xref: /openbmc/u-boot/fs/ubifs/lprops.c (revision d9b23e26)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * SPDX-License-Identifier:	GPL-2.0+
7  *
8  * Authors: Adrian Hunter
9  *          Artem Bityutskiy (Битюцкий Артём)
10  */
11 
12 /*
13  * This file implements the functions that access LEB properties and their
14  * categories. LEBs are categorized based on the needs of UBIFS, and the
15  * categories are stored as either heaps or lists to provide a fast way of
16  * finding a LEB in a particular category. For example, UBIFS may need to find
17  * an empty LEB for the journal, or a very dirty LEB for garbage collection.
18  */
19 
20 #ifdef __UBOOT__
21 #include <linux/err.h>
22 #endif
23 #include "ubifs.h"
24 
25 /**
26  * get_heap_comp_val - get the LEB properties value for heap comparisons.
27  * @lprops: LEB properties
28  * @cat: LEB category
29  */
30 static int get_heap_comp_val(struct ubifs_lprops *lprops, int cat)
31 {
32 	switch (cat) {
33 	case LPROPS_FREE:
34 		return lprops->free;
35 	case LPROPS_DIRTY_IDX:
36 		return lprops->free + lprops->dirty;
37 	default:
38 		return lprops->dirty;
39 	}
40 }
41 
42 /**
43  * move_up_lpt_heap - move a new heap entry up as far as possible.
44  * @c: UBIFS file-system description object
45  * @heap: LEB category heap
46  * @lprops: LEB properties to move
47  * @cat: LEB category
48  *
49  * New entries to a heap are added at the bottom and then moved up until the
50  * parent's value is greater.  In the case of LPT's category heaps, the value
51  * is either the amount of free space or the amount of dirty space, depending
52  * on the category.
53  */
54 static void move_up_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap,
55 			     struct ubifs_lprops *lprops, int cat)
56 {
57 	int val1, val2, hpos;
58 
59 	hpos = lprops->hpos;
60 	if (!hpos)
61 		return; /* Already top of the heap */
62 	val1 = get_heap_comp_val(lprops, cat);
63 	/* Compare to parent and, if greater, move up the heap */
64 	do {
65 		int ppos = (hpos - 1) / 2;
66 
67 		val2 = get_heap_comp_val(heap->arr[ppos], cat);
68 		if (val2 >= val1)
69 			return;
70 		/* Greater than parent so move up */
71 		heap->arr[ppos]->hpos = hpos;
72 		heap->arr[hpos] = heap->arr[ppos];
73 		heap->arr[ppos] = lprops;
74 		lprops->hpos = ppos;
75 		hpos = ppos;
76 	} while (hpos);
77 }
78 
79 /**
80  * adjust_lpt_heap - move a changed heap entry up or down the heap.
81  * @c: UBIFS file-system description object
82  * @heap: LEB category heap
83  * @lprops: LEB properties to move
84  * @hpos: heap position of @lprops
85  * @cat: LEB category
86  *
87  * Changed entries in a heap are moved up or down until the parent's value is
88  * greater.  In the case of LPT's category heaps, the value is either the amount
89  * of free space or the amount of dirty space, depending on the category.
90  */
91 static void adjust_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap,
92 			    struct ubifs_lprops *lprops, int hpos, int cat)
93 {
94 	int val1, val2, val3, cpos;
95 
96 	val1 = get_heap_comp_val(lprops, cat);
97 	/* Compare to parent and, if greater than parent, move up the heap */
98 	if (hpos) {
99 		int ppos = (hpos - 1) / 2;
100 
101 		val2 = get_heap_comp_val(heap->arr[ppos], cat);
102 		if (val1 > val2) {
103 			/* Greater than parent so move up */
104 			while (1) {
105 				heap->arr[ppos]->hpos = hpos;
106 				heap->arr[hpos] = heap->arr[ppos];
107 				heap->arr[ppos] = lprops;
108 				lprops->hpos = ppos;
109 				hpos = ppos;
110 				if (!hpos)
111 					return;
112 				ppos = (hpos - 1) / 2;
113 				val2 = get_heap_comp_val(heap->arr[ppos], cat);
114 				if (val1 <= val2)
115 					return;
116 				/* Still greater than parent so keep going */
117 			}
118 		}
119 	}
120 
121 	/* Not greater than parent, so compare to children */
122 	while (1) {
123 		/* Compare to left child */
124 		cpos = hpos * 2 + 1;
125 		if (cpos >= heap->cnt)
126 			return;
127 		val2 = get_heap_comp_val(heap->arr[cpos], cat);
128 		if (val1 < val2) {
129 			/* Less than left child, so promote biggest child */
130 			if (cpos + 1 < heap->cnt) {
131 				val3 = get_heap_comp_val(heap->arr[cpos + 1],
132 							 cat);
133 				if (val3 > val2)
134 					cpos += 1; /* Right child is bigger */
135 			}
136 			heap->arr[cpos]->hpos = hpos;
137 			heap->arr[hpos] = heap->arr[cpos];
138 			heap->arr[cpos] = lprops;
139 			lprops->hpos = cpos;
140 			hpos = cpos;
141 			continue;
142 		}
143 		/* Compare to right child */
144 		cpos += 1;
145 		if (cpos >= heap->cnt)
146 			return;
147 		val3 = get_heap_comp_val(heap->arr[cpos], cat);
148 		if (val1 < val3) {
149 			/* Less than right child, so promote right child */
150 			heap->arr[cpos]->hpos = hpos;
151 			heap->arr[hpos] = heap->arr[cpos];
152 			heap->arr[cpos] = lprops;
153 			lprops->hpos = cpos;
154 			hpos = cpos;
155 			continue;
156 		}
157 		return;
158 	}
159 }
160 
161 /**
162  * add_to_lpt_heap - add LEB properties to a LEB category heap.
163  * @c: UBIFS file-system description object
164  * @lprops: LEB properties to add
165  * @cat: LEB category
166  *
167  * This function returns %1 if @lprops is added to the heap for LEB category
168  * @cat, otherwise %0 is returned because the heap is full.
169  */
170 static int add_to_lpt_heap(struct ubifs_info *c, struct ubifs_lprops *lprops,
171 			   int cat)
172 {
173 	struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
174 
175 	if (heap->cnt >= heap->max_cnt) {
176 		const int b = LPT_HEAP_SZ / 2 - 1;
177 		int cpos, val1, val2;
178 
179 		/* Compare to some other LEB on the bottom of heap */
180 		/* Pick a position kind of randomly */
181 		cpos = (((size_t)lprops >> 4) & b) + b;
182 		ubifs_assert(cpos >= b);
183 		ubifs_assert(cpos < LPT_HEAP_SZ);
184 		ubifs_assert(cpos < heap->cnt);
185 
186 		val1 = get_heap_comp_val(lprops, cat);
187 		val2 = get_heap_comp_val(heap->arr[cpos], cat);
188 		if (val1 > val2) {
189 			struct ubifs_lprops *lp;
190 
191 			lp = heap->arr[cpos];
192 			lp->flags &= ~LPROPS_CAT_MASK;
193 			lp->flags |= LPROPS_UNCAT;
194 			list_add(&lp->list, &c->uncat_list);
195 			lprops->hpos = cpos;
196 			heap->arr[cpos] = lprops;
197 			move_up_lpt_heap(c, heap, lprops, cat);
198 			dbg_check_heap(c, heap, cat, lprops->hpos);
199 			return 1; /* Added to heap */
200 		}
201 		dbg_check_heap(c, heap, cat, -1);
202 		return 0; /* Not added to heap */
203 	} else {
204 		lprops->hpos = heap->cnt++;
205 		heap->arr[lprops->hpos] = lprops;
206 		move_up_lpt_heap(c, heap, lprops, cat);
207 		dbg_check_heap(c, heap, cat, lprops->hpos);
208 		return 1; /* Added to heap */
209 	}
210 }
211 
212 /**
213  * remove_from_lpt_heap - remove LEB properties from a LEB category heap.
214  * @c: UBIFS file-system description object
215  * @lprops: LEB properties to remove
216  * @cat: LEB category
217  */
218 static void remove_from_lpt_heap(struct ubifs_info *c,
219 				 struct ubifs_lprops *lprops, int cat)
220 {
221 	struct ubifs_lpt_heap *heap;
222 	int hpos = lprops->hpos;
223 
224 	heap = &c->lpt_heap[cat - 1];
225 	ubifs_assert(hpos >= 0 && hpos < heap->cnt);
226 	ubifs_assert(heap->arr[hpos] == lprops);
227 	heap->cnt -= 1;
228 	if (hpos < heap->cnt) {
229 		heap->arr[hpos] = heap->arr[heap->cnt];
230 		heap->arr[hpos]->hpos = hpos;
231 		adjust_lpt_heap(c, heap, heap->arr[hpos], hpos, cat);
232 	}
233 	dbg_check_heap(c, heap, cat, -1);
234 }
235 
236 /**
237  * lpt_heap_replace - replace lprops in a category heap.
238  * @c: UBIFS file-system description object
239  * @old_lprops: LEB properties to replace
240  * @new_lprops: LEB properties with which to replace
241  * @cat: LEB category
242  *
243  * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode)
244  * and the lprops that the pnode contains.  When that happens, references in
245  * the category heaps to those lprops must be updated to point to the new
246  * lprops.  This function does that.
247  */
248 static void lpt_heap_replace(struct ubifs_info *c,
249 			     struct ubifs_lprops *old_lprops,
250 			     struct ubifs_lprops *new_lprops, int cat)
251 {
252 	struct ubifs_lpt_heap *heap;
253 	int hpos = new_lprops->hpos;
254 
255 	heap = &c->lpt_heap[cat - 1];
256 	heap->arr[hpos] = new_lprops;
257 }
258 
259 /**
260  * ubifs_add_to_cat - add LEB properties to a category list or heap.
261  * @c: UBIFS file-system description object
262  * @lprops: LEB properties to add
263  * @cat: LEB category to which to add
264  *
265  * LEB properties are categorized to enable fast find operations.
266  */
267 void ubifs_add_to_cat(struct ubifs_info *c, struct ubifs_lprops *lprops,
268 		      int cat)
269 {
270 	switch (cat) {
271 	case LPROPS_DIRTY:
272 	case LPROPS_DIRTY_IDX:
273 	case LPROPS_FREE:
274 		if (add_to_lpt_heap(c, lprops, cat))
275 			break;
276 		/* No more room on heap so make it un-categorized */
277 		cat = LPROPS_UNCAT;
278 		/* Fall through */
279 	case LPROPS_UNCAT:
280 		list_add(&lprops->list, &c->uncat_list);
281 		break;
282 	case LPROPS_EMPTY:
283 		list_add(&lprops->list, &c->empty_list);
284 		break;
285 	case LPROPS_FREEABLE:
286 		list_add(&lprops->list, &c->freeable_list);
287 		c->freeable_cnt += 1;
288 		break;
289 	case LPROPS_FRDI_IDX:
290 		list_add(&lprops->list, &c->frdi_idx_list);
291 		break;
292 	default:
293 		ubifs_assert(0);
294 	}
295 
296 	lprops->flags &= ~LPROPS_CAT_MASK;
297 	lprops->flags |= cat;
298 	c->in_a_category_cnt += 1;
299 	ubifs_assert(c->in_a_category_cnt <= c->main_lebs);
300 }
301 
302 /**
303  * ubifs_remove_from_cat - remove LEB properties from a category list or heap.
304  * @c: UBIFS file-system description object
305  * @lprops: LEB properties to remove
306  * @cat: LEB category from which to remove
307  *
308  * LEB properties are categorized to enable fast find operations.
309  */
310 static void ubifs_remove_from_cat(struct ubifs_info *c,
311 				  struct ubifs_lprops *lprops, int cat)
312 {
313 	switch (cat) {
314 	case LPROPS_DIRTY:
315 	case LPROPS_DIRTY_IDX:
316 	case LPROPS_FREE:
317 		remove_from_lpt_heap(c, lprops, cat);
318 		break;
319 	case LPROPS_FREEABLE:
320 		c->freeable_cnt -= 1;
321 		ubifs_assert(c->freeable_cnt >= 0);
322 		/* Fall through */
323 	case LPROPS_UNCAT:
324 	case LPROPS_EMPTY:
325 	case LPROPS_FRDI_IDX:
326 		ubifs_assert(!list_empty(&lprops->list));
327 		list_del(&lprops->list);
328 		break;
329 	default:
330 		ubifs_assert(0);
331 	}
332 
333 	c->in_a_category_cnt -= 1;
334 	ubifs_assert(c->in_a_category_cnt >= 0);
335 }
336 
337 /**
338  * ubifs_replace_cat - replace lprops in a category list or heap.
339  * @c: UBIFS file-system description object
340  * @old_lprops: LEB properties to replace
341  * @new_lprops: LEB properties with which to replace
342  *
343  * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode)
344  * and the lprops that the pnode contains. When that happens, references in
345  * category lists and heaps must be replaced. This function does that.
346  */
347 void ubifs_replace_cat(struct ubifs_info *c, struct ubifs_lprops *old_lprops,
348 		       struct ubifs_lprops *new_lprops)
349 {
350 	int cat;
351 
352 	cat = new_lprops->flags & LPROPS_CAT_MASK;
353 	switch (cat) {
354 	case LPROPS_DIRTY:
355 	case LPROPS_DIRTY_IDX:
356 	case LPROPS_FREE:
357 		lpt_heap_replace(c, old_lprops, new_lprops, cat);
358 		break;
359 	case LPROPS_UNCAT:
360 	case LPROPS_EMPTY:
361 	case LPROPS_FREEABLE:
362 	case LPROPS_FRDI_IDX:
363 		list_replace(&old_lprops->list, &new_lprops->list);
364 		break;
365 	default:
366 		ubifs_assert(0);
367 	}
368 }
369 
370 /**
371  * ubifs_ensure_cat - ensure LEB properties are categorized.
372  * @c: UBIFS file-system description object
373  * @lprops: LEB properties
374  *
375  * A LEB may have fallen off of the bottom of a heap, and ended up as
376  * un-categorized even though it has enough space for us now. If that is the
377  * case this function will put the LEB back onto a heap.
378  */
379 void ubifs_ensure_cat(struct ubifs_info *c, struct ubifs_lprops *lprops)
380 {
381 	int cat = lprops->flags & LPROPS_CAT_MASK;
382 
383 	if (cat != LPROPS_UNCAT)
384 		return;
385 	cat = ubifs_categorize_lprops(c, lprops);
386 	if (cat == LPROPS_UNCAT)
387 		return;
388 	ubifs_remove_from_cat(c, lprops, LPROPS_UNCAT);
389 	ubifs_add_to_cat(c, lprops, cat);
390 }
391 
392 /**
393  * ubifs_categorize_lprops - categorize LEB properties.
394  * @c: UBIFS file-system description object
395  * @lprops: LEB properties to categorize
396  *
397  * LEB properties are categorized to enable fast find operations. This function
398  * returns the LEB category to which the LEB properties belong. Note however
399  * that if the LEB category is stored as a heap and the heap is full, the
400  * LEB properties may have their category changed to %LPROPS_UNCAT.
401  */
402 int ubifs_categorize_lprops(const struct ubifs_info *c,
403 			    const struct ubifs_lprops *lprops)
404 {
405 	if (lprops->flags & LPROPS_TAKEN)
406 		return LPROPS_UNCAT;
407 
408 	if (lprops->free == c->leb_size) {
409 		ubifs_assert(!(lprops->flags & LPROPS_INDEX));
410 		return LPROPS_EMPTY;
411 	}
412 
413 	if (lprops->free + lprops->dirty == c->leb_size) {
414 		if (lprops->flags & LPROPS_INDEX)
415 			return LPROPS_FRDI_IDX;
416 		else
417 			return LPROPS_FREEABLE;
418 	}
419 
420 	if (lprops->flags & LPROPS_INDEX) {
421 		if (lprops->dirty + lprops->free >= c->min_idx_node_sz)
422 			return LPROPS_DIRTY_IDX;
423 	} else {
424 		if (lprops->dirty >= c->dead_wm &&
425 		    lprops->dirty > lprops->free)
426 			return LPROPS_DIRTY;
427 		if (lprops->free > 0)
428 			return LPROPS_FREE;
429 	}
430 
431 	return LPROPS_UNCAT;
432 }
433 
434 /**
435  * change_category - change LEB properties category.
436  * @c: UBIFS file-system description object
437  * @lprops: LEB properties to re-categorize
438  *
439  * LEB properties are categorized to enable fast find operations. When the LEB
440  * properties change they must be re-categorized.
441  */
442 static void change_category(struct ubifs_info *c, struct ubifs_lprops *lprops)
443 {
444 	int old_cat = lprops->flags & LPROPS_CAT_MASK;
445 	int new_cat = ubifs_categorize_lprops(c, lprops);
446 
447 	if (old_cat == new_cat) {
448 		struct ubifs_lpt_heap *heap;
449 
450 		/* lprops on a heap now must be moved up or down */
451 		if (new_cat < 1 || new_cat > LPROPS_HEAP_CNT)
452 			return; /* Not on a heap */
453 		heap = &c->lpt_heap[new_cat - 1];
454 		adjust_lpt_heap(c, heap, lprops, lprops->hpos, new_cat);
455 	} else {
456 		ubifs_remove_from_cat(c, lprops, old_cat);
457 		ubifs_add_to_cat(c, lprops, new_cat);
458 	}
459 }
460 
461 /**
462  * ubifs_calc_dark - calculate LEB dark space size.
463  * @c: the UBIFS file-system description object
464  * @spc: amount of free and dirty space in the LEB
465  *
466  * This function calculates and returns amount of dark space in an LEB which
467  * has @spc bytes of free and dirty space.
468  *
469  * UBIFS is trying to account the space which might not be usable, and this
470  * space is called "dark space". For example, if an LEB has only %512 free
471  * bytes, it is dark space, because it cannot fit a large data node.
472  */
473 int ubifs_calc_dark(const struct ubifs_info *c, int spc)
474 {
475 	ubifs_assert(!(spc & 7));
476 
477 	if (spc < c->dark_wm)
478 		return spc;
479 
480 	/*
481 	 * If we have slightly more space then the dark space watermark, we can
482 	 * anyway safely assume it we'll be able to write a node of the
483 	 * smallest size there.
484 	 */
485 	if (spc - c->dark_wm < MIN_WRITE_SZ)
486 		return spc - MIN_WRITE_SZ;
487 
488 	return c->dark_wm;
489 }
490 
491 /**
492  * is_lprops_dirty - determine if LEB properties are dirty.
493  * @c: the UBIFS file-system description object
494  * @lprops: LEB properties to test
495  */
496 static int is_lprops_dirty(struct ubifs_info *c, struct ubifs_lprops *lprops)
497 {
498 	struct ubifs_pnode *pnode;
499 	int pos;
500 
501 	pos = (lprops->lnum - c->main_first) & (UBIFS_LPT_FANOUT - 1);
502 	pnode = (struct ubifs_pnode *)container_of(lprops - pos,
503 						   struct ubifs_pnode,
504 						   lprops[0]);
505 	return !test_bit(COW_CNODE, &pnode->flags) &&
506 	       test_bit(DIRTY_CNODE, &pnode->flags);
507 }
508 
509 /**
510  * ubifs_change_lp - change LEB properties.
511  * @c: the UBIFS file-system description object
512  * @lp: LEB properties to change
513  * @free: new free space amount
514  * @dirty: new dirty space amount
515  * @flags: new flags
516  * @idx_gc_cnt: change to the count of @idx_gc list
517  *
518  * This function changes LEB properties (@free, @dirty or @flag). However, the
519  * property which has the %LPROPS_NC value is not changed. Returns a pointer to
520  * the updated LEB properties on success and a negative error code on failure.
521  *
522  * Note, the LEB properties may have had to be copied (due to COW) and
523  * consequently the pointer returned may not be the same as the pointer
524  * passed.
525  */
526 const struct ubifs_lprops *ubifs_change_lp(struct ubifs_info *c,
527 					   const struct ubifs_lprops *lp,
528 					   int free, int dirty, int flags,
529 					   int idx_gc_cnt)
530 {
531 	/*
532 	 * This is the only function that is allowed to change lprops, so we
533 	 * discard the "const" qualifier.
534 	 */
535 	struct ubifs_lprops *lprops = (struct ubifs_lprops *)lp;
536 
537 	dbg_lp("LEB %d, free %d, dirty %d, flags %d",
538 	       lprops->lnum, free, dirty, flags);
539 
540 	ubifs_assert(mutex_is_locked(&c->lp_mutex));
541 	ubifs_assert(c->lst.empty_lebs >= 0 &&
542 		     c->lst.empty_lebs <= c->main_lebs);
543 	ubifs_assert(c->freeable_cnt >= 0);
544 	ubifs_assert(c->freeable_cnt <= c->main_lebs);
545 	ubifs_assert(c->lst.taken_empty_lebs >= 0);
546 	ubifs_assert(c->lst.taken_empty_lebs <= c->lst.empty_lebs);
547 	ubifs_assert(!(c->lst.total_free & 7) && !(c->lst.total_dirty & 7));
548 	ubifs_assert(!(c->lst.total_dead & 7) && !(c->lst.total_dark & 7));
549 	ubifs_assert(!(c->lst.total_used & 7));
550 	ubifs_assert(free == LPROPS_NC || free >= 0);
551 	ubifs_assert(dirty == LPROPS_NC || dirty >= 0);
552 
553 	if (!is_lprops_dirty(c, lprops)) {
554 		lprops = ubifs_lpt_lookup_dirty(c, lprops->lnum);
555 		if (IS_ERR(lprops))
556 			return lprops;
557 	} else
558 		ubifs_assert(lprops == ubifs_lpt_lookup_dirty(c, lprops->lnum));
559 
560 	ubifs_assert(!(lprops->free & 7) && !(lprops->dirty & 7));
561 
562 	spin_lock(&c->space_lock);
563 	if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size)
564 		c->lst.taken_empty_lebs -= 1;
565 
566 	if (!(lprops->flags & LPROPS_INDEX)) {
567 		int old_spc;
568 
569 		old_spc = lprops->free + lprops->dirty;
570 		if (old_spc < c->dead_wm)
571 			c->lst.total_dead -= old_spc;
572 		else
573 			c->lst.total_dark -= ubifs_calc_dark(c, old_spc);
574 
575 		c->lst.total_used -= c->leb_size - old_spc;
576 	}
577 
578 	if (free != LPROPS_NC) {
579 		free = ALIGN(free, 8);
580 		c->lst.total_free += free - lprops->free;
581 
582 		/* Increase or decrease empty LEBs counter if needed */
583 		if (free == c->leb_size) {
584 			if (lprops->free != c->leb_size)
585 				c->lst.empty_lebs += 1;
586 		} else if (lprops->free == c->leb_size)
587 			c->lst.empty_lebs -= 1;
588 		lprops->free = free;
589 	}
590 
591 	if (dirty != LPROPS_NC) {
592 		dirty = ALIGN(dirty, 8);
593 		c->lst.total_dirty += dirty - lprops->dirty;
594 		lprops->dirty = dirty;
595 	}
596 
597 	if (flags != LPROPS_NC) {
598 		/* Take care about indexing LEBs counter if needed */
599 		if ((lprops->flags & LPROPS_INDEX)) {
600 			if (!(flags & LPROPS_INDEX))
601 				c->lst.idx_lebs -= 1;
602 		} else if (flags & LPROPS_INDEX)
603 			c->lst.idx_lebs += 1;
604 		lprops->flags = flags;
605 	}
606 
607 	if (!(lprops->flags & LPROPS_INDEX)) {
608 		int new_spc;
609 
610 		new_spc = lprops->free + lprops->dirty;
611 		if (new_spc < c->dead_wm)
612 			c->lst.total_dead += new_spc;
613 		else
614 			c->lst.total_dark += ubifs_calc_dark(c, new_spc);
615 
616 		c->lst.total_used += c->leb_size - new_spc;
617 	}
618 
619 	if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size)
620 		c->lst.taken_empty_lebs += 1;
621 
622 	change_category(c, lprops);
623 	c->idx_gc_cnt += idx_gc_cnt;
624 	spin_unlock(&c->space_lock);
625 	return lprops;
626 }
627 
628 /**
629  * ubifs_get_lp_stats - get lprops statistics.
630  * @c: UBIFS file-system description object
631  * @st: return statistics
632  */
633 void ubifs_get_lp_stats(struct ubifs_info *c, struct ubifs_lp_stats *lst)
634 {
635 	spin_lock(&c->space_lock);
636 	memcpy(lst, &c->lst, sizeof(struct ubifs_lp_stats));
637 	spin_unlock(&c->space_lock);
638 }
639 
640 /**
641  * ubifs_change_one_lp - change LEB properties.
642  * @c: the UBIFS file-system description object
643  * @lnum: LEB to change properties for
644  * @free: amount of free space
645  * @dirty: amount of dirty space
646  * @flags_set: flags to set
647  * @flags_clean: flags to clean
648  * @idx_gc_cnt: change to the count of idx_gc list
649  *
650  * This function changes properties of LEB @lnum. It is a helper wrapper over
651  * 'ubifs_change_lp()' which hides lprops get/release. The arguments are the
652  * same as in case of 'ubifs_change_lp()'. Returns zero in case of success and
653  * a negative error code in case of failure.
654  */
655 int ubifs_change_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
656 			int flags_set, int flags_clean, int idx_gc_cnt)
657 {
658 	int err = 0, flags;
659 	const struct ubifs_lprops *lp;
660 
661 	ubifs_get_lprops(c);
662 
663 	lp = ubifs_lpt_lookup_dirty(c, lnum);
664 	if (IS_ERR(lp)) {
665 		err = PTR_ERR(lp);
666 		goto out;
667 	}
668 
669 	flags = (lp->flags | flags_set) & ~flags_clean;
670 	lp = ubifs_change_lp(c, lp, free, dirty, flags, idx_gc_cnt);
671 	if (IS_ERR(lp))
672 		err = PTR_ERR(lp);
673 
674 out:
675 	ubifs_release_lprops(c);
676 	if (err)
677 		ubifs_err(c, "cannot change properties of LEB %d, error %d",
678 			  lnum, err);
679 	return err;
680 }
681 
682 /**
683  * ubifs_update_one_lp - update LEB properties.
684  * @c: the UBIFS file-system description object
685  * @lnum: LEB to change properties for
686  * @free: amount of free space
687  * @dirty: amount of dirty space to add
688  * @flags_set: flags to set
689  * @flags_clean: flags to clean
690  *
691  * This function is the same as 'ubifs_change_one_lp()' but @dirty is added to
692  * current dirty space, not substitutes it.
693  */
694 int ubifs_update_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
695 			int flags_set, int flags_clean)
696 {
697 	int err = 0, flags;
698 	const struct ubifs_lprops *lp;
699 
700 	ubifs_get_lprops(c);
701 
702 	lp = ubifs_lpt_lookup_dirty(c, lnum);
703 	if (IS_ERR(lp)) {
704 		err = PTR_ERR(lp);
705 		goto out;
706 	}
707 
708 	flags = (lp->flags | flags_set) & ~flags_clean;
709 	lp = ubifs_change_lp(c, lp, free, lp->dirty + dirty, flags, 0);
710 	if (IS_ERR(lp))
711 		err = PTR_ERR(lp);
712 
713 out:
714 	ubifs_release_lprops(c);
715 	if (err)
716 		ubifs_err(c, "cannot update properties of LEB %d, error %d",
717 			  lnum, err);
718 	return err;
719 }
720 
721 /**
722  * ubifs_read_one_lp - read LEB properties.
723  * @c: the UBIFS file-system description object
724  * @lnum: LEB to read properties for
725  * @lp: where to store read properties
726  *
727  * This helper function reads properties of a LEB @lnum and stores them in @lp.
728  * Returns zero in case of success and a negative error code in case of
729  * failure.
730  */
731 int ubifs_read_one_lp(struct ubifs_info *c, int lnum, struct ubifs_lprops *lp)
732 {
733 	int err = 0;
734 	const struct ubifs_lprops *lpp;
735 
736 	ubifs_get_lprops(c);
737 
738 	lpp = ubifs_lpt_lookup(c, lnum);
739 	if (IS_ERR(lpp)) {
740 		err = PTR_ERR(lpp);
741 		ubifs_err(c, "cannot read properties of LEB %d, error %d",
742 			  lnum, err);
743 		goto out;
744 	}
745 
746 	memcpy(lp, lpp, sizeof(struct ubifs_lprops));
747 
748 out:
749 	ubifs_release_lprops(c);
750 	return err;
751 }
752 
753 /**
754  * ubifs_fast_find_free - try to find a LEB with free space quickly.
755  * @c: the UBIFS file-system description object
756  *
757  * This function returns LEB properties for a LEB with free space or %NULL if
758  * the function is unable to find a LEB quickly.
759  */
760 const struct ubifs_lprops *ubifs_fast_find_free(struct ubifs_info *c)
761 {
762 	struct ubifs_lprops *lprops;
763 	struct ubifs_lpt_heap *heap;
764 
765 	ubifs_assert(mutex_is_locked(&c->lp_mutex));
766 
767 	heap = &c->lpt_heap[LPROPS_FREE - 1];
768 	if (heap->cnt == 0)
769 		return NULL;
770 
771 	lprops = heap->arr[0];
772 	ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
773 	ubifs_assert(!(lprops->flags & LPROPS_INDEX));
774 	return lprops;
775 }
776 
777 /**
778  * ubifs_fast_find_empty - try to find an empty LEB quickly.
779  * @c: the UBIFS file-system description object
780  *
781  * This function returns LEB properties for an empty LEB or %NULL if the
782  * function is unable to find an empty LEB quickly.
783  */
784 const struct ubifs_lprops *ubifs_fast_find_empty(struct ubifs_info *c)
785 {
786 	struct ubifs_lprops *lprops;
787 
788 	ubifs_assert(mutex_is_locked(&c->lp_mutex));
789 
790 	if (list_empty(&c->empty_list))
791 		return NULL;
792 
793 	lprops = list_entry(c->empty_list.next, struct ubifs_lprops, list);
794 	ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
795 	ubifs_assert(!(lprops->flags & LPROPS_INDEX));
796 	ubifs_assert(lprops->free == c->leb_size);
797 	return lprops;
798 }
799 
800 /**
801  * ubifs_fast_find_freeable - try to find a freeable LEB quickly.
802  * @c: the UBIFS file-system description object
803  *
804  * This function returns LEB properties for a freeable LEB or %NULL if the
805  * function is unable to find a freeable LEB quickly.
806  */
807 const struct ubifs_lprops *ubifs_fast_find_freeable(struct ubifs_info *c)
808 {
809 	struct ubifs_lprops *lprops;
810 
811 	ubifs_assert(mutex_is_locked(&c->lp_mutex));
812 
813 	if (list_empty(&c->freeable_list))
814 		return NULL;
815 
816 	lprops = list_entry(c->freeable_list.next, struct ubifs_lprops, list);
817 	ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
818 	ubifs_assert(!(lprops->flags & LPROPS_INDEX));
819 	ubifs_assert(lprops->free + lprops->dirty == c->leb_size);
820 	ubifs_assert(c->freeable_cnt > 0);
821 	return lprops;
822 }
823 
824 /**
825  * ubifs_fast_find_frdi_idx - try to find a freeable index LEB quickly.
826  * @c: the UBIFS file-system description object
827  *
828  * This function returns LEB properties for a freeable index LEB or %NULL if the
829  * function is unable to find a freeable index LEB quickly.
830  */
831 const struct ubifs_lprops *ubifs_fast_find_frdi_idx(struct ubifs_info *c)
832 {
833 	struct ubifs_lprops *lprops;
834 
835 	ubifs_assert(mutex_is_locked(&c->lp_mutex));
836 
837 	if (list_empty(&c->frdi_idx_list))
838 		return NULL;
839 
840 	lprops = list_entry(c->frdi_idx_list.next, struct ubifs_lprops, list);
841 	ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
842 	ubifs_assert((lprops->flags & LPROPS_INDEX));
843 	ubifs_assert(lprops->free + lprops->dirty == c->leb_size);
844 	return lprops;
845 }
846 
847 /*
848  * Everything below is related to debugging.
849  */
850 
851 /**
852  * dbg_check_cats - check category heaps and lists.
853  * @c: UBIFS file-system description object
854  *
855  * This function returns %0 on success and a negative error code on failure.
856  */
857 int dbg_check_cats(struct ubifs_info *c)
858 {
859 	struct ubifs_lprops *lprops;
860 	struct list_head *pos;
861 	int i, cat;
862 
863 	if (!dbg_is_chk_gen(c) && !dbg_is_chk_lprops(c))
864 		return 0;
865 
866 	list_for_each_entry(lprops, &c->empty_list, list) {
867 		if (lprops->free != c->leb_size) {
868 			ubifs_err(c, "non-empty LEB %d on empty list (free %d dirty %d flags %d)",
869 				  lprops->lnum, lprops->free, lprops->dirty,
870 				  lprops->flags);
871 			return -EINVAL;
872 		}
873 		if (lprops->flags & LPROPS_TAKEN) {
874 			ubifs_err(c, "taken LEB %d on empty list (free %d dirty %d flags %d)",
875 				  lprops->lnum, lprops->free, lprops->dirty,
876 				  lprops->flags);
877 			return -EINVAL;
878 		}
879 	}
880 
881 	i = 0;
882 	list_for_each_entry(lprops, &c->freeable_list, list) {
883 		if (lprops->free + lprops->dirty != c->leb_size) {
884 			ubifs_err(c, "non-freeable LEB %d on freeable list (free %d dirty %d flags %d)",
885 				  lprops->lnum, lprops->free, lprops->dirty,
886 				  lprops->flags);
887 			return -EINVAL;
888 		}
889 		if (lprops->flags & LPROPS_TAKEN) {
890 			ubifs_err(c, "taken LEB %d on freeable list (free %d dirty %d flags %d)",
891 				  lprops->lnum, lprops->free, lprops->dirty,
892 				  lprops->flags);
893 			return -EINVAL;
894 		}
895 		i += 1;
896 	}
897 	if (i != c->freeable_cnt) {
898 		ubifs_err(c, "freeable list count %d expected %d", i,
899 			  c->freeable_cnt);
900 		return -EINVAL;
901 	}
902 
903 	i = 0;
904 	list_for_each(pos, &c->idx_gc)
905 		i += 1;
906 	if (i != c->idx_gc_cnt) {
907 		ubifs_err(c, "idx_gc list count %d expected %d", i,
908 			  c->idx_gc_cnt);
909 		return -EINVAL;
910 	}
911 
912 	list_for_each_entry(lprops, &c->frdi_idx_list, list) {
913 		if (lprops->free + lprops->dirty != c->leb_size) {
914 			ubifs_err(c, "non-freeable LEB %d on frdi_idx list (free %d dirty %d flags %d)",
915 				  lprops->lnum, lprops->free, lprops->dirty,
916 				  lprops->flags);
917 			return -EINVAL;
918 		}
919 		if (lprops->flags & LPROPS_TAKEN) {
920 			ubifs_err(c, "taken LEB %d on frdi_idx list (free %d dirty %d flags %d)",
921 				  lprops->lnum, lprops->free, lprops->dirty,
922 				  lprops->flags);
923 			return -EINVAL;
924 		}
925 		if (!(lprops->flags & LPROPS_INDEX)) {
926 			ubifs_err(c, "non-index LEB %d on frdi_idx list (free %d dirty %d flags %d)",
927 				  lprops->lnum, lprops->free, lprops->dirty,
928 				  lprops->flags);
929 			return -EINVAL;
930 		}
931 	}
932 
933 	for (cat = 1; cat <= LPROPS_HEAP_CNT; cat++) {
934 		struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
935 
936 		for (i = 0; i < heap->cnt; i++) {
937 			lprops = heap->arr[i];
938 			if (!lprops) {
939 				ubifs_err(c, "null ptr in LPT heap cat %d", cat);
940 				return -EINVAL;
941 			}
942 			if (lprops->hpos != i) {
943 				ubifs_err(c, "bad ptr in LPT heap cat %d", cat);
944 				return -EINVAL;
945 			}
946 			if (lprops->flags & LPROPS_TAKEN) {
947 				ubifs_err(c, "taken LEB in LPT heap cat %d", cat);
948 				return -EINVAL;
949 			}
950 		}
951 	}
952 
953 	return 0;
954 }
955 
956 void dbg_check_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat,
957 		    int add_pos)
958 {
959 	int i = 0, j, err = 0;
960 
961 	if (!dbg_is_chk_gen(c) && !dbg_is_chk_lprops(c))
962 		return;
963 
964 	for (i = 0; i < heap->cnt; i++) {
965 		struct ubifs_lprops *lprops = heap->arr[i];
966 		struct ubifs_lprops *lp;
967 
968 		if (i != add_pos)
969 			if ((lprops->flags & LPROPS_CAT_MASK) != cat) {
970 				err = 1;
971 				goto out;
972 			}
973 		if (lprops->hpos != i) {
974 			err = 2;
975 			goto out;
976 		}
977 		lp = ubifs_lpt_lookup(c, lprops->lnum);
978 		if (IS_ERR(lp)) {
979 			err = 3;
980 			goto out;
981 		}
982 		if (lprops != lp) {
983 			ubifs_err(c, "lprops %zx lp %zx lprops->lnum %d lp->lnum %d",
984 				  (size_t)lprops, (size_t)lp, lprops->lnum,
985 				  lp->lnum);
986 			err = 4;
987 			goto out;
988 		}
989 		for (j = 0; j < i; j++) {
990 			lp = heap->arr[j];
991 			if (lp == lprops) {
992 				err = 5;
993 				goto out;
994 			}
995 			if (lp->lnum == lprops->lnum) {
996 				err = 6;
997 				goto out;
998 			}
999 		}
1000 	}
1001 out:
1002 	if (err) {
1003 		ubifs_err(c, "failed cat %d hpos %d err %d", cat, i, err);
1004 		dump_stack();
1005 		ubifs_dump_heap(c, heap, cat);
1006 	}
1007 }
1008 
1009 /**
1010  * scan_check_cb - scan callback.
1011  * @c: the UBIFS file-system description object
1012  * @lp: LEB properties to scan
1013  * @in_tree: whether the LEB properties are in main memory
1014  * @lst: lprops statistics to update
1015  *
1016  * This function returns a code that indicates whether the scan should continue
1017  * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
1018  * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
1019  * (%LPT_SCAN_STOP).
1020  */
1021 static int scan_check_cb(struct ubifs_info *c,
1022 			 const struct ubifs_lprops *lp, int in_tree,
1023 			 struct ubifs_lp_stats *lst)
1024 {
1025 	struct ubifs_scan_leb *sleb;
1026 	struct ubifs_scan_node *snod;
1027 	int cat, lnum = lp->lnum, is_idx = 0, used = 0, free, dirty, ret;
1028 	void *buf = NULL;
1029 
1030 	cat = lp->flags & LPROPS_CAT_MASK;
1031 	if (cat != LPROPS_UNCAT) {
1032 		cat = ubifs_categorize_lprops(c, lp);
1033 		if (cat != (lp->flags & LPROPS_CAT_MASK)) {
1034 			ubifs_err(c, "bad LEB category %d expected %d",
1035 				  (lp->flags & LPROPS_CAT_MASK), cat);
1036 			return -EINVAL;
1037 		}
1038 	}
1039 
1040 	/* Check lp is on its category list (if it has one) */
1041 	if (in_tree) {
1042 		struct list_head *list = NULL;
1043 
1044 		switch (cat) {
1045 		case LPROPS_EMPTY:
1046 			list = &c->empty_list;
1047 			break;
1048 		case LPROPS_FREEABLE:
1049 			list = &c->freeable_list;
1050 			break;
1051 		case LPROPS_FRDI_IDX:
1052 			list = &c->frdi_idx_list;
1053 			break;
1054 		case LPROPS_UNCAT:
1055 			list = &c->uncat_list;
1056 			break;
1057 		}
1058 		if (list) {
1059 			struct ubifs_lprops *lprops;
1060 			int found = 0;
1061 
1062 			list_for_each_entry(lprops, list, list) {
1063 				if (lprops == lp) {
1064 					found = 1;
1065 					break;
1066 				}
1067 			}
1068 			if (!found) {
1069 				ubifs_err(c, "bad LPT list (category %d)", cat);
1070 				return -EINVAL;
1071 			}
1072 		}
1073 	}
1074 
1075 	/* Check lp is on its category heap (if it has one) */
1076 	if (in_tree && cat > 0 && cat <= LPROPS_HEAP_CNT) {
1077 		struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
1078 
1079 		if ((lp->hpos != -1 && heap->arr[lp->hpos]->lnum != lnum) ||
1080 		    lp != heap->arr[lp->hpos]) {
1081 			ubifs_err(c, "bad LPT heap (category %d)", cat);
1082 			return -EINVAL;
1083 		}
1084 	}
1085 
1086 	buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
1087 	if (!buf)
1088 		return -ENOMEM;
1089 
1090 	/*
1091 	 * After an unclean unmount, empty and freeable LEBs
1092 	 * may contain garbage - do not scan them.
1093 	 */
1094 	if (lp->free == c->leb_size) {
1095 		lst->empty_lebs += 1;
1096 		lst->total_free += c->leb_size;
1097 		lst->total_dark += ubifs_calc_dark(c, c->leb_size);
1098 		return LPT_SCAN_CONTINUE;
1099 	}
1100 	if (lp->free + lp->dirty == c->leb_size &&
1101 	    !(lp->flags & LPROPS_INDEX)) {
1102 		lst->total_free  += lp->free;
1103 		lst->total_dirty += lp->dirty;
1104 		lst->total_dark  +=  ubifs_calc_dark(c, c->leb_size);
1105 		return LPT_SCAN_CONTINUE;
1106 	}
1107 
1108 	sleb = ubifs_scan(c, lnum, 0, buf, 0);
1109 	if (IS_ERR(sleb)) {
1110 		ret = PTR_ERR(sleb);
1111 		if (ret == -EUCLEAN) {
1112 			ubifs_dump_lprops(c);
1113 			ubifs_dump_budg(c, &c->bi);
1114 		}
1115 		goto out;
1116 	}
1117 
1118 	is_idx = -1;
1119 	list_for_each_entry(snod, &sleb->nodes, list) {
1120 		int found, level = 0;
1121 
1122 		cond_resched();
1123 
1124 		if (is_idx == -1)
1125 			is_idx = (snod->type == UBIFS_IDX_NODE) ? 1 : 0;
1126 
1127 		if (is_idx && snod->type != UBIFS_IDX_NODE) {
1128 			ubifs_err(c, "indexing node in data LEB %d:%d",
1129 				  lnum, snod->offs);
1130 			goto out_destroy;
1131 		}
1132 
1133 		if (snod->type == UBIFS_IDX_NODE) {
1134 			struct ubifs_idx_node *idx = snod->node;
1135 
1136 			key_read(c, ubifs_idx_key(c, idx), &snod->key);
1137 			level = le16_to_cpu(idx->level);
1138 		}
1139 
1140 		found = ubifs_tnc_has_node(c, &snod->key, level, lnum,
1141 					   snod->offs, is_idx);
1142 		if (found) {
1143 			if (found < 0)
1144 				goto out_destroy;
1145 			used += ALIGN(snod->len, 8);
1146 		}
1147 	}
1148 
1149 	free = c->leb_size - sleb->endpt;
1150 	dirty = sleb->endpt - used;
1151 
1152 	if (free > c->leb_size || free < 0 || dirty > c->leb_size ||
1153 	    dirty < 0) {
1154 		ubifs_err(c, "bad calculated accounting for LEB %d: free %d, dirty %d",
1155 			  lnum, free, dirty);
1156 		goto out_destroy;
1157 	}
1158 
1159 	if (lp->free + lp->dirty == c->leb_size &&
1160 	    free + dirty == c->leb_size)
1161 		if ((is_idx && !(lp->flags & LPROPS_INDEX)) ||
1162 		    (!is_idx && free == c->leb_size) ||
1163 		    lp->free == c->leb_size) {
1164 			/*
1165 			 * Empty or freeable LEBs could contain index
1166 			 * nodes from an uncompleted commit due to an
1167 			 * unclean unmount. Or they could be empty for
1168 			 * the same reason. Or it may simply not have been
1169 			 * unmapped.
1170 			 */
1171 			free = lp->free;
1172 			dirty = lp->dirty;
1173 			is_idx = 0;
1174 		    }
1175 
1176 	if (is_idx && lp->free + lp->dirty == free + dirty &&
1177 	    lnum != c->ihead_lnum) {
1178 		/*
1179 		 * After an unclean unmount, an index LEB could have a different
1180 		 * amount of free space than the value recorded by lprops. That
1181 		 * is because the in-the-gaps method may use free space or
1182 		 * create free space (as a side-effect of using ubi_leb_change
1183 		 * and not writing the whole LEB). The incorrect free space
1184 		 * value is not a problem because the index is only ever
1185 		 * allocated empty LEBs, so there will never be an attempt to
1186 		 * write to the free space at the end of an index LEB - except
1187 		 * by the in-the-gaps method for which it is not a problem.
1188 		 */
1189 		free = lp->free;
1190 		dirty = lp->dirty;
1191 	}
1192 
1193 	if (lp->free != free || lp->dirty != dirty)
1194 		goto out_print;
1195 
1196 	if (is_idx && !(lp->flags & LPROPS_INDEX)) {
1197 		if (free == c->leb_size)
1198 			/* Free but not unmapped LEB, it's fine */
1199 			is_idx = 0;
1200 		else {
1201 			ubifs_err(c, "indexing node without indexing flag");
1202 			goto out_print;
1203 		}
1204 	}
1205 
1206 	if (!is_idx && (lp->flags & LPROPS_INDEX)) {
1207 		ubifs_err(c, "data node with indexing flag");
1208 		goto out_print;
1209 	}
1210 
1211 	if (free == c->leb_size)
1212 		lst->empty_lebs += 1;
1213 
1214 	if (is_idx)
1215 		lst->idx_lebs += 1;
1216 
1217 	if (!(lp->flags & LPROPS_INDEX))
1218 		lst->total_used += c->leb_size - free - dirty;
1219 	lst->total_free += free;
1220 	lst->total_dirty += dirty;
1221 
1222 	if (!(lp->flags & LPROPS_INDEX)) {
1223 		int spc = free + dirty;
1224 
1225 		if (spc < c->dead_wm)
1226 			lst->total_dead += spc;
1227 		else
1228 			lst->total_dark += ubifs_calc_dark(c, spc);
1229 	}
1230 
1231 	ubifs_scan_destroy(sleb);
1232 	vfree(buf);
1233 	return LPT_SCAN_CONTINUE;
1234 
1235 out_print:
1236 	ubifs_err(c, "bad accounting of LEB %d: free %d, dirty %d flags %#x, should be free %d, dirty %d",
1237 		  lnum, lp->free, lp->dirty, lp->flags, free, dirty);
1238 	ubifs_dump_leb(c, lnum);
1239 out_destroy:
1240 	ubifs_scan_destroy(sleb);
1241 	ret = -EINVAL;
1242 out:
1243 	vfree(buf);
1244 	return ret;
1245 }
1246 
1247 /**
1248  * dbg_check_lprops - check all LEB properties.
1249  * @c: UBIFS file-system description object
1250  *
1251  * This function checks all LEB properties and makes sure they are all correct.
1252  * It returns zero if everything is fine, %-EINVAL if there is an inconsistency
1253  * and other negative error codes in case of other errors. This function is
1254  * called while the file system is locked (because of commit start), so no
1255  * additional locking is required. Note that locking the LPT mutex would cause
1256  * a circular lock dependency with the TNC mutex.
1257  */
1258 int dbg_check_lprops(struct ubifs_info *c)
1259 {
1260 	int i, err;
1261 	struct ubifs_lp_stats lst;
1262 
1263 	if (!dbg_is_chk_lprops(c))
1264 		return 0;
1265 
1266 	/*
1267 	 * As we are going to scan the media, the write buffers have to be
1268 	 * synchronized.
1269 	 */
1270 	for (i = 0; i < c->jhead_cnt; i++) {
1271 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1272 		if (err)
1273 			return err;
1274 	}
1275 
1276 	memset(&lst, 0, sizeof(struct ubifs_lp_stats));
1277 	err = ubifs_lpt_scan_nolock(c, c->main_first, c->leb_cnt - 1,
1278 				    (ubifs_lpt_scan_callback)scan_check_cb,
1279 				    &lst);
1280 	if (err && err != -ENOSPC)
1281 		goto out;
1282 
1283 	if (lst.empty_lebs != c->lst.empty_lebs ||
1284 	    lst.idx_lebs != c->lst.idx_lebs ||
1285 	    lst.total_free != c->lst.total_free ||
1286 	    lst.total_dirty != c->lst.total_dirty ||
1287 	    lst.total_used != c->lst.total_used) {
1288 		ubifs_err(c, "bad overall accounting");
1289 		ubifs_err(c, "calculated: empty_lebs %d, idx_lebs %d, total_free %lld, total_dirty %lld, total_used %lld",
1290 			  lst.empty_lebs, lst.idx_lebs, lst.total_free,
1291 			  lst.total_dirty, lst.total_used);
1292 		ubifs_err(c, "read from lprops: empty_lebs %d, idx_lebs %d, total_free %lld, total_dirty %lld, total_used %lld",
1293 			  c->lst.empty_lebs, c->lst.idx_lebs, c->lst.total_free,
1294 			  c->lst.total_dirty, c->lst.total_used);
1295 		err = -EINVAL;
1296 		goto out;
1297 	}
1298 
1299 	if (lst.total_dead != c->lst.total_dead ||
1300 	    lst.total_dark != c->lst.total_dark) {
1301 		ubifs_err(c, "bad dead/dark space accounting");
1302 		ubifs_err(c, "calculated: total_dead %lld, total_dark %lld",
1303 			  lst.total_dead, lst.total_dark);
1304 		ubifs_err(c, "read from lprops: total_dead %lld, total_dark %lld",
1305 			  c->lst.total_dead, c->lst.total_dark);
1306 		err = -EINVAL;
1307 		goto out;
1308 	}
1309 
1310 	err = dbg_check_cats(c);
1311 out:
1312 	return err;
1313 }
1314