1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * This file is part of UBIFS. 4 * 5 * Copyright (C) 2006-2008 Nokia Corporation. 6 * 7 * Authors: Adrian Hunter 8 * Artem Bityutskiy (Битюцкий Артём) 9 */ 10 11 /* 12 * This file implements the functions that access LEB properties and their 13 * categories. LEBs are categorized based on the needs of UBIFS, and the 14 * categories are stored as either heaps or lists to provide a fast way of 15 * finding a LEB in a particular category. For example, UBIFS may need to find 16 * an empty LEB for the journal, or a very dirty LEB for garbage collection. 17 */ 18 19 #ifdef __UBOOT__ 20 #include <linux/err.h> 21 #endif 22 #include "ubifs.h" 23 24 /** 25 * get_heap_comp_val - get the LEB properties value for heap comparisons. 26 * @lprops: LEB properties 27 * @cat: LEB category 28 */ 29 static int get_heap_comp_val(struct ubifs_lprops *lprops, int cat) 30 { 31 switch (cat) { 32 case LPROPS_FREE: 33 return lprops->free; 34 case LPROPS_DIRTY_IDX: 35 return lprops->free + lprops->dirty; 36 default: 37 return lprops->dirty; 38 } 39 } 40 41 /** 42 * move_up_lpt_heap - move a new heap entry up as far as possible. 43 * @c: UBIFS file-system description object 44 * @heap: LEB category heap 45 * @lprops: LEB properties to move 46 * @cat: LEB category 47 * 48 * New entries to a heap are added at the bottom and then moved up until the 49 * parent's value is greater. In the case of LPT's category heaps, the value 50 * is either the amount of free space or the amount of dirty space, depending 51 * on the category. 52 */ 53 static void move_up_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, 54 struct ubifs_lprops *lprops, int cat) 55 { 56 int val1, val2, hpos; 57 58 hpos = lprops->hpos; 59 if (!hpos) 60 return; /* Already top of the heap */ 61 val1 = get_heap_comp_val(lprops, cat); 62 /* Compare to parent and, if greater, move up the heap */ 63 do { 64 int ppos = (hpos - 1) / 2; 65 66 val2 = get_heap_comp_val(heap->arr[ppos], cat); 67 if (val2 >= val1) 68 return; 69 /* Greater than parent so move up */ 70 heap->arr[ppos]->hpos = hpos; 71 heap->arr[hpos] = heap->arr[ppos]; 72 heap->arr[ppos] = lprops; 73 lprops->hpos = ppos; 74 hpos = ppos; 75 } while (hpos); 76 } 77 78 /** 79 * adjust_lpt_heap - move a changed heap entry up or down the heap. 80 * @c: UBIFS file-system description object 81 * @heap: LEB category heap 82 * @lprops: LEB properties to move 83 * @hpos: heap position of @lprops 84 * @cat: LEB category 85 * 86 * Changed entries in a heap are moved up or down until the parent's value is 87 * greater. In the case of LPT's category heaps, the value is either the amount 88 * of free space or the amount of dirty space, depending on the category. 89 */ 90 static void adjust_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, 91 struct ubifs_lprops *lprops, int hpos, int cat) 92 { 93 int val1, val2, val3, cpos; 94 95 val1 = get_heap_comp_val(lprops, cat); 96 /* Compare to parent and, if greater than parent, move up the heap */ 97 if (hpos) { 98 int ppos = (hpos - 1) / 2; 99 100 val2 = get_heap_comp_val(heap->arr[ppos], cat); 101 if (val1 > val2) { 102 /* Greater than parent so move up */ 103 while (1) { 104 heap->arr[ppos]->hpos = hpos; 105 heap->arr[hpos] = heap->arr[ppos]; 106 heap->arr[ppos] = lprops; 107 lprops->hpos = ppos; 108 hpos = ppos; 109 if (!hpos) 110 return; 111 ppos = (hpos - 1) / 2; 112 val2 = get_heap_comp_val(heap->arr[ppos], cat); 113 if (val1 <= val2) 114 return; 115 /* Still greater than parent so keep going */ 116 } 117 } 118 } 119 120 /* Not greater than parent, so compare to children */ 121 while (1) { 122 /* Compare to left child */ 123 cpos = hpos * 2 + 1; 124 if (cpos >= heap->cnt) 125 return; 126 val2 = get_heap_comp_val(heap->arr[cpos], cat); 127 if (val1 < val2) { 128 /* Less than left child, so promote biggest child */ 129 if (cpos + 1 < heap->cnt) { 130 val3 = get_heap_comp_val(heap->arr[cpos + 1], 131 cat); 132 if (val3 > val2) 133 cpos += 1; /* Right child is bigger */ 134 } 135 heap->arr[cpos]->hpos = hpos; 136 heap->arr[hpos] = heap->arr[cpos]; 137 heap->arr[cpos] = lprops; 138 lprops->hpos = cpos; 139 hpos = cpos; 140 continue; 141 } 142 /* Compare to right child */ 143 cpos += 1; 144 if (cpos >= heap->cnt) 145 return; 146 val3 = get_heap_comp_val(heap->arr[cpos], cat); 147 if (val1 < val3) { 148 /* Less than right child, so promote right child */ 149 heap->arr[cpos]->hpos = hpos; 150 heap->arr[hpos] = heap->arr[cpos]; 151 heap->arr[cpos] = lprops; 152 lprops->hpos = cpos; 153 hpos = cpos; 154 continue; 155 } 156 return; 157 } 158 } 159 160 /** 161 * add_to_lpt_heap - add LEB properties to a LEB category heap. 162 * @c: UBIFS file-system description object 163 * @lprops: LEB properties to add 164 * @cat: LEB category 165 * 166 * This function returns %1 if @lprops is added to the heap for LEB category 167 * @cat, otherwise %0 is returned because the heap is full. 168 */ 169 static int add_to_lpt_heap(struct ubifs_info *c, struct ubifs_lprops *lprops, 170 int cat) 171 { 172 struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1]; 173 174 if (heap->cnt >= heap->max_cnt) { 175 const int b = LPT_HEAP_SZ / 2 - 1; 176 int cpos, val1, val2; 177 178 /* Compare to some other LEB on the bottom of heap */ 179 /* Pick a position kind of randomly */ 180 cpos = (((size_t)lprops >> 4) & b) + b; 181 ubifs_assert(cpos >= b); 182 ubifs_assert(cpos < LPT_HEAP_SZ); 183 ubifs_assert(cpos < heap->cnt); 184 185 val1 = get_heap_comp_val(lprops, cat); 186 val2 = get_heap_comp_val(heap->arr[cpos], cat); 187 if (val1 > val2) { 188 struct ubifs_lprops *lp; 189 190 lp = heap->arr[cpos]; 191 lp->flags &= ~LPROPS_CAT_MASK; 192 lp->flags |= LPROPS_UNCAT; 193 list_add(&lp->list, &c->uncat_list); 194 lprops->hpos = cpos; 195 heap->arr[cpos] = lprops; 196 move_up_lpt_heap(c, heap, lprops, cat); 197 dbg_check_heap(c, heap, cat, lprops->hpos); 198 return 1; /* Added to heap */ 199 } 200 dbg_check_heap(c, heap, cat, -1); 201 return 0; /* Not added to heap */ 202 } else { 203 lprops->hpos = heap->cnt++; 204 heap->arr[lprops->hpos] = lprops; 205 move_up_lpt_heap(c, heap, lprops, cat); 206 dbg_check_heap(c, heap, cat, lprops->hpos); 207 return 1; /* Added to heap */ 208 } 209 } 210 211 /** 212 * remove_from_lpt_heap - remove LEB properties from a LEB category heap. 213 * @c: UBIFS file-system description object 214 * @lprops: LEB properties to remove 215 * @cat: LEB category 216 */ 217 static void remove_from_lpt_heap(struct ubifs_info *c, 218 struct ubifs_lprops *lprops, int cat) 219 { 220 struct ubifs_lpt_heap *heap; 221 int hpos = lprops->hpos; 222 223 heap = &c->lpt_heap[cat - 1]; 224 ubifs_assert(hpos >= 0 && hpos < heap->cnt); 225 ubifs_assert(heap->arr[hpos] == lprops); 226 heap->cnt -= 1; 227 if (hpos < heap->cnt) { 228 heap->arr[hpos] = heap->arr[heap->cnt]; 229 heap->arr[hpos]->hpos = hpos; 230 adjust_lpt_heap(c, heap, heap->arr[hpos], hpos, cat); 231 } 232 dbg_check_heap(c, heap, cat, -1); 233 } 234 235 /** 236 * lpt_heap_replace - replace lprops in a category heap. 237 * @c: UBIFS file-system description object 238 * @old_lprops: LEB properties to replace 239 * @new_lprops: LEB properties with which to replace 240 * @cat: LEB category 241 * 242 * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode) 243 * and the lprops that the pnode contains. When that happens, references in 244 * the category heaps to those lprops must be updated to point to the new 245 * lprops. This function does that. 246 */ 247 static void lpt_heap_replace(struct ubifs_info *c, 248 struct ubifs_lprops *old_lprops, 249 struct ubifs_lprops *new_lprops, int cat) 250 { 251 struct ubifs_lpt_heap *heap; 252 int hpos = new_lprops->hpos; 253 254 heap = &c->lpt_heap[cat - 1]; 255 heap->arr[hpos] = new_lprops; 256 } 257 258 /** 259 * ubifs_add_to_cat - add LEB properties to a category list or heap. 260 * @c: UBIFS file-system description object 261 * @lprops: LEB properties to add 262 * @cat: LEB category to which to add 263 * 264 * LEB properties are categorized to enable fast find operations. 265 */ 266 void ubifs_add_to_cat(struct ubifs_info *c, struct ubifs_lprops *lprops, 267 int cat) 268 { 269 switch (cat) { 270 case LPROPS_DIRTY: 271 case LPROPS_DIRTY_IDX: 272 case LPROPS_FREE: 273 if (add_to_lpt_heap(c, lprops, cat)) 274 break; 275 /* No more room on heap so make it un-categorized */ 276 cat = LPROPS_UNCAT; 277 /* Fall through */ 278 case LPROPS_UNCAT: 279 list_add(&lprops->list, &c->uncat_list); 280 break; 281 case LPROPS_EMPTY: 282 list_add(&lprops->list, &c->empty_list); 283 break; 284 case LPROPS_FREEABLE: 285 list_add(&lprops->list, &c->freeable_list); 286 c->freeable_cnt += 1; 287 break; 288 case LPROPS_FRDI_IDX: 289 list_add(&lprops->list, &c->frdi_idx_list); 290 break; 291 default: 292 ubifs_assert(0); 293 } 294 295 lprops->flags &= ~LPROPS_CAT_MASK; 296 lprops->flags |= cat; 297 c->in_a_category_cnt += 1; 298 ubifs_assert(c->in_a_category_cnt <= c->main_lebs); 299 } 300 301 /** 302 * ubifs_remove_from_cat - remove LEB properties from a category list or heap. 303 * @c: UBIFS file-system description object 304 * @lprops: LEB properties to remove 305 * @cat: LEB category from which to remove 306 * 307 * LEB properties are categorized to enable fast find operations. 308 */ 309 static void ubifs_remove_from_cat(struct ubifs_info *c, 310 struct ubifs_lprops *lprops, int cat) 311 { 312 switch (cat) { 313 case LPROPS_DIRTY: 314 case LPROPS_DIRTY_IDX: 315 case LPROPS_FREE: 316 remove_from_lpt_heap(c, lprops, cat); 317 break; 318 case LPROPS_FREEABLE: 319 c->freeable_cnt -= 1; 320 ubifs_assert(c->freeable_cnt >= 0); 321 /* Fall through */ 322 case LPROPS_UNCAT: 323 case LPROPS_EMPTY: 324 case LPROPS_FRDI_IDX: 325 ubifs_assert(!list_empty(&lprops->list)); 326 list_del(&lprops->list); 327 break; 328 default: 329 ubifs_assert(0); 330 } 331 332 c->in_a_category_cnt -= 1; 333 ubifs_assert(c->in_a_category_cnt >= 0); 334 } 335 336 /** 337 * ubifs_replace_cat - replace lprops in a category list or heap. 338 * @c: UBIFS file-system description object 339 * @old_lprops: LEB properties to replace 340 * @new_lprops: LEB properties with which to replace 341 * 342 * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode) 343 * and the lprops that the pnode contains. When that happens, references in 344 * category lists and heaps must be replaced. This function does that. 345 */ 346 void ubifs_replace_cat(struct ubifs_info *c, struct ubifs_lprops *old_lprops, 347 struct ubifs_lprops *new_lprops) 348 { 349 int cat; 350 351 cat = new_lprops->flags & LPROPS_CAT_MASK; 352 switch (cat) { 353 case LPROPS_DIRTY: 354 case LPROPS_DIRTY_IDX: 355 case LPROPS_FREE: 356 lpt_heap_replace(c, old_lprops, new_lprops, cat); 357 break; 358 case LPROPS_UNCAT: 359 case LPROPS_EMPTY: 360 case LPROPS_FREEABLE: 361 case LPROPS_FRDI_IDX: 362 list_replace(&old_lprops->list, &new_lprops->list); 363 break; 364 default: 365 ubifs_assert(0); 366 } 367 } 368 369 /** 370 * ubifs_ensure_cat - ensure LEB properties are categorized. 371 * @c: UBIFS file-system description object 372 * @lprops: LEB properties 373 * 374 * A LEB may have fallen off of the bottom of a heap, and ended up as 375 * un-categorized even though it has enough space for us now. If that is the 376 * case this function will put the LEB back onto a heap. 377 */ 378 void ubifs_ensure_cat(struct ubifs_info *c, struct ubifs_lprops *lprops) 379 { 380 int cat = lprops->flags & LPROPS_CAT_MASK; 381 382 if (cat != LPROPS_UNCAT) 383 return; 384 cat = ubifs_categorize_lprops(c, lprops); 385 if (cat == LPROPS_UNCAT) 386 return; 387 ubifs_remove_from_cat(c, lprops, LPROPS_UNCAT); 388 ubifs_add_to_cat(c, lprops, cat); 389 } 390 391 /** 392 * ubifs_categorize_lprops - categorize LEB properties. 393 * @c: UBIFS file-system description object 394 * @lprops: LEB properties to categorize 395 * 396 * LEB properties are categorized to enable fast find operations. This function 397 * returns the LEB category to which the LEB properties belong. Note however 398 * that if the LEB category is stored as a heap and the heap is full, the 399 * LEB properties may have their category changed to %LPROPS_UNCAT. 400 */ 401 int ubifs_categorize_lprops(const struct ubifs_info *c, 402 const struct ubifs_lprops *lprops) 403 { 404 if (lprops->flags & LPROPS_TAKEN) 405 return LPROPS_UNCAT; 406 407 if (lprops->free == c->leb_size) { 408 ubifs_assert(!(lprops->flags & LPROPS_INDEX)); 409 return LPROPS_EMPTY; 410 } 411 412 if (lprops->free + lprops->dirty == c->leb_size) { 413 if (lprops->flags & LPROPS_INDEX) 414 return LPROPS_FRDI_IDX; 415 else 416 return LPROPS_FREEABLE; 417 } 418 419 if (lprops->flags & LPROPS_INDEX) { 420 if (lprops->dirty + lprops->free >= c->min_idx_node_sz) 421 return LPROPS_DIRTY_IDX; 422 } else { 423 if (lprops->dirty >= c->dead_wm && 424 lprops->dirty > lprops->free) 425 return LPROPS_DIRTY; 426 if (lprops->free > 0) 427 return LPROPS_FREE; 428 } 429 430 return LPROPS_UNCAT; 431 } 432 433 /** 434 * change_category - change LEB properties category. 435 * @c: UBIFS file-system description object 436 * @lprops: LEB properties to re-categorize 437 * 438 * LEB properties are categorized to enable fast find operations. When the LEB 439 * properties change they must be re-categorized. 440 */ 441 static void change_category(struct ubifs_info *c, struct ubifs_lprops *lprops) 442 { 443 int old_cat = lprops->flags & LPROPS_CAT_MASK; 444 int new_cat = ubifs_categorize_lprops(c, lprops); 445 446 if (old_cat == new_cat) { 447 struct ubifs_lpt_heap *heap; 448 449 /* lprops on a heap now must be moved up or down */ 450 if (new_cat < 1 || new_cat > LPROPS_HEAP_CNT) 451 return; /* Not on a heap */ 452 heap = &c->lpt_heap[new_cat - 1]; 453 adjust_lpt_heap(c, heap, lprops, lprops->hpos, new_cat); 454 } else { 455 ubifs_remove_from_cat(c, lprops, old_cat); 456 ubifs_add_to_cat(c, lprops, new_cat); 457 } 458 } 459 460 /** 461 * ubifs_calc_dark - calculate LEB dark space size. 462 * @c: the UBIFS file-system description object 463 * @spc: amount of free and dirty space in the LEB 464 * 465 * This function calculates and returns amount of dark space in an LEB which 466 * has @spc bytes of free and dirty space. 467 * 468 * UBIFS is trying to account the space which might not be usable, and this 469 * space is called "dark space". For example, if an LEB has only %512 free 470 * bytes, it is dark space, because it cannot fit a large data node. 471 */ 472 int ubifs_calc_dark(const struct ubifs_info *c, int spc) 473 { 474 ubifs_assert(!(spc & 7)); 475 476 if (spc < c->dark_wm) 477 return spc; 478 479 /* 480 * If we have slightly more space then the dark space watermark, we can 481 * anyway safely assume it we'll be able to write a node of the 482 * smallest size there. 483 */ 484 if (spc - c->dark_wm < MIN_WRITE_SZ) 485 return spc - MIN_WRITE_SZ; 486 487 return c->dark_wm; 488 } 489 490 /** 491 * is_lprops_dirty - determine if LEB properties are dirty. 492 * @c: the UBIFS file-system description object 493 * @lprops: LEB properties to test 494 */ 495 static int is_lprops_dirty(struct ubifs_info *c, struct ubifs_lprops *lprops) 496 { 497 struct ubifs_pnode *pnode; 498 int pos; 499 500 pos = (lprops->lnum - c->main_first) & (UBIFS_LPT_FANOUT - 1); 501 pnode = (struct ubifs_pnode *)container_of(lprops - pos, 502 struct ubifs_pnode, 503 lprops[0]); 504 return !test_bit(COW_CNODE, &pnode->flags) && 505 test_bit(DIRTY_CNODE, &pnode->flags); 506 } 507 508 /** 509 * ubifs_change_lp - change LEB properties. 510 * @c: the UBIFS file-system description object 511 * @lp: LEB properties to change 512 * @free: new free space amount 513 * @dirty: new dirty space amount 514 * @flags: new flags 515 * @idx_gc_cnt: change to the count of @idx_gc list 516 * 517 * This function changes LEB properties (@free, @dirty or @flag). However, the 518 * property which has the %LPROPS_NC value is not changed. Returns a pointer to 519 * the updated LEB properties on success and a negative error code on failure. 520 * 521 * Note, the LEB properties may have had to be copied (due to COW) and 522 * consequently the pointer returned may not be the same as the pointer 523 * passed. 524 */ 525 const struct ubifs_lprops *ubifs_change_lp(struct ubifs_info *c, 526 const struct ubifs_lprops *lp, 527 int free, int dirty, int flags, 528 int idx_gc_cnt) 529 { 530 /* 531 * This is the only function that is allowed to change lprops, so we 532 * discard the "const" qualifier. 533 */ 534 struct ubifs_lprops *lprops = (struct ubifs_lprops *)lp; 535 536 dbg_lp("LEB %d, free %d, dirty %d, flags %d", 537 lprops->lnum, free, dirty, flags); 538 539 ubifs_assert(mutex_is_locked(&c->lp_mutex)); 540 ubifs_assert(c->lst.empty_lebs >= 0 && 541 c->lst.empty_lebs <= c->main_lebs); 542 ubifs_assert(c->freeable_cnt >= 0); 543 ubifs_assert(c->freeable_cnt <= c->main_lebs); 544 ubifs_assert(c->lst.taken_empty_lebs >= 0); 545 ubifs_assert(c->lst.taken_empty_lebs <= c->lst.empty_lebs); 546 ubifs_assert(!(c->lst.total_free & 7) && !(c->lst.total_dirty & 7)); 547 ubifs_assert(!(c->lst.total_dead & 7) && !(c->lst.total_dark & 7)); 548 ubifs_assert(!(c->lst.total_used & 7)); 549 ubifs_assert(free == LPROPS_NC || free >= 0); 550 ubifs_assert(dirty == LPROPS_NC || dirty >= 0); 551 552 if (!is_lprops_dirty(c, lprops)) { 553 lprops = ubifs_lpt_lookup_dirty(c, lprops->lnum); 554 if (IS_ERR(lprops)) 555 return lprops; 556 } else 557 ubifs_assert(lprops == ubifs_lpt_lookup_dirty(c, lprops->lnum)); 558 559 ubifs_assert(!(lprops->free & 7) && !(lprops->dirty & 7)); 560 561 spin_lock(&c->space_lock); 562 if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size) 563 c->lst.taken_empty_lebs -= 1; 564 565 if (!(lprops->flags & LPROPS_INDEX)) { 566 int old_spc; 567 568 old_spc = lprops->free + lprops->dirty; 569 if (old_spc < c->dead_wm) 570 c->lst.total_dead -= old_spc; 571 else 572 c->lst.total_dark -= ubifs_calc_dark(c, old_spc); 573 574 c->lst.total_used -= c->leb_size - old_spc; 575 } 576 577 if (free != LPROPS_NC) { 578 free = ALIGN(free, 8); 579 c->lst.total_free += free - lprops->free; 580 581 /* Increase or decrease empty LEBs counter if needed */ 582 if (free == c->leb_size) { 583 if (lprops->free != c->leb_size) 584 c->lst.empty_lebs += 1; 585 } else if (lprops->free == c->leb_size) 586 c->lst.empty_lebs -= 1; 587 lprops->free = free; 588 } 589 590 if (dirty != LPROPS_NC) { 591 dirty = ALIGN(dirty, 8); 592 c->lst.total_dirty += dirty - lprops->dirty; 593 lprops->dirty = dirty; 594 } 595 596 if (flags != LPROPS_NC) { 597 /* Take care about indexing LEBs counter if needed */ 598 if ((lprops->flags & LPROPS_INDEX)) { 599 if (!(flags & LPROPS_INDEX)) 600 c->lst.idx_lebs -= 1; 601 } else if (flags & LPROPS_INDEX) 602 c->lst.idx_lebs += 1; 603 lprops->flags = flags; 604 } 605 606 if (!(lprops->flags & LPROPS_INDEX)) { 607 int new_spc; 608 609 new_spc = lprops->free + lprops->dirty; 610 if (new_spc < c->dead_wm) 611 c->lst.total_dead += new_spc; 612 else 613 c->lst.total_dark += ubifs_calc_dark(c, new_spc); 614 615 c->lst.total_used += c->leb_size - new_spc; 616 } 617 618 if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size) 619 c->lst.taken_empty_lebs += 1; 620 621 change_category(c, lprops); 622 c->idx_gc_cnt += idx_gc_cnt; 623 spin_unlock(&c->space_lock); 624 return lprops; 625 } 626 627 /** 628 * ubifs_get_lp_stats - get lprops statistics. 629 * @c: UBIFS file-system description object 630 * @st: return statistics 631 */ 632 void ubifs_get_lp_stats(struct ubifs_info *c, struct ubifs_lp_stats *lst) 633 { 634 spin_lock(&c->space_lock); 635 memcpy(lst, &c->lst, sizeof(struct ubifs_lp_stats)); 636 spin_unlock(&c->space_lock); 637 } 638 639 /** 640 * ubifs_change_one_lp - change LEB properties. 641 * @c: the UBIFS file-system description object 642 * @lnum: LEB to change properties for 643 * @free: amount of free space 644 * @dirty: amount of dirty space 645 * @flags_set: flags to set 646 * @flags_clean: flags to clean 647 * @idx_gc_cnt: change to the count of idx_gc list 648 * 649 * This function changes properties of LEB @lnum. It is a helper wrapper over 650 * 'ubifs_change_lp()' which hides lprops get/release. The arguments are the 651 * same as in case of 'ubifs_change_lp()'. Returns zero in case of success and 652 * a negative error code in case of failure. 653 */ 654 int ubifs_change_one_lp(struct ubifs_info *c, int lnum, int free, int dirty, 655 int flags_set, int flags_clean, int idx_gc_cnt) 656 { 657 int err = 0, flags; 658 const struct ubifs_lprops *lp; 659 660 ubifs_get_lprops(c); 661 662 lp = ubifs_lpt_lookup_dirty(c, lnum); 663 if (IS_ERR(lp)) { 664 err = PTR_ERR(lp); 665 goto out; 666 } 667 668 flags = (lp->flags | flags_set) & ~flags_clean; 669 lp = ubifs_change_lp(c, lp, free, dirty, flags, idx_gc_cnt); 670 if (IS_ERR(lp)) 671 err = PTR_ERR(lp); 672 673 out: 674 ubifs_release_lprops(c); 675 if (err) 676 ubifs_err(c, "cannot change properties of LEB %d, error %d", 677 lnum, err); 678 return err; 679 } 680 681 /** 682 * ubifs_update_one_lp - update LEB properties. 683 * @c: the UBIFS file-system description object 684 * @lnum: LEB to change properties for 685 * @free: amount of free space 686 * @dirty: amount of dirty space to add 687 * @flags_set: flags to set 688 * @flags_clean: flags to clean 689 * 690 * This function is the same as 'ubifs_change_one_lp()' but @dirty is added to 691 * current dirty space, not substitutes it. 692 */ 693 int ubifs_update_one_lp(struct ubifs_info *c, int lnum, int free, int dirty, 694 int flags_set, int flags_clean) 695 { 696 int err = 0, flags; 697 const struct ubifs_lprops *lp; 698 699 ubifs_get_lprops(c); 700 701 lp = ubifs_lpt_lookup_dirty(c, lnum); 702 if (IS_ERR(lp)) { 703 err = PTR_ERR(lp); 704 goto out; 705 } 706 707 flags = (lp->flags | flags_set) & ~flags_clean; 708 lp = ubifs_change_lp(c, lp, free, lp->dirty + dirty, flags, 0); 709 if (IS_ERR(lp)) 710 err = PTR_ERR(lp); 711 712 out: 713 ubifs_release_lprops(c); 714 if (err) 715 ubifs_err(c, "cannot update properties of LEB %d, error %d", 716 lnum, err); 717 return err; 718 } 719 720 /** 721 * ubifs_read_one_lp - read LEB properties. 722 * @c: the UBIFS file-system description object 723 * @lnum: LEB to read properties for 724 * @lp: where to store read properties 725 * 726 * This helper function reads properties of a LEB @lnum and stores them in @lp. 727 * Returns zero in case of success and a negative error code in case of 728 * failure. 729 */ 730 int ubifs_read_one_lp(struct ubifs_info *c, int lnum, struct ubifs_lprops *lp) 731 { 732 int err = 0; 733 const struct ubifs_lprops *lpp; 734 735 ubifs_get_lprops(c); 736 737 lpp = ubifs_lpt_lookup(c, lnum); 738 if (IS_ERR(lpp)) { 739 err = PTR_ERR(lpp); 740 ubifs_err(c, "cannot read properties of LEB %d, error %d", 741 lnum, err); 742 goto out; 743 } 744 745 memcpy(lp, lpp, sizeof(struct ubifs_lprops)); 746 747 out: 748 ubifs_release_lprops(c); 749 return err; 750 } 751 752 /** 753 * ubifs_fast_find_free - try to find a LEB with free space quickly. 754 * @c: the UBIFS file-system description object 755 * 756 * This function returns LEB properties for a LEB with free space or %NULL if 757 * the function is unable to find a LEB quickly. 758 */ 759 const struct ubifs_lprops *ubifs_fast_find_free(struct ubifs_info *c) 760 { 761 struct ubifs_lprops *lprops; 762 struct ubifs_lpt_heap *heap; 763 764 ubifs_assert(mutex_is_locked(&c->lp_mutex)); 765 766 heap = &c->lpt_heap[LPROPS_FREE - 1]; 767 if (heap->cnt == 0) 768 return NULL; 769 770 lprops = heap->arr[0]; 771 ubifs_assert(!(lprops->flags & LPROPS_TAKEN)); 772 ubifs_assert(!(lprops->flags & LPROPS_INDEX)); 773 return lprops; 774 } 775 776 /** 777 * ubifs_fast_find_empty - try to find an empty LEB quickly. 778 * @c: the UBIFS file-system description object 779 * 780 * This function returns LEB properties for an empty LEB or %NULL if the 781 * function is unable to find an empty LEB quickly. 782 */ 783 const struct ubifs_lprops *ubifs_fast_find_empty(struct ubifs_info *c) 784 { 785 struct ubifs_lprops *lprops; 786 787 ubifs_assert(mutex_is_locked(&c->lp_mutex)); 788 789 if (list_empty(&c->empty_list)) 790 return NULL; 791 792 lprops = list_entry(c->empty_list.next, struct ubifs_lprops, list); 793 ubifs_assert(!(lprops->flags & LPROPS_TAKEN)); 794 ubifs_assert(!(lprops->flags & LPROPS_INDEX)); 795 ubifs_assert(lprops->free == c->leb_size); 796 return lprops; 797 } 798 799 /** 800 * ubifs_fast_find_freeable - try to find a freeable LEB quickly. 801 * @c: the UBIFS file-system description object 802 * 803 * This function returns LEB properties for a freeable LEB or %NULL if the 804 * function is unable to find a freeable LEB quickly. 805 */ 806 const struct ubifs_lprops *ubifs_fast_find_freeable(struct ubifs_info *c) 807 { 808 struct ubifs_lprops *lprops; 809 810 ubifs_assert(mutex_is_locked(&c->lp_mutex)); 811 812 if (list_empty(&c->freeable_list)) 813 return NULL; 814 815 lprops = list_entry(c->freeable_list.next, struct ubifs_lprops, list); 816 ubifs_assert(!(lprops->flags & LPROPS_TAKEN)); 817 ubifs_assert(!(lprops->flags & LPROPS_INDEX)); 818 ubifs_assert(lprops->free + lprops->dirty == c->leb_size); 819 ubifs_assert(c->freeable_cnt > 0); 820 return lprops; 821 } 822 823 /** 824 * ubifs_fast_find_frdi_idx - try to find a freeable index LEB quickly. 825 * @c: the UBIFS file-system description object 826 * 827 * This function returns LEB properties for a freeable index LEB or %NULL if the 828 * function is unable to find a freeable index LEB quickly. 829 */ 830 const struct ubifs_lprops *ubifs_fast_find_frdi_idx(struct ubifs_info *c) 831 { 832 struct ubifs_lprops *lprops; 833 834 ubifs_assert(mutex_is_locked(&c->lp_mutex)); 835 836 if (list_empty(&c->frdi_idx_list)) 837 return NULL; 838 839 lprops = list_entry(c->frdi_idx_list.next, struct ubifs_lprops, list); 840 ubifs_assert(!(lprops->flags & LPROPS_TAKEN)); 841 ubifs_assert((lprops->flags & LPROPS_INDEX)); 842 ubifs_assert(lprops->free + lprops->dirty == c->leb_size); 843 return lprops; 844 } 845 846 /* 847 * Everything below is related to debugging. 848 */ 849 850 /** 851 * dbg_check_cats - check category heaps and lists. 852 * @c: UBIFS file-system description object 853 * 854 * This function returns %0 on success and a negative error code on failure. 855 */ 856 int dbg_check_cats(struct ubifs_info *c) 857 { 858 struct ubifs_lprops *lprops; 859 struct list_head *pos; 860 int i, cat; 861 862 if (!dbg_is_chk_gen(c) && !dbg_is_chk_lprops(c)) 863 return 0; 864 865 list_for_each_entry(lprops, &c->empty_list, list) { 866 if (lprops->free != c->leb_size) { 867 ubifs_err(c, "non-empty LEB %d on empty list (free %d dirty %d flags %d)", 868 lprops->lnum, lprops->free, lprops->dirty, 869 lprops->flags); 870 return -EINVAL; 871 } 872 if (lprops->flags & LPROPS_TAKEN) { 873 ubifs_err(c, "taken LEB %d on empty list (free %d dirty %d flags %d)", 874 lprops->lnum, lprops->free, lprops->dirty, 875 lprops->flags); 876 return -EINVAL; 877 } 878 } 879 880 i = 0; 881 list_for_each_entry(lprops, &c->freeable_list, list) { 882 if (lprops->free + lprops->dirty != c->leb_size) { 883 ubifs_err(c, "non-freeable LEB %d on freeable list (free %d dirty %d flags %d)", 884 lprops->lnum, lprops->free, lprops->dirty, 885 lprops->flags); 886 return -EINVAL; 887 } 888 if (lprops->flags & LPROPS_TAKEN) { 889 ubifs_err(c, "taken LEB %d on freeable list (free %d dirty %d flags %d)", 890 lprops->lnum, lprops->free, lprops->dirty, 891 lprops->flags); 892 return -EINVAL; 893 } 894 i += 1; 895 } 896 if (i != c->freeable_cnt) { 897 ubifs_err(c, "freeable list count %d expected %d", i, 898 c->freeable_cnt); 899 return -EINVAL; 900 } 901 902 i = 0; 903 list_for_each(pos, &c->idx_gc) 904 i += 1; 905 if (i != c->idx_gc_cnt) { 906 ubifs_err(c, "idx_gc list count %d expected %d", i, 907 c->idx_gc_cnt); 908 return -EINVAL; 909 } 910 911 list_for_each_entry(lprops, &c->frdi_idx_list, list) { 912 if (lprops->free + lprops->dirty != c->leb_size) { 913 ubifs_err(c, "non-freeable LEB %d on frdi_idx list (free %d dirty %d flags %d)", 914 lprops->lnum, lprops->free, lprops->dirty, 915 lprops->flags); 916 return -EINVAL; 917 } 918 if (lprops->flags & LPROPS_TAKEN) { 919 ubifs_err(c, "taken LEB %d on frdi_idx list (free %d dirty %d flags %d)", 920 lprops->lnum, lprops->free, lprops->dirty, 921 lprops->flags); 922 return -EINVAL; 923 } 924 if (!(lprops->flags & LPROPS_INDEX)) { 925 ubifs_err(c, "non-index LEB %d on frdi_idx list (free %d dirty %d flags %d)", 926 lprops->lnum, lprops->free, lprops->dirty, 927 lprops->flags); 928 return -EINVAL; 929 } 930 } 931 932 for (cat = 1; cat <= LPROPS_HEAP_CNT; cat++) { 933 struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1]; 934 935 for (i = 0; i < heap->cnt; i++) { 936 lprops = heap->arr[i]; 937 if (!lprops) { 938 ubifs_err(c, "null ptr in LPT heap cat %d", cat); 939 return -EINVAL; 940 } 941 if (lprops->hpos != i) { 942 ubifs_err(c, "bad ptr in LPT heap cat %d", cat); 943 return -EINVAL; 944 } 945 if (lprops->flags & LPROPS_TAKEN) { 946 ubifs_err(c, "taken LEB in LPT heap cat %d", cat); 947 return -EINVAL; 948 } 949 } 950 } 951 952 return 0; 953 } 954 955 void dbg_check_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat, 956 int add_pos) 957 { 958 int i = 0, j, err = 0; 959 960 if (!dbg_is_chk_gen(c) && !dbg_is_chk_lprops(c)) 961 return; 962 963 for (i = 0; i < heap->cnt; i++) { 964 struct ubifs_lprops *lprops = heap->arr[i]; 965 struct ubifs_lprops *lp; 966 967 if (i != add_pos) 968 if ((lprops->flags & LPROPS_CAT_MASK) != cat) { 969 err = 1; 970 goto out; 971 } 972 if (lprops->hpos != i) { 973 err = 2; 974 goto out; 975 } 976 lp = ubifs_lpt_lookup(c, lprops->lnum); 977 if (IS_ERR(lp)) { 978 err = 3; 979 goto out; 980 } 981 if (lprops != lp) { 982 ubifs_err(c, "lprops %zx lp %zx lprops->lnum %d lp->lnum %d", 983 (size_t)lprops, (size_t)lp, lprops->lnum, 984 lp->lnum); 985 err = 4; 986 goto out; 987 } 988 for (j = 0; j < i; j++) { 989 lp = heap->arr[j]; 990 if (lp == lprops) { 991 err = 5; 992 goto out; 993 } 994 if (lp->lnum == lprops->lnum) { 995 err = 6; 996 goto out; 997 } 998 } 999 } 1000 out: 1001 if (err) { 1002 ubifs_err(c, "failed cat %d hpos %d err %d", cat, i, err); 1003 dump_stack(); 1004 ubifs_dump_heap(c, heap, cat); 1005 } 1006 } 1007 1008 /** 1009 * scan_check_cb - scan callback. 1010 * @c: the UBIFS file-system description object 1011 * @lp: LEB properties to scan 1012 * @in_tree: whether the LEB properties are in main memory 1013 * @lst: lprops statistics to update 1014 * 1015 * This function returns a code that indicates whether the scan should continue 1016 * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree 1017 * in main memory (%LPT_SCAN_ADD), or whether the scan should stop 1018 * (%LPT_SCAN_STOP). 1019 */ 1020 static int scan_check_cb(struct ubifs_info *c, 1021 const struct ubifs_lprops *lp, int in_tree, 1022 struct ubifs_lp_stats *lst) 1023 { 1024 struct ubifs_scan_leb *sleb; 1025 struct ubifs_scan_node *snod; 1026 int cat, lnum = lp->lnum, is_idx = 0, used = 0, free, dirty, ret; 1027 void *buf = NULL; 1028 1029 cat = lp->flags & LPROPS_CAT_MASK; 1030 if (cat != LPROPS_UNCAT) { 1031 cat = ubifs_categorize_lprops(c, lp); 1032 if (cat != (lp->flags & LPROPS_CAT_MASK)) { 1033 ubifs_err(c, "bad LEB category %d expected %d", 1034 (lp->flags & LPROPS_CAT_MASK), cat); 1035 return -EINVAL; 1036 } 1037 } 1038 1039 /* Check lp is on its category list (if it has one) */ 1040 if (in_tree) { 1041 struct list_head *list = NULL; 1042 1043 switch (cat) { 1044 case LPROPS_EMPTY: 1045 list = &c->empty_list; 1046 break; 1047 case LPROPS_FREEABLE: 1048 list = &c->freeable_list; 1049 break; 1050 case LPROPS_FRDI_IDX: 1051 list = &c->frdi_idx_list; 1052 break; 1053 case LPROPS_UNCAT: 1054 list = &c->uncat_list; 1055 break; 1056 } 1057 if (list) { 1058 struct ubifs_lprops *lprops; 1059 int found = 0; 1060 1061 list_for_each_entry(lprops, list, list) { 1062 if (lprops == lp) { 1063 found = 1; 1064 break; 1065 } 1066 } 1067 if (!found) { 1068 ubifs_err(c, "bad LPT list (category %d)", cat); 1069 return -EINVAL; 1070 } 1071 } 1072 } 1073 1074 /* Check lp is on its category heap (if it has one) */ 1075 if (in_tree && cat > 0 && cat <= LPROPS_HEAP_CNT) { 1076 struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1]; 1077 1078 if ((lp->hpos != -1 && heap->arr[lp->hpos]->lnum != lnum) || 1079 lp != heap->arr[lp->hpos]) { 1080 ubifs_err(c, "bad LPT heap (category %d)", cat); 1081 return -EINVAL; 1082 } 1083 } 1084 1085 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL); 1086 if (!buf) 1087 return -ENOMEM; 1088 1089 /* 1090 * After an unclean unmount, empty and freeable LEBs 1091 * may contain garbage - do not scan them. 1092 */ 1093 if (lp->free == c->leb_size) { 1094 lst->empty_lebs += 1; 1095 lst->total_free += c->leb_size; 1096 lst->total_dark += ubifs_calc_dark(c, c->leb_size); 1097 return LPT_SCAN_CONTINUE; 1098 } 1099 if (lp->free + lp->dirty == c->leb_size && 1100 !(lp->flags & LPROPS_INDEX)) { 1101 lst->total_free += lp->free; 1102 lst->total_dirty += lp->dirty; 1103 lst->total_dark += ubifs_calc_dark(c, c->leb_size); 1104 return LPT_SCAN_CONTINUE; 1105 } 1106 1107 sleb = ubifs_scan(c, lnum, 0, buf, 0); 1108 if (IS_ERR(sleb)) { 1109 ret = PTR_ERR(sleb); 1110 if (ret == -EUCLEAN) { 1111 ubifs_dump_lprops(c); 1112 ubifs_dump_budg(c, &c->bi); 1113 } 1114 goto out; 1115 } 1116 1117 is_idx = -1; 1118 list_for_each_entry(snod, &sleb->nodes, list) { 1119 int found, level = 0; 1120 1121 cond_resched(); 1122 1123 if (is_idx == -1) 1124 is_idx = (snod->type == UBIFS_IDX_NODE) ? 1 : 0; 1125 1126 if (is_idx && snod->type != UBIFS_IDX_NODE) { 1127 ubifs_err(c, "indexing node in data LEB %d:%d", 1128 lnum, snod->offs); 1129 goto out_destroy; 1130 } 1131 1132 if (snod->type == UBIFS_IDX_NODE) { 1133 struct ubifs_idx_node *idx = snod->node; 1134 1135 key_read(c, ubifs_idx_key(c, idx), &snod->key); 1136 level = le16_to_cpu(idx->level); 1137 } 1138 1139 found = ubifs_tnc_has_node(c, &snod->key, level, lnum, 1140 snod->offs, is_idx); 1141 if (found) { 1142 if (found < 0) 1143 goto out_destroy; 1144 used += ALIGN(snod->len, 8); 1145 } 1146 } 1147 1148 free = c->leb_size - sleb->endpt; 1149 dirty = sleb->endpt - used; 1150 1151 if (free > c->leb_size || free < 0 || dirty > c->leb_size || 1152 dirty < 0) { 1153 ubifs_err(c, "bad calculated accounting for LEB %d: free %d, dirty %d", 1154 lnum, free, dirty); 1155 goto out_destroy; 1156 } 1157 1158 if (lp->free + lp->dirty == c->leb_size && 1159 free + dirty == c->leb_size) 1160 if ((is_idx && !(lp->flags & LPROPS_INDEX)) || 1161 (!is_idx && free == c->leb_size) || 1162 lp->free == c->leb_size) { 1163 /* 1164 * Empty or freeable LEBs could contain index 1165 * nodes from an uncompleted commit due to an 1166 * unclean unmount. Or they could be empty for 1167 * the same reason. Or it may simply not have been 1168 * unmapped. 1169 */ 1170 free = lp->free; 1171 dirty = lp->dirty; 1172 is_idx = 0; 1173 } 1174 1175 if (is_idx && lp->free + lp->dirty == free + dirty && 1176 lnum != c->ihead_lnum) { 1177 /* 1178 * After an unclean unmount, an index LEB could have a different 1179 * amount of free space than the value recorded by lprops. That 1180 * is because the in-the-gaps method may use free space or 1181 * create free space (as a side-effect of using ubi_leb_change 1182 * and not writing the whole LEB). The incorrect free space 1183 * value is not a problem because the index is only ever 1184 * allocated empty LEBs, so there will never be an attempt to 1185 * write to the free space at the end of an index LEB - except 1186 * by the in-the-gaps method for which it is not a problem. 1187 */ 1188 free = lp->free; 1189 dirty = lp->dirty; 1190 } 1191 1192 if (lp->free != free || lp->dirty != dirty) 1193 goto out_print; 1194 1195 if (is_idx && !(lp->flags & LPROPS_INDEX)) { 1196 if (free == c->leb_size) 1197 /* Free but not unmapped LEB, it's fine */ 1198 is_idx = 0; 1199 else { 1200 ubifs_err(c, "indexing node without indexing flag"); 1201 goto out_print; 1202 } 1203 } 1204 1205 if (!is_idx && (lp->flags & LPROPS_INDEX)) { 1206 ubifs_err(c, "data node with indexing flag"); 1207 goto out_print; 1208 } 1209 1210 if (free == c->leb_size) 1211 lst->empty_lebs += 1; 1212 1213 if (is_idx) 1214 lst->idx_lebs += 1; 1215 1216 if (!(lp->flags & LPROPS_INDEX)) 1217 lst->total_used += c->leb_size - free - dirty; 1218 lst->total_free += free; 1219 lst->total_dirty += dirty; 1220 1221 if (!(lp->flags & LPROPS_INDEX)) { 1222 int spc = free + dirty; 1223 1224 if (spc < c->dead_wm) 1225 lst->total_dead += spc; 1226 else 1227 lst->total_dark += ubifs_calc_dark(c, spc); 1228 } 1229 1230 ubifs_scan_destroy(sleb); 1231 vfree(buf); 1232 return LPT_SCAN_CONTINUE; 1233 1234 out_print: 1235 ubifs_err(c, "bad accounting of LEB %d: free %d, dirty %d flags %#x, should be free %d, dirty %d", 1236 lnum, lp->free, lp->dirty, lp->flags, free, dirty); 1237 ubifs_dump_leb(c, lnum); 1238 out_destroy: 1239 ubifs_scan_destroy(sleb); 1240 ret = -EINVAL; 1241 out: 1242 vfree(buf); 1243 return ret; 1244 } 1245 1246 /** 1247 * dbg_check_lprops - check all LEB properties. 1248 * @c: UBIFS file-system description object 1249 * 1250 * This function checks all LEB properties and makes sure they are all correct. 1251 * It returns zero if everything is fine, %-EINVAL if there is an inconsistency 1252 * and other negative error codes in case of other errors. This function is 1253 * called while the file system is locked (because of commit start), so no 1254 * additional locking is required. Note that locking the LPT mutex would cause 1255 * a circular lock dependency with the TNC mutex. 1256 */ 1257 int dbg_check_lprops(struct ubifs_info *c) 1258 { 1259 int i, err; 1260 struct ubifs_lp_stats lst; 1261 1262 if (!dbg_is_chk_lprops(c)) 1263 return 0; 1264 1265 /* 1266 * As we are going to scan the media, the write buffers have to be 1267 * synchronized. 1268 */ 1269 for (i = 0; i < c->jhead_cnt; i++) { 1270 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 1271 if (err) 1272 return err; 1273 } 1274 1275 memset(&lst, 0, sizeof(struct ubifs_lp_stats)); 1276 err = ubifs_lpt_scan_nolock(c, c->main_first, c->leb_cnt - 1, 1277 (ubifs_lpt_scan_callback)scan_check_cb, 1278 &lst); 1279 if (err && err != -ENOSPC) 1280 goto out; 1281 1282 if (lst.empty_lebs != c->lst.empty_lebs || 1283 lst.idx_lebs != c->lst.idx_lebs || 1284 lst.total_free != c->lst.total_free || 1285 lst.total_dirty != c->lst.total_dirty || 1286 lst.total_used != c->lst.total_used) { 1287 ubifs_err(c, "bad overall accounting"); 1288 ubifs_err(c, "calculated: empty_lebs %d, idx_lebs %d, total_free %lld, total_dirty %lld, total_used %lld", 1289 lst.empty_lebs, lst.idx_lebs, lst.total_free, 1290 lst.total_dirty, lst.total_used); 1291 ubifs_err(c, "read from lprops: empty_lebs %d, idx_lebs %d, total_free %lld, total_dirty %lld, total_used %lld", 1292 c->lst.empty_lebs, c->lst.idx_lebs, c->lst.total_free, 1293 c->lst.total_dirty, c->lst.total_used); 1294 err = -EINVAL; 1295 goto out; 1296 } 1297 1298 if (lst.total_dead != c->lst.total_dead || 1299 lst.total_dark != c->lst.total_dark) { 1300 ubifs_err(c, "bad dead/dark space accounting"); 1301 ubifs_err(c, "calculated: total_dead %lld, total_dark %lld", 1302 lst.total_dead, lst.total_dark); 1303 ubifs_err(c, "read from lprops: total_dead %lld, total_dark %lld", 1304 c->lst.total_dead, c->lst.total_dark); 1305 err = -EINVAL; 1306 goto out; 1307 } 1308 1309 err = dbg_check_cats(c); 1310 out: 1311 return err; 1312 } 1313