1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * SPDX-License-Identifier: GPL-2.0+ 7 * 8 * Authors: Adrian Hunter 9 * Artem Bityutskiy (Битюцкий Артём) 10 */ 11 12 /* 13 * This file implements the functions that access LEB properties and their 14 * categories. LEBs are categorized based on the needs of UBIFS, and the 15 * categories are stored as either heaps or lists to provide a fast way of 16 * finding a LEB in a particular category. For example, UBIFS may need to find 17 * an empty LEB for the journal, or a very dirty LEB for garbage collection. 18 */ 19 20 #ifdef __UBOOT__ 21 #include <linux/err.h> 22 #endif 23 #include "ubifs.h" 24 25 /** 26 * get_heap_comp_val - get the LEB properties value for heap comparisons. 27 * @lprops: LEB properties 28 * @cat: LEB category 29 */ 30 static int get_heap_comp_val(struct ubifs_lprops *lprops, int cat) 31 { 32 switch (cat) { 33 case LPROPS_FREE: 34 return lprops->free; 35 case LPROPS_DIRTY_IDX: 36 return lprops->free + lprops->dirty; 37 default: 38 return lprops->dirty; 39 } 40 } 41 42 /** 43 * move_up_lpt_heap - move a new heap entry up as far as possible. 44 * @c: UBIFS file-system description object 45 * @heap: LEB category heap 46 * @lprops: LEB properties to move 47 * @cat: LEB category 48 * 49 * New entries to a heap are added at the bottom and then moved up until the 50 * parent's value is greater. In the case of LPT's category heaps, the value 51 * is either the amount of free space or the amount of dirty space, depending 52 * on the category. 53 */ 54 static void move_up_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, 55 struct ubifs_lprops *lprops, int cat) 56 { 57 int val1, val2, hpos; 58 59 hpos = lprops->hpos; 60 if (!hpos) 61 return; /* Already top of the heap */ 62 val1 = get_heap_comp_val(lprops, cat); 63 /* Compare to parent and, if greater, move up the heap */ 64 do { 65 int ppos = (hpos - 1) / 2; 66 67 val2 = get_heap_comp_val(heap->arr[ppos], cat); 68 if (val2 >= val1) 69 return; 70 /* Greater than parent so move up */ 71 heap->arr[ppos]->hpos = hpos; 72 heap->arr[hpos] = heap->arr[ppos]; 73 heap->arr[ppos] = lprops; 74 lprops->hpos = ppos; 75 hpos = ppos; 76 } while (hpos); 77 } 78 79 /** 80 * adjust_lpt_heap - move a changed heap entry up or down the heap. 81 * @c: UBIFS file-system description object 82 * @heap: LEB category heap 83 * @lprops: LEB properties to move 84 * @hpos: heap position of @lprops 85 * @cat: LEB category 86 * 87 * Changed entries in a heap are moved up or down until the parent's value is 88 * greater. In the case of LPT's category heaps, the value is either the amount 89 * of free space or the amount of dirty space, depending on the category. 90 */ 91 static void adjust_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, 92 struct ubifs_lprops *lprops, int hpos, int cat) 93 { 94 int val1, val2, val3, cpos; 95 96 val1 = get_heap_comp_val(lprops, cat); 97 /* Compare to parent and, if greater than parent, move up the heap */ 98 if (hpos) { 99 int ppos = (hpos - 1) / 2; 100 101 val2 = get_heap_comp_val(heap->arr[ppos], cat); 102 if (val1 > val2) { 103 /* Greater than parent so move up */ 104 while (1) { 105 heap->arr[ppos]->hpos = hpos; 106 heap->arr[hpos] = heap->arr[ppos]; 107 heap->arr[ppos] = lprops; 108 lprops->hpos = ppos; 109 hpos = ppos; 110 if (!hpos) 111 return; 112 ppos = (hpos - 1) / 2; 113 val2 = get_heap_comp_val(heap->arr[ppos], cat); 114 if (val1 <= val2) 115 return; 116 /* Still greater than parent so keep going */ 117 } 118 } 119 } 120 121 /* Not greater than parent, so compare to children */ 122 while (1) { 123 /* Compare to left child */ 124 cpos = hpos * 2 + 1; 125 if (cpos >= heap->cnt) 126 return; 127 val2 = get_heap_comp_val(heap->arr[cpos], cat); 128 if (val1 < val2) { 129 /* Less than left child, so promote biggest child */ 130 if (cpos + 1 < heap->cnt) { 131 val3 = get_heap_comp_val(heap->arr[cpos + 1], 132 cat); 133 if (val3 > val2) 134 cpos += 1; /* Right child is bigger */ 135 } 136 heap->arr[cpos]->hpos = hpos; 137 heap->arr[hpos] = heap->arr[cpos]; 138 heap->arr[cpos] = lprops; 139 lprops->hpos = cpos; 140 hpos = cpos; 141 continue; 142 } 143 /* Compare to right child */ 144 cpos += 1; 145 if (cpos >= heap->cnt) 146 return; 147 val3 = get_heap_comp_val(heap->arr[cpos], cat); 148 if (val1 < val3) { 149 /* Less than right child, so promote right child */ 150 heap->arr[cpos]->hpos = hpos; 151 heap->arr[hpos] = heap->arr[cpos]; 152 heap->arr[cpos] = lprops; 153 lprops->hpos = cpos; 154 hpos = cpos; 155 continue; 156 } 157 return; 158 } 159 } 160 161 /** 162 * add_to_lpt_heap - add LEB properties to a LEB category heap. 163 * @c: UBIFS file-system description object 164 * @lprops: LEB properties to add 165 * @cat: LEB category 166 * 167 * This function returns %1 if @lprops is added to the heap for LEB category 168 * @cat, otherwise %0 is returned because the heap is full. 169 */ 170 static int