1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * Copyright (C) 2006, 2007 University of Szeged, Hungary 6 * 7 * SPDX-License-Identifier: GPL-2.0+ 8 * 9 * Authors: Artem Bityutskiy (Битюцкий Артём) 10 * Adrian Hunter 11 * Zoltan Sogor 12 */ 13 14 /* 15 * This file implements UBIFS I/O subsystem which provides various I/O-related 16 * helper functions (reading/writing/checking/validating nodes) and implements 17 * write-buffering support. Write buffers help to save space which otherwise 18 * would have been wasted for padding to the nearest minimal I/O unit boundary. 19 * Instead, data first goes to the write-buffer and is flushed when the 20 * buffer is full or when it is not used for some time (by timer). This is 21 * similar to the mechanism is used by JFFS2. 22 * 23 * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum 24 * write size (@c->max_write_size). The latter is the maximum amount of bytes 25 * the underlying flash is able to program at a time, and writing in 26 * @c->max_write_size units should presumably be faster. Obviously, 27 * @c->min_io_size <= @c->max_write_size. Write-buffers are of 28 * @c->max_write_size bytes in size for maximum performance. However, when a 29 * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size 30 * boundary) which contains data is written, not the whole write-buffer, 31 * because this is more space-efficient. 32 * 33 * This optimization adds few complications to the code. Indeed, on the one 34 * hand, we want to write in optimal @c->max_write_size bytes chunks, which 35 * also means aligning writes at the @c->max_write_size bytes offsets. On the 36 * other hand, we do not want to waste space when synchronizing the write 37 * buffer, so during synchronization we writes in smaller chunks. And this makes 38 * the next write offset to be not aligned to @c->max_write_size bytes. So the 39 * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned 40 * to @c->max_write_size bytes again. We do this by temporarily shrinking 41 * write-buffer size (@wbuf->size). 42 * 43 * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by 44 * mutexes defined inside these objects. Since sometimes upper-level code 45 * has to lock the write-buffer (e.g. journal space reservation code), many 46 * functions related to write-buffers have "nolock" suffix which means that the 47 * caller has to lock the write-buffer before calling this function. 48 * 49 * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not 50 * aligned, UBIFS starts the next node from the aligned address, and the padded 51 * bytes may contain any rubbish. In other words, UBIFS does not put padding 52 * bytes in those small gaps. Common headers of nodes store real node lengths, 53 * not aligned lengths. Indexing nodes also store real lengths in branches. 54 * 55 * UBIFS uses padding when it pads to the next min. I/O unit. In this case it 56 * uses padding nodes or padding bytes, if the padding node does not fit. 57 * 58 * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when 59 * they are read from the flash media. 60 */ 61 62 #define __UBOOT__ 63 #ifndef __UBOOT__ 64 #include <linux/crc32.h> 65 #include <linux/slab.h> 66 #else 67 #include <linux/compat.h> 68 #include <linux/err.h> 69 #endif 70 #include "ubifs.h" 71 72 /** 73 * ubifs_ro_mode - switch UBIFS to read read-only mode. 74 * @c: UBIFS file-system description object 75 * @err: error code which is the reason of switching to R/O mode 76 */ 77 void ubifs_ro_mode(struct ubifs_info *c, int err) 78 { 79 if (!c->ro_error) { 80 c->ro_error = 1; 81 c->no_chk_data_crc = 0; 82 c->vfs_sb->s_flags |= MS_RDONLY; 83 ubifs_warn("switched to read-only mode, error %d", err); 84 dump_stack(); 85 } 86 } 87 88 /* 89 * Below are simple wrappers over UBI I/O functions which include some 90 * additional checks and UBIFS debugging stuff. See corresponding UBI function 91 * for more information. 92 */ 93 94 int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs, 95 int len, int even_ebadmsg) 96 { 97 int err; 98 99 err = ubi_read(c->ubi, lnum, buf, offs, len); 100 /* 101 * In case of %-EBADMSG print the error message only if the 102 * @even_ebadmsg is true. 103 */ 104 if (err && (err != -EBADMSG || even_ebadmsg)) { 105 ubifs_err("reading %d bytes from LEB %d:%d failed, error %d", 106 len, lnum, offs, err); 107 dump_stack(); 108 } 109 return err; 110 } 111 112 int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs, 113 int len) 114 { 115 int err; 116 117 ubifs_assert(!c->ro_media && !c->ro_mount); 118 if (c->ro_error) 119 return -EROFS; 120 if (!dbg_is_tst_rcvry(c)) 121 err = ubi_leb_write(c->ubi, lnum, buf, offs, len); 122 else 123 err = dbg_leb_write(c, lnum, buf, offs, len); 124 if (err) { 125 ubifs_err("writing %d bytes to LEB %d:%d failed, error %d", 126 len, lnum, offs, err); 127 