP_SZ, GFP_KERNEL);
1051 	if (!c->dirty_idx.arr)
1052 		return -ENOMEM;
1053 	c->dirty_idx.cnt = 0;
1054 	c->dirty_idx.max_cnt = LPT_HEAP_SZ;
1055 
1056 	err = read_ltab(c);
1057 	if (err)
1058 		return err;
1059 
1060 	dbg_lp("space_bits %d", c->space_bits);
1061 	dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
1062 	dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
1063 	dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
1064 	dbg_lp("pcnt_bits %d", c->pcnt_bits);
1065 	dbg_lp("lnum_bits %d", c->lnum_bits);
1066 	dbg_lp("pnode_sz %d", c->pnode_sz);
1067 	dbg_lp("nnode_sz %d", c->nnode_sz);
1068 	dbg_lp("ltab_sz %d", c->ltab_sz);
1069 	dbg_lp("lsave_sz %d", c->lsave_sz);
1070 	dbg_lp("lsave_cnt %d", c->lsave_cnt);
1071 	dbg_lp("lpt_hght %d", c->lpt_hght);
1072 	dbg_lp("big_lpt %d", c->big_lpt);
1073 	dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
1074 	dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
1075 	dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
1076 	if (c->big_lpt)
1077 		dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
1078 
1079 	return 0;
1080 }
1081 
1082 /**
1083  * ubifs_lpt_init - initialize the LPT.
1084  * @c: UBIFS file-system description object
1085  * @rd: whether to initialize lpt for reading
1086  * @wr: whether to initialize lpt for writing
1087  *
1088  * For mounting 'rw', @rd and @wr are both true. For mounting 'ro', @rd is true
1089  * and @wr is false. For mounting from 'ro' to 'rw', @rd is false and @wr is
1090  * true.
1091  *
1092  * This function returns %0 on success and a negative error code on failure.
1093  */
1094 int ubifs_lpt_init(struct ubifs_info *c, int rd, int wr)
1095 {
1096 	int err;
1097 
1098 	if (rd) {
1099 		err = lpt_init_rd(c);
1100 		if (err)
1101 			return err;
1102 	}
1103 
1104 	return 0;
1105 }
1106