add_to_lpt_heap(struct ubifs_info *c, struct ubifs_lprops *lprops, 171 int cat) 172 { 173 struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1]; 174 175 if (heap->cnt >= heap->max_cnt) { 176 const int b = LPT_HEAP_SZ / 2 - 1; 177 int cpos, val1, val2; 178 179 /* Compare to some other LEB on the bottom of heap */ 180 /* Pick a position kind of randomly */ 181 cpos = (((size_t)lprops >> 4) & b) + b; 182 ubifs_assert(cpos >= b); 183 ubifs_assert(cpos < LPT_HEAP_SZ); 184 ubifs_assert(cpos < heap->cnt); 185 186 val1 = get_heap_comp_val(lprops, cat); 187 val2 = get_heap_comp_val(heap->arr[cpos], cat); 188 if (val1 > val2) { 189 struct ubifs_lprops *lp; 190 191 lp = heap->arr[cpos]; 192 lp->flags &= ~LPROPS_CAT_MASK; 193 lp->flags |= LPROPS_UNCAT; 194 list_add(&lp->list, &c->uncat_list); 195 lprops->hpos = cpos; 196 heap->arr[cpos] = lprops; 197 move_up_lpt_heap(c, heap, lprops, cat); 198 dbg_check_heap(c, heap, cat, lprops->hpos); 199 return 1; /* Added to heap */ 200 } 201 dbg_check_heap(c, heap, cat, -1); 202 return 0; /* Not added to heap */ 203 } else { 204 lprops->hpos = heap->cnt++; 205 heap->arr[lprops->hpos] = lprops; 206 move_up_lpt_heap(c, heap, lprops, cat); 207 dbg_check_heap(c, heap, cat, lprops->hpos); 208 return 1; /* Added to heap */ 209 } 210 } 211 212 /** 213 * remove_from_lpt_heap - remove LEB properties from a LEB category heap. 214 * @c: UBIFS file-system description object 215 * @lprops: LEB properties to remove 216 * @cat: LEB category 217 */ 218 static void remove_from_lpt_heap(struct ubifs_info *c, 219 struct ubifs_lprops *lprops, int cat) 220 { 221 struct ubifs_lpt_heap *heap; 222 int hpos = lprops->hpos; 223 224 heap = &c->lpt_heap[cat - 1]; 225 ubifs_assert(hpos >= 0 && hpos < heap->cnt); 226 ubifs_assert(heap->arr[hpos] == lprops); 227 heap->cnt -= 1; 228 if (hpos < heap->cnt) { 229 heap->arr[hpos] = heap->arr[heap->cnt]; 230 heap->arr[hpos]->hpos = hpos; 231 adjust_lpt_heap(c, heap, heap->arr[hpos], hpos, cat); 232 } 233 dbg_check_heap(c, heap, cat, -1); 234 } 235 236 /** 237 * lpt_heap_replace - replace lprops in a category heap. 238 * @c: UBIFS file-system description object 239 * @old_lprops: LEB properties to replace 240 * @new_lprops: LEB properties with which to replace 241 * @cat: LEB category 242 * 243 * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode) 244 * and the lprops that the pnode contains. When that happens, references in 245 * the category heaps to those lprops must be updated to point to the new 246 * lprops. This function does that. 247 */ 248 static void lpt_heap_replace(struct ubifs_info *c, 249 struct ubifs_lprops *old_lprops, 250 struct ubifs_lprops *new_lprops, int cat) 251 { 252 struct ubifs_lpt_heap *heap; 253 int hpos = new_lprops->hpos; 254 255 heap = &c->lpt_heap[cat - 1]; 256 heap->arr[hpos] = new_lprops; 257 } 258 259 /** 260 * ubifs_add_to_cat - add LEB properties to a category list or heap. 261 * @c: UBIFS file-system description object 262 * @lprops: LEB properties to add 263 * @cat: LEB category to which to add 264 * 265 * LEB properties are categorized to enable fast find operations. 266 */ 267 void ubifs_add_to_cat(struct ubifs_info *c, struct ubifs_lprops *lprops, 268 int cat) 269 { 270 switch (cat) { 271 case LPROPS_DIRTY: 272 case LPROPS_DIRTY_IDX: 273 case LPROPS_FREE: 274 if (add_to_lpt_heap(c, lprops, cat)) 275 break; 276 /* No more room on heap so make it un-categorized */ 277 cat = LPROPS_UNCAT; 278 /* Fall through */ 279 case LPROPS_UNCAT: 280 list_add(&lprops->list, &c->uncat_list); 281 break; 282 case LPROPS_EMPTY: 283 list_add(&lprops->list, &c->empty_list); 284 break; 285 case LPROPS_FREEABLE: 286 list_add(&lprops->list, &c->freeable_list); 287 c->freeable_cnt += 1; 288 break; 289 case LPROPS_FRDI_IDX: 290 list_add(&lprops->list, &c->frdi_idx_list); 291 break; 292 default: 293 ubifs_assert(0); 294 } 295 296 lprops->flags &= ~LPROPS_CAT_MASK; 297 lprops->flags |= cat; 298 c->in_a_category_cnt += 1; 299 ubifs_assert(c->in_a_category_cnt <= c->main_lebs); 300 } 301 302 /** 303 * ubifs_remove_from_cat - remove LEB properties from a category list or heap. 304 * @c: UBIFS file-system description object 305 * @lprops: LEB properties to remove 306 * @cat: LEB category from which to remove 307 * 308 * LEB properties are categorized to enable fast find operations. 309 */ 310 static void ubifs_remove_from_cat(struct ubifs_info *c, 311 struct ubifs_lprops *lprops, int cat) 312 { 313 switch (cat) { 314 case LPROPS_DIRTY: 315 case LPROPS_DIRTY_IDX: 316 case LPROPS_FREE: 317 remove_from_lpt_heap(c, lprops, cat); 318 break; 319 case LPROPS_FREEABLE: 320 c->freeable_cnt -= 1; 321 ubifs_assert(c->freeable_cnt >= 0); 322 /* Fall through */ 323 case LPROPS_UNCAT: 324 case LPROPS_EMPTY: 325 case LPROPS_FRDI_IDX: 326 ubifs_assert(!list_empty(&lprops->list)); 327 list_del(&lprops->list); 328 break; 329 default: 330 ubifs_assert(0); 331 } 332 333 c->in_a_category_cnt -= 1; 334 ubifs_assert(c->in_a_category_cnt >= 0); 335 } 336 337 /** 338 * ubifs_replace_cat - replace lprops in a category list or heap. 339 * @c: UBIFS file-system description object 340 * @old_lprops: LEB properties to replace 341 * @new_lprops: LEB properties with which to replace 342 * 343 * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode) 344 * and the lprops that the pnode contains. When that happens, references in 345 * category lists and heaps must be replaced. This function does that. 346 */ 347 void ubifs_replace_cat(struct ubifs_info *c, struct ubifs_lprops *old_lprops, 348 struct ubifs_lprops *new_lprops) 349 { 350 int cat; 351 352 cat = new_lprops->flags & LPROPS_CAT_MASK; 353 switch (cat) { 354 case LPROPS_DIRTY: 355 case LPROPS_DIRTY_IDX: 356 case LPROPS_FREE: 357 lpt_heap_replace(c, old_lprops, new_lprops, cat); 358 break; 359 case LPROPS_UNCAT: 360 case LPROPS_EMPTY: 361 case LPROPS_FREEABLE: 362 case LPROPS_FRDI_IDX: 363 list_replace(&old_lprops->list, &new_lprops->list); 364 break; 365 default: 366 ubifs_assert(0); 367 } 368 } 369 370 /** 371 * ubifs_ensure_cat - ensure LEB properties are categorized. 372 * @c: UBIFS file-system description object 373 * @lprops: LEB properties 374 * 375 * A LEB may have fallen off of the bottom of a heap, and ended up as 376 * un-categorized even though it has enough space for us now. If that is the 377 * case this function will put the LEB back onto a heap. 378 */ 379 void ubifs_ensure_cat(struct ubifs_info *c, struct ubifs_lprops *lprops) 380 { 381 int cat = lprops->flags & LPROPS_CAT_MASK; 382 383 if (cat != LPROPS_UNCAT) 384 return; 385 cat = ubifs_categorize_lprops(c, lprops); 386 if (cat == LPROPS_UNCAT) 387 return; 388 ubifs_remove_from_cat(c, lprops, LPROPS_UNCAT); 389 ubifs_add_to_cat(c, lprops, cat); 390 } 391 392 /** 393 * ubifs_categorize_lprops - categorize LEB properties. 394 * @c: UBIFS file-system description object 395 * @lprops: LEB properties to categorize 396 * 397 * LEB properties are categorized to enable fast find operations. This function 398 * returns the LEB category to which the LEB properties belong. Note however 399 * that if the LEB category is stored as a heap and the heap is full, the 400 * LEB properties may have their category changed to %LPROPS_UNCAT. 401 */ 402 int ubifs_categorize_lprops(const struct ubifs_info *c, 403 const struct ubifs_lprops *lprops) 404 { 405 if (lprops->flags & LPROPS_TAKEN) 406 return LPROPS_UNCAT; 407 408 if (lprops->free == c->leb_size) { 409 ubifs_assert(!(lprops->flags & LPROPS_INDEX)); 410 return LPROPS_EMPTY; 411 } 412 413 if (lprops->free + lprops->dirty == c->leb_size) { 414 if (lprops->flags & LPROPS_INDEX) 415 return LPROPS_FRDI_IDX; 416 else 417 return LPROPS_FREEABLE; 418 } 419 420 if (lprops->flags & LPROPS_INDEX) { 421 if (lprops->dirty + lprops->free >= c->min_idx_node_sz) 422 return LPROPS_DIRTY_IDX; 423 } else { 424 if (lprops->dirty >= c->dead_wm && 425 lprops->dirty > lprops->free) 426 return LPROPS_DIRTY; 427 if (lprops->free > 0) 428 return LPROPS_FREE; 429 } 430 431 return LPROPS_UNCAT; 432 } 433 434 /** 435 * change_category - change LEB properties category. 436 * @c: UBIFS file-system description object 437 * @lprops: LEB properties to re-categorize 438 * 439 * LEB properties are categorized to enable fast find operations. When the LEB 440 * properties change they must be re-categorized. 441 */ 442 static void change_category(struct ubifs_info *c, struct ubifs_lprops *lprops) 443 { 444 int old_cat = lprops->flags & LPROPS_CAT_MASK; 445 int new_cat = ubifs_categorize_lprops(c, lprops); 446 447 if (old_cat == new_cat) { 448 struct ubifs_lpt_heap *heap; 449 450 /* lprops on a heap now must be moved up or down */ 451 if (new_cat < 1 || new_cat > LPROPS_HEAP_CNT) 452 return; /* Not on a heap */ 453 heap = &c->lpt_heap[new_cat - 1]; 454 adjust_lpt_heap(c, heap, lprops, lprops->hpos, new_cat); 455 } else { 456 ubifs_remove_from_cat(c, lprops, old_cat); 457 ubifs_add_to_cat(c, lprops, new_cat); 458 } 459 } 460 461 /** 462 * ubifs_calc_dark - calculate LEB dark space size. 463 * @c: the UBIFS file-system description object 464 * @spc: amount of free and dirty space in the LEB 465 * 466 * This function calculates and returns amount of dark space in an LEB which 467 * has @spc bytes of free and dirty space. 468 * 469 * UBIFS is trying to account the space which might not be usable, and this 470 * space is called "dark space". For example, if an LEB has only %512 free 471 * bytes, it is dark space, because it cannot fit a large data node. 472 */ 473 int ubifs_calc_dark(const struct ubifs_info *c, int spc) 474 { 475 ubifs_assert(!(spc & 7)); 476 477 if (spc < c->dark_wm) 478 return spc; 479 480 /* 481 * If we have slightly more space then the dark space watermark, we can 482 * anyway safely assume it we'll be able to write a node of the 483 * smallest size there. 484 */ 485 if (spc - c->dark_wm < MIN_WRITE_SZ) 486 return spc - MIN_WRITE_SZ; 487 488 return c->dark_wm; 489 } 490 491 /** 492 * is_lprops_dirty - determine if LEB properties are dirty. 493 * @c: the UBIFS file-system description object 494 * @lprops: LEB properties to test 495 */ 496 static int is_lprops_dirty(struct ubifs_info *c, struct ubifs_lprops *lprops) 497 { 498 struct ubifs_pnode *pnode; 499 int pos; 500 501 pos = (lprops->lnum - c->main_first) & (UBIFS_LPT_FANOUT - 1); 502 pnode = (struct ubifs_pnode *)container_of(lprops - pos, 503 struct ubifs_pnode, 504 lprops[0]); 505 return !test_bit(COW_CNODE, &pnode->flags) && 506 test_bit(DIRTY_CNODE, &pnode->flags); 507 } 508 509 /** 510 * ubifs_change_lp - change LEB properties. 511 * @c: the UBIFS file-system description object 512 * @lp: LEB properties to change 513 * @free: new free space amount 514 * @dirty: new dirty space amount 515 * @flags: new flags 516 * @idx_gc_cnt: change to the count of @idx_gc list 517 * 518 * This function changes LEB properties (@free, @dirty or @flag). However, the 519 * property which has the %LPROPS_NC value is not changed. Returns a pointer to 520 * the updated LEB properties on success and a negative error code on failure. 521 * 522 * Note, the LEB properties may have had to be copied (due to COW) and 523 * consequently the pointer returned may not be the same as the pointer 524 * passed. 525 */ 526 const struct ubifs_lprops *ubifs_change_lp(struct ubifs_info *c, 527 const struct ubifs_lprops *lp, 528 int free, int dirty, int flags, 529 int idx_gc_cnt) 530 { 531 /* 532 * This is the only function that is allowed to change lprops, so we 533 * discard the "const" qualifier. 534 */ 535 struct ubifs_lprops *lprops = (struct ubifs_lprops *)lp; 536 537 dbg_lp("LEB %d, free %d, dirty %d, flags %d", 538 lprops->lnum, free, dirty, flags); 539 540 ubifs_assert(mutex_is_locked(&c->lp_mutex)); 541 ubifs_assert(c->lst.empty_lebs >= 0 && 542 c->lst.empty_lebs <= c->main_lebs); 543 ubifs_assert(c->freeable_cnt >= 0); 544 ubifs_assert(c->freeable_cnt <= c->main_lebs); 545 ubifs_assert(c->lst.taken_empty_lebs >= 0); 546 ubifs_assert(c->lst.taken_empty_lebs <= c->lst.empty_lebs); 547 ubifs_assert(!(c->lst.total_free & 7) && !(c->lst.total_dirty & 7)); 548 ubifs_assert(!(c->lst.total_dead & 7) && !(c->lst.total_dark & 7)); 549 ubifs_assert(!(c->lst.total_used & 7)); 550 ubifs_assert(free == LPROPS_NC || free >= 0); 551 ubifs_assert(dirty == LPROPS_NC || dirty >= 0); 552 553 if (!is_lprops_dirty(c, lprops)) { 554 lprops = ubifs_lpt_lookup_dirty(c, lprops->lnum); 555 if (IS_ERR(lprops)) 556 return lprops; 557 } else 558 ubifs_assert(lprops == ubifs_lpt_lookup_dirty(c, lprops->lnum)); 559 560 ubifs_assert(!(lprops->free & 7) && !(lprops->dirty & 7)); 561 562 spin_lock(&c->space_lock); 563 if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size) 564 c->lst.taken_empty_lebs -= 1; 565 566 if (!(lprops->flags & LPROPS_INDEX)) { 567 int old_spc; 568 569 old_spc = lprops->free + lprops->dirty; 570 if (old_spc < c->dead_wm) 571 c->lst.total_dead -= old_spc; 572 else 573 c->lst.total_dark -= ubifs_calc_dark(c, old_spc); 574 575 c->lst.total_used -= c->leb_size - old_spc; 576 } 577 578 if (free != LPROPS_NC) { 579 free = ALIGN(free, 8); 580 c->lst.total_free += free - lprops->free; 581 582 /* Increase or decrease empty LEBs counter if needed */ 583 if (free == c->leb_size) { 584 if (lprops->free != c->leb_size) 585 c->lst.empty_lebs += 1; 586 } else if (lprops->free == c->leb_size) 587 c->lst.empty_lebs -= 1; 588 lprops->free = free; 589 } 590 591 if (dirty != LPROPS_NC) { 592 dirty = ALIGN(dirty, 8); 593 c->lst.total_dirty += dirty - lprops->dirty; 594 lprops->dirty = dirty; 595 } 596 597 if (flags != LPROPS_NC) { 598 /* Take care about indexing LEBs counter if needed */ 599 if ((lprops->flags & LPROPS_INDEX)) { 600 if (!(flags & LPROPS_INDEX)) 601 c->lst.idx_lebs -= 1; 602 } else if (flags & LPROPS_INDEX) 603 c->lst.idx_lebs += 1; 604 lprops->flags = flags; 605 } 606 607 if (!(lprops->flags & LPROPS_INDEX)) { 608 int new_spc; 609 610 new_spc = lprops->free + lprops->dirty; 611 if (new_spc < c->dead_wm) 612 c->lst.total_dead += new_spc; 613 else 614 c->lst.total_dark += ubifs_calc_dark(c, new_spc); 615 616 c->lst.total_used += c->leb_size - new_spc; 617 } 618 619 if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size) 620 c->lst.taken_empty_lebs += 1; 621 622 change_category(c, lprops); 623 c->idx_gc_cnt += idx_gc_cnt; 624 spin_unlock(&c->space_lock); 625 return lprops; 626 } 627 628 /** 629 * ubifs_get_lp_stats - get lprops statistics. 630 * @c: UBIFS file-system description object 631 * @st: return statistics 632 */ 633 void ubifs_get_lp_stats(struct ubifs_info *c, struct ubifs_lp_stats *lst) 634 { 635 spin_lock(&c->space_lock); 636 memcpy(lst, &c->lst, sizeof(struct ubifs_lp_stats)); 637 spin_unlock(&c->space_lock); 638 } 639 640 /** 641 * ubifs_change_one_lp - change LEB properties. 642 * @c: the UBIFS file-system description object 643 * @lnum: LEB to change properties for 644 * @free: amount of free space 645 * @dirty: amount of dirty space 646 * @flags_set: flags to set 647 * @flags_clean: flags to clean 648 * @idx_gc_cnt: change to the count of idx_gc list 649 * 650 * This function changes properties of LEB @lnum. It is a helper wrapper over 651 * 'ubifs_change_lp()' which hides lprops get/release. The arguments are the 652 * same as in case of 'ubifs_change_lp()'. Returns zero in case of success and 653 * a negative error code in case of failure. 654 */ 655 int ubifs_change_one_lp(struct ubifs_info *c, int lnum, int free, int dirty, 656 int flags_set, int flags_clean, int idx_gc_cnt) 657 { 658 int err = 0, flags; 659 const struct ubifs_lprops *lp; 660 661 ubifs_get_lprops(c); 662 663 lp = ubifs_lpt_lookup_dirty(c, lnum); 664 if (IS_ERR(lp)) { 665 err = PTR_ERR(lp); 666 goto out; 667 } 668 669 flags = (lp->flags | flags_set) & ~flags_clean; 670 lp = ubifs_change_lp(c, lp, free, dirty, flags, idx_gc_cnt); 671 if (IS_ERR(lp)) 672 err = PTR_ERR(lp); 673 674 out: 675 ubifs_release_lprops(c); 676 if (err) 677 ubifs_err("cannot change properties of LEB %d, error %d", 678 lnum, err); 679 return err; 680 } 681 682 /** 683 * ubifs_update_one_lp - update LEB properties. 684 * @c: the UBIFS file-system description object 685 * @lnum: LEB to change properties for 686 * @free: amount of free space 687 * @dirty: amount of dirty space to add 688 * @flags_set: flags to set 689 * @flags_clean: flags to clean 690 * 691 * This function is the same as 'ubifs_change_one_lp()' but @dirty is added to 692 * current dirty space, not substitutes it. 693 */ 694 int ubifs_update_one_lp(struct ubifs_info *c, int lnum, int free, int dirty, 695 int flags_set, int flags_clean) 696 { 697 int err = 0, flags; 698 const struct ubifs_lprops *lp; 699 700 ubifs_get_lprops(c); 701 702 lp = ubifs_lpt_lookup_dirty(c, lnum); 703 if (IS_ERR(lp)) { 704 err = PTR_ERR(lp); 705 goto out; 706 } 707 708 flags = (lp->flags | flags_set) & ~flags_clean; 709 lp = ubifs_change_lp(c, lp, free, lp->dirty + dirty, flags, 0); 710 if (IS_ERR(lp)) 711 err = PTR_ERR(lp); 712 713 out: 714 ubifs_release_lprops(c); 715 if (err) 716 ubifs_err("cannot update properties of LEB %d, error %d", 717 lnum, err); 718 return err; 719 } 720 721 /** 722 * ubifs_read_one_lp - read LEB properties. 723 * @c: the UBIFS file-system description object 724 * @lnum: LEB to read properties for 725 * @lp: where to store read properties 726 * 727 * This helper function reads properties of a LEB @lnum and stores them in @lp. 728 * Returns zero in case of success and a negative error code in case of 729 * failure. 730 */ 731 int ubifs_read_one_lp(struct ubifs_info *c, int lnum, struct ubifs_lprops *lp) 732 { 733 int err = 0; 734 const struct ubifs_lprops *lpp; 735 736 ubifs_get_lprops(c); 737 738 lpp = ubifs_lpt_lookup(c, lnum); 739 if (IS_ERR(lpp)) { 740 err = PTR_ERR(lpp); 741 ubifs_err("cannot read properties of LEB %d, error %d", 742 lnum, err); 743 goto out; 744 } 745 746 memcpy(lp, lpp, sizeof(struct ubifs_lprops)); 747 748 out: 749 ubifs_release_lprops(c); 750 return err; 751 } 752 753 /** 754 * ubifs_fast_find_free - try to find a LEB with free space quickly. 755 * @c: the UBIFS file-system description object 756 * 757 * This function returns LEB properties for a LEB with free space or %NULL if 758 * the function is unable to find a LEB quickly. 759 */ 760 const struct ubifs_lprops *ubifs_fast_find_free(struct ubifs_info *c) 761 { 762 struct ubifs_lprops *lprops; 763 struct ubifs_lpt_heap *heap; 764 765 ubifs_assert(mutex_is_locked(&c->lp_mutex)); 766 767 heap = &c->lpt_heap[LPROPS_FREE - 1]; 768 if (heap->cnt == 0) 769 return NULL; 770 771 lprops = heap->arr[0]; 772 ubifs_assert(!(lprops->flags & LPROPS_TAKEN)); 773 ubifs_assert(!(lprops->flags & LPROPS_INDEX)); 774 return lprops; 775 } 776 777 /** 778 * ubifs_fast_find_empty - try to find an empty LEB quickly. 779 * @c: the UBIFS file-system description object 780 * 781 * This function returns LEB properties for an empty LEB or %NULL if the 782 * function is unable to find an empty LEB quickly. 783 */ 784 const struct ubifs_lprops *ubifs_fast_find_empty(struct ubifs_info *c) 785 { 786 struct ubifs_lprops *lprops; 787 788 ubifs_assert(mutex_is_locked(&c->lp_mutex)); 789 790 if (list_empty(&c->empty_list)) 791 return NULL; 792 793 lprops = list_entry(c->empty_list.next, struct ubifs_lprops, list); 794 ubifs_assert(!(lprops->flags & LPROPS_TAKEN)); 795 ubifs_assert(!(lprops->flags & LPROPS_INDEX)); 796 ubifs_assert(lprops->free == c->leb_size); 797 return lprops; 798 } 799 800 /** 801 * ubifs_fast_find_freeable - try to find a freeable LEB quickly. 802 * @c: the UBIFS file-system description object 803 * 804 * This function returns LEB properties for a freeable LEB or %NULL if the 805 * function is unable to find a freeable LEB quickly. 806 */ 807 const struct ubifs_lprops *ubifs_fast_find_freeable(struct ubifs_info *c) 808 { 809 struct ubifs_lprops *lprops; 810 811 ubifs_assert(mutex_is_locked(&c->lp_mutex)); 812 813 if (list_empty(&c->freeable_list)) 814 return NULL; 815 816 lprops = list_entry(c->freeable_list.next, struct ubifs_lprops, list); 817 ubifs_assert(!(lprops->flags & LPROPS_TAKEN)); 818 ubifs_assert(!(lprops->flags & LPROPS_INDEX)); 819 ubifs_assert(lprops->free + lprops->dirty == c->leb_size); 820 ubifs_assert(c->freeable_cnt > 0); 821 return lprops; 822 } 823 824 /** 825 * ubifs_fast_find_frdi_idx - try to find a freeable index LEB quickly. 826 * @c: the UBIFS file-system description object 827 * 828 * This function returns LEB properties for a freeable index LEB or %NULL if the 829 * function is unable to find a freeable index LEB quickly. 830 */ 831 const struct ubifs_lprops *ubifs_fast_find_frdi_idx(struct ubifs_info *c) 832 { 833 struct ubifs_lprops *lprops; 834 835 ubifs_assert(mutex_is_locked(&c->lp_mutex)); 836 837 if (list_empty(&c->frdi_idx_list)) 838 return NULL; 839 840 lprops = list_entry(c->frdi_idx_list.next, struct ubifs_lprops, list); 841 ubifs_assert(!(lprops->flags & LPROPS_TAKEN)); 842 ubifs_assert((lprops->flags & LPROPS_INDEX)); 843 ubifs_assert(lprops->free + lprops->dirty == c->leb_size); 844 return lprops; 845 } 846 847 /* 848 * Everything below is related to debugging. 849 */ 850 851 /** 852 * dbg_check_cats - check category heaps and lists. 853 * @c: UBIFS file-system description object 854 * 855 * This function returns %0 on success and a negative error code on failure. 856 */ 857 int dbg_check_cats(struct ubifs_info *c) 858 { 859 struct ubifs_lprops *lprops; 860 struct list_head *pos; 861 int i, cat; 862 863 if (!dbg_is_chk_gen(c) && !dbg_is_chk_lprops(c)) 864 return 0; 865 866 list_for_each_entry(lprops, &c->empty_list, list) { 867 if (lprops->free != c->leb_size) { 868 ubifs_err("non-empty LEB %d on empty list (free %d dirty %d flags %d)", 869 lprops->lnum, lprops->free, lprops->dirty, 870 lprops->flags); 871 return -EINVAL; 872 } 873 if (lprops->flags & LPROPS_TAKEN) { 874 ubifs_err("taken LEB %d on empty list (free %d dirty %d flags %d)", 875 lprops->lnum, lprops->free, lprops->dirty, 876 lprops->flags); 877 return -EINVAL; 878 } 879 } 880 881 i = 0; 882 list_for_each_entry(lprops, &c->freeable_list, list) { 883 if (lprops->free + lprops->dirty != c->leb_size) { 884 ubifs_err("non-freeable LEB %d on freeable list (free %d dirty %d flags %d)", 885 lprops->lnum, lprops->free, lprops->dirty, 886 lprops->flags); 887 return -EINVAL; 888 } 889 if (lprops->flags & LPROPS_TAKEN) { 890 ubifs_err("taken LEB %d on freeable list (free %d dirty %d flags %d)", 891 lprops->lnum, lprops->free, lprops->dirty, 892 lprops->flags); 893 return -EINVAL; 894 } 895 i += 1; 896 } 897 if (i != c->freeable_cnt) { 898 ubifs_err("freeable list count %d expected %d", i, 899 c->freeable_cnt); 900 return -EINVAL; 901 } 902 903 i = 0; 904 list_for_each(pos, &c->idx_gc) 905 i += 1; 906 if (i != c->idx_gc_cnt) { 907 ubifs_err("idx_gc list count %d expected %d", i, 908 c->idx_gc_cnt); 909 return -EINVAL; 910 } 911 912 list_for_each_entry(lprops, &c->frdi_idx_list, list) { 913 if (lprops->free + lprops->dirty != c->leb_size) { 914 ubifs_err("non-freeable LEB %d on frdi_idx list (free %d dirty %d flags %d)", 915 lprops->lnum, lprops->free, lprops->dirty, 916 lprops->flags); 917 return -EINVAL; 918 } 919 if (lprops->flags & LPROPS_TAKEN) { 920 ubifs_err("taken LEB %d on frdi_idx list (free %d dirty %d flags %d)", 921 lprops->lnum, lprops->free, lprops->dirty, 922 lprops->flags); 923 return -EINVAL; 924 } 925 if (!(lprops->flags & LPROPS_INDEX)) { 926 ubifs_err("non-index LEB %d on frdi_idx list (free %d dirty %d flags %d)", 927 lprops->lnum, lprops->free, lprops->dirty, 928 lprops->flags); 929 return -EINVAL; 930 } 931 } 932 933 for (cat = 1; cat <= LPROPS_HEAP_CNT; cat++) { 934 struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1]; 935 936 for (i = 0; i < heap->cnt; i++) { 937 lprops = heap->arr[i]; 938 if (!lprops) { 939 ubifs_err("null ptr in LPT heap cat %d", cat); 940 return -EINVAL; 941 } 942 if (lprops->hpos != i) { 943 ubifs_err("bad ptr in LPT heap cat %d", cat); 944 return -EINVAL; 945 } 946 if (lprops->flags & LPROPS_TAKEN) { 947 ubifs_err("taken LEB in LPT heap cat %d", cat); 948 return -EINVAL; 949 } 950 } 951 } 952 953 return 0; 954 } 955 956 void dbg_check_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat, 957 int add_pos) 958 { 959 int i = 0, j, err = 0; 960 961 if (!dbg_is_chk_gen(c) && !dbg_is_chk_lprops(c)) 962 return; 963 964 for (i = 0; i < heap->cnt; i++) { 965 struct ubifs_lprops *lprops = heap->arr[i]; 966 struct ubifs_lprops *lp; 967 968 if (i != add_pos) 969 if ((lprops->flags & LPROPS_CAT_MASK) != cat) { 970 err = 1; 971 goto out; 972 } 973 if (lprops->hpos != i) { 974 err = 2; 975 goto out; 976 } 977 lp = ubifs_lpt_lookup(c, lprops->lnum); 978 if (IS_ERR(lp)) { 979 err = 3; 980 goto out; 981 } 982 if (lprops != lp) { 983 ubifs_err("lprops %zx lp %zx lprops->lnum %d lp->lnum %d", 984 (size_t)lprops, (size_t)lp, lprops->lnum, 985 lp->lnum); 986 err = 4; 987 goto out; 988 } 989 for (j = 0; j < i; j++) { 990 lp = heap->arr[j]; 991 if (lp == lprops) { 992 err = 5; 993 goto out; 994 } 995 if (lp->lnum == lprops->lnum) { 996 err = 6; 997 goto out; 998 } 999 } 1000 } 1001 out: 1002 if (err) { 1003 ubifs_err("failed cat %d hpos %d err %d", cat, i, err); 1004 dump_stack(); 1005 ubifs_dump_heap(c, heap, cat); 1006 } 1007 } 1008 1009 /** 1010 * scan_check_cb - scan callback. 1011 * @c: the UBIFS file-system description object 1012 * @lp: LEB properties to scan 1013 * @in_tree: whether the LEB properties are in main memory 1014 * @lst: lprops statistics to update 1015 * 1016 * This function returns a code that indicates whether the scan should continue 1017 * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree 1018 * in main memory (%LPT_SCAN_ADD), or whether the scan should stop 1019 * (%LPT_SCAN_STOP). 1020 */ 1021 static int scan_check_cb(struct ubifs_info *c, 1022 const struct ubifs_lprops *lp, int in_tree, 1023 struct ubifs_lp_stats *lst) 1024 { 1025 struct ubifs_scan_leb *sleb; 1026 struct ubifs_scan_node *snod; 1027 int cat, lnum = lp->lnum, is_idx = 0, used = 0, freef, dirty, ret; 1028 void *buf = NULL; 1029 1030 cat = lp->flags & LPROPS_CAT_MASK; 1031 if (cat != LPROPS_UNCAT) { 1032 cat = ubifs_categorize_lprops(c, lp); 1033 if (cat != (lp->flags & LPROPS_CAT_MASK)) { 1034 ubifs_err("bad LEB category %d expected %d", 1035 (lp->flags & LPROPS_CAT_MASK), cat); 1036 return -EINVAL; 1037 } 1038 } 1039 1040 /* Check lp is on its category list (if it has one) */ 1041 if (in_tree) { 1042 struct list_head *list = NULL; 1043 1044 switch (cat) { 1045 case LPROPS_EMPTY: 1046 list = &c->empty_list; 1047 break; 1048 case LPROPS_FREEABLE: 1049 list = &c->freeable_list; 1050 break; 1051 case LPROPS_FRDI_IDX: 1052 list = &c->frdi_idx_list; 1053 break; 1054 case LPROPS_UNCAT: 1055 list = &c->uncat_list; 1056 break; 1057 } 1058 if (list) { 1059 struct ubifs_lprops *lprops; 1060 int found = 0; 1061 1062 list_for_each_entry(lprops, list, list) { 1063 if (lprops == lp) { 1064 found = 1; 1065 break; 1066 } 1067 } 1068 if (!found) { 1069 ubifs_err("bad LPT list (category %d)", cat); 1070 return -EINVAL; 1071 } 1072 } 1073 } 1074 1075 /* Check lp is on its category heap (if it has one) */ 1076 if (in_tree && cat > 0 && cat <= LPROPS_HEAP_CNT) { 1077 struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1]; 1078 1079 if ((lp->hpos != -1 && heap->arr[lp->hpos]->lnum != lnum) || 1080 lp != heap->arr[lp->hpos]) { 1081 ubifs_err("bad LPT heap (category %d)", cat); 1082 return -EINVAL; 1083 } 1084 } 1085 1086 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL); 1087 if (!buf) 1088 return -ENOMEM; 1089 1090 /* 1091 * After an unclean unmount, empty and freeable LEBs 1092 * may contain garbage - do not scan them. 1093 */ 1094 if (lp->free == c->leb_size) { 1095 lst->empty_lebs += 1; 1096 lst->total_free += c->leb_size; 1097 lst->total_dark += ubifs_calc_dark(c, c->leb_size); 1098 return LPT_SCAN_CONTINUE; 1099 } 1100 if (lp->free + lp->dirty == c->leb_size && 1101 !(lp->flags & LPROPS_INDEX)) { 1102 lst->total_free += lp->free; 1103 lst->total_dirty += lp->dirty; 1104 lst->total_dark += ubifs_calc_dark(c, c->leb_size); 1105 return LPT_SCAN_CONTINUE; 1106 } 1107 1108 sleb = ubifs_scan(c, lnum, 0, buf, 0); 1109 if (IS_ERR(sleb)) { 1110 ret = PTR_ERR(sleb); 1111 if (ret == -EUCLEAN) { 1112 ubifs_dump_lprops(c); 1113 ubifs_dump_budg(c, &c->bi); 1114 } 1115 goto out; 1116 } 1117 1118 is_idx = -1; 1119 list_for_each_entry(snod, &sleb->nodes, list) { 1120 int found, level = 0; 1121 1122 cond_resched(); 1123 1124 if (is_idx == -1) 1125 is_idx = (snod->type == UBIFS_IDX_NODE) ? 1 : 0; 1126 1127 if (is_idx && snod->type != UBIFS_IDX_NODE) { 1128 ubifs_err("indexing node in data LEB %d:%d", 1129 lnum, snod->offs); 1130 goto out_destroy; 1131 } 1132 1133 if (snod->type == UBIFS_IDX_NODE) { 1134 struct ubifs_idx_node *idx = snod->node; 1135 1136 key_read(c, ubifs_idx_key(c, idx), &snod->key); 1137 level = le16_to_cpu(idx->level); 1138 } 1139 1140 found = ubifs_tnc_has_node(c, &snod->key, level, lnum, 1141 snod->offs, is_idx); 1142 if (found) { 1143 if (found < 0) 1144 goto out_destroy; 1145 used += ALIGN(snod->len, 8); 1146 } 1147 } 1148 1149 freef = c->leb_size - sleb->endpt; 1150 dirty = sleb->endpt - used; 1151 1152 if (freef > c->leb_size || freef < 0 || dirty > c->leb_size || 1153 dirty < 0) { 1154 ubifs_err("bad calculated accounting for LEB %d: free %d, dirty %d", 1155 lnum, freef, dirty); 1156 goto out_destroy; 1157 } 1158 1159 if (lp->free + lp->dirty == c->leb_size && 1160 freef + dirty == c->leb_size) 1161 if ((is_idx && !(lp->flags & LPROPS_INDEX)) || 1162 (!is_idx && freef == c->leb_size) || 1163 lp->free == c->leb_size) { 1164 /* 1165 * Empty or freeable LEBs could contain index 1166 * nodes from an uncompleted commit due to an 1167 * unclean unmount. Or they could be empty for 1168 * the same reason. Or it may simply not have been 1169 * unmapped. 1170 */ 1171 freef = lp->free; 1172 dirty = lp->dirty; 1173 is_idx = 0; 1174 } 1175 1176 if (is_idx && lp->free + lp->dirty == freef + dirty && 1177 lnum != c->ihead_lnum) { 1178 /* 1179 * After an unclean unmount, an index LEB could have a different 1180 * amount of free space than the value recorded by lprops. That 1181 * is because the in-the-gaps method may use free space or 1182 * create free space (as a side-effect of using ubi_leb_change 1183 * and not writing the whole LEB). The incorrect free space 1184 * value is not a problem because the index is only ever 1185 * allocated empty LEBs, so there will never be an attempt to 1186 * write to the free space at the end of an index LEB - except 1187 * by the in-the-gaps method for which it is not a problem. 1188 */ 1189 freef = lp->free; 1190 dirty = lp->dirty; 1191 } 1192 1193 if (lp->free != freef || lp->dirty != dirty) 1194 goto out_print; 1195 1196 if (is_idx && !(lp->flags & LPROPS_INDEX)) { 1197 if (freef == c->leb_size) 1198 /* Free but not unmapped LEB, it's fine */ 1199 is_idx = 0; 1200 else { 1201 ubifs_err("indexing node without indexing flag"); 1202 goto out_print; 1203 } 1204 } 1205 1206 if (!is_idx && (lp->flags & LPROPS_INDEX)) { 1207 ubifs_err("data node with indexing flag"); 1208 goto out_print; 1209 } 1210 1211 if (freef == c->leb_size) 1212 lst->empty_lebs += 1; 1213 1214 if (is_idx) 1215 lst->idx_lebs += 1; 1216 1217 if (!(lp->flags & LPROPS_INDEX)) 1218 lst->total_used += c->leb_size - freef - dirty; 1219 lst->total_free += freef; 1220 lst->total_dirty += dirty; 1221 1222 if (!(lp->flags & LPROPS_INDEX)) { 1223 int spc = freef + dirty; 1224 1225 if (spc < c->dead_wm) 1226 lst->total_dead += spc; 1227 else 1228 lst->total_dark += ubifs_calc_dark(c, spc); 1229 } 1230 1231 ubifs_scan_destroy(sleb); 1232 vfree(buf); 1233 return LPT_SCAN_CONTINUE; 1234 1235 out_print: 1236 ubifs_err("bad accounting of LEB %d: free %d, dirty %d flags %#x, should be free %d, dirty %d", 1237 lnum, lp->free, lp->dirty, lp->flags, freef, dirty); 1238 ubifs_dump_leb(c, lnum); 1239 out_destroy: 1240 ubifs_scan_destroy(sleb); 1241 ret = -EINVAL; 1242 out: 1243 vfree(buf); 1244 return ret; 1245 } 1246 1247 /** 1248 * dbg_check_lprops - check all LEB properties. 1249 * @c: UBIFS file-system description object 1250 * 1251 * This function checks all LEB properties and makes sure they are all correct. 1252 * It returns zero if everything is fine, %-EINVAL if there is an inconsistency 1253 * and other negative error codes in case of other errors. This function is 1254 * called while the file system is locked (because of commit start), so no 1255 * additional locking is required. Note that locking the LPT mutex would cause 1256 * a circular lock dependency with the TNC mutex. 1257 */ 1258 int dbg_check_lprops(struct ubifs_info *c) 1259 { 1260 int i, err; 1261 struct ubifs_lp_stats lst; 1262 1263 if (!dbg_is_chk_lprops(c)) 1264 return 0; 1265 1266 /* 1267 * As we are going to scan the media, the write buffers have to be 1268 * synchronized. 1269 */ 1270 for (i = 0; i < c->jhead_cnt; i++) { 1271 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 1272 if (err) 1273 return err; 1274 } 1275 1276 memset(&lst, 0, sizeof(struct ubifs_lp_stats)); 1277 err = ubifs_lpt_scan_nolock(c, c->main_first, c->leb_cnt - 1, 1278 (ubifs_lpt_scan_callback)scan_check_cb, 1279 &lst); 1280 if (err && err != -ENOSPC) 1281 goto out; 1282 1283 if (lst.empty_lebs != c->lst.empty_lebs || 1284 lst.idx_lebs != c->lst.idx_lebs || 1285 lst.total_free != c->lst.total_free || 1286 lst.total_dirty != c->lst.total_dirty || 1287 lst.total_used != c->lst.total_used) { 1288 ubifs_err("bad overall accounting"); 1289 ubifs_err("calculated: empty_lebs %d, idx_lebs %d, total_free %lld, total_dirty %lld, total_used %lld", 1290 lst.empty_lebs, lst.idx_lebs, lst.total_free, 1291 lst.total_dirty, lst.total_used); 1292 ubifs_err("read from lprops: empty_lebs %d, idx_lebs %d, total_free %lld, total_dirty %lld, total_used %lld", 1293 c->lst.empty_lebs, c->lst.idx_lebs, c->lst.total_free, 1294 c->lst.total_dirty, c->lst.total_used); 1295 err = -EINVAL; 1296 goto out; 1297 } 1298 1299 if (lst.total_dead != c->lst.total_dead || 1300 lst.total_dark != c->lst.total_dark) { 1301 ubifs_err("bad dead/dark space accounting"); 1302 ubifs_err("calculated: total_dead %lld, total_dark %lld", 1303 lst.total_dead, lst.total_dark); 1304 ubifs_err("read from lprops: total_dead %lld, total_dark %lld", 1305 c->lst.total_dead, c->lst.total_dark); 1306 err = -EINVAL; 1307 goto out; 1308 } 1309 1310 err = dbg_check_cats(c); 1311 out: 1312 return err; 1313 } 1314