ubifs_ro_mode(c, err); 128 dump_stack(); 129 } 130 return err; 131 } 132 133 int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len) 134 { 135 int err; 136 137 ubifs_assert(!c->ro_media && !c->ro_mount); 138 if (c->ro_error) 139 return -EROFS; 140 if (!dbg_is_tst_rcvry(c)) 141 err = ubi_leb_change(c->ubi, lnum, buf, len); 142 else 143 err = dbg_leb_change(c, lnum, buf, len); 144 if (err) { 145 ubifs_err("changing %d bytes in LEB %d failed, error %d", 146 len, lnum, err); 147 ubifs_ro_mode(c, err); 148 dump_stack(); 149 } 150 return err; 151 } 152 153 int ubifs_leb_unmap(struct ubifs_info *c, int lnum) 154 { 155 int err; 156 157 ubifs_assert(!c->ro_media && !c->ro_mount); 158 if (c->ro_error) 159 return -EROFS; 160 if (!dbg_is_tst_rcvry(c)) 161 err = ubi_leb_unmap(c->ubi, lnum); 162 else 163 err = dbg_leb_unmap(c, lnum); 164 if (err) { 165 ubifs_err("unmap LEB %d failed, error %d", lnum, err); 166 ubifs_ro_mode(c, err); 167 dump_stack(); 168 } 169 return err; 170 } 171 172 int ubifs_leb_map(struct ubifs_info *c, int lnum) 173 { 174 int err; 175 176 ubifs_assert(!c->ro_media && !c->ro_mount); 177 if (c->ro_error) 178 return -EROFS; 179 if (!dbg_is_tst_rcvry(c)) 180 err = ubi_leb_map(c->ubi, lnum); 181 else 182 err = dbg_leb_map(c, lnum); 183 if (err) { 184 ubifs_err("mapping LEB %d failed, error %d", lnum, err); 185 ubifs_ro_mode(c, err); 186 dump_stack(); 187 } 188 return err; 189 } 190 191 int ubifs_is_mapped(const struct ubifs_info *c, int lnum) 192 { 193 int err; 194 195 err = ubi_is_mapped(c->ubi, lnum); 196 if (err < 0) { 197 ubifs_err("ubi_is_mapped failed for LEB %d, error %d", 198 lnum, err); 199 dump_stack(); 200 } 201 return err; 202 } 203 204 /** 205 * ubifs_check_node - check node. 206 * @c: UBIFS file-system description object 207 * @buf: node to check 208 * @lnum: logical eraseblock number 209 * @offs: offset within the logical eraseblock 210 * @quiet: print no messages 211 * @must_chk_crc: indicates whether to always check the CRC 212 * 213 * This function checks node magic number and CRC checksum. This function also 214 * validates node length to prevent UBIFS from becoming crazy when an attacker 215 * feeds it a file-system image with incorrect nodes. For example, too large 216 * node length in the common header could cause UBIFS to read memory outside of 217 * allocated buffer when checking the CRC checksum. 218 * 219 * This function may skip data nodes CRC checking if @c->no_chk_data_crc is 220 * true, which is controlled by corresponding UBIFS mount option. However, if 221 * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is 222 * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are 223 * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC 224 * is checked. This is because during mounting or re-mounting from R/O mode to 225 * R/W mode we may read journal nodes (when replying the journal or doing the 226 * recovery) and the journal nodes may potentially be corrupted, so checking is 227 * required. 228 * 229 * This function returns zero in case of success and %-EUCLEAN in case of bad 230 * CRC or magic. 231 */ 232 int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum, 233 int offs, int quiet, int must_chk_crc) 234 { 235 int err = -EINVAL, type, node_len; 236 uint32_t crc, node_crc, magic; 237 const struct ubifs_ch *ch = buf; 238 239 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 240 ubifs_assert(!(offs & 7) && offs < c->leb_size); 241 242 magic = le32_to_cpu(ch->magic); 243 if (magic != UBIFS_NODE_MAGIC) { 244 if (!quiet) 245 ubifs_err("bad magic %#08x, expected %#08x", 246 magic, UBIFS_NODE_MAGIC); 247 err = -EUCLEAN; 248 goto out; 249 } 250 251 type = ch->node_type; 252 if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) { 253 if (!quiet) 254 ubifs_err("bad node type %d", type); 255 goto out; 256 } 257 258 node_len = le32_to_cpu(ch->len); 259 if (node_len + offs > c->leb_size) 260 goto out_len; 261 262 if (c->ranges[type].max_len == 0) { 263 if (node_len != c->ranges[type].len) 264 goto out_len; 265 } else if (node_len < c->ranges[type].min_len || 266 node_len > c->ranges[type].max_len) 267 goto out_len; 268 269 if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting && 270 !c->remounting_rw && c->no_chk_data_crc) 271 return 0; 272 273 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8); 274 node_crc = le32_to_cpu(ch->crc); 275 if (crc != node_crc) { 276 if (!quiet) 277 ubifs_err("bad CRC: calculated %#08x, read %#08x", 278 crc, node_crc); 279 err = -EUCLEAN; 280 goto out; 281 } 282 283 return 0; 284 285 out_len: 286 if (!quiet) 287 ubifs_err("bad node length %d", node_len); 288 out: 289 if (!quiet) { 290 ubifs_err("bad node at LEB %d:%d", lnum, offs); 291 ubifs_dump_node(c, buf); 292 dump_stack(); 293 } 294 return err; 295 } 296 297 /** 298 * ubifs_pad - pad flash space. 299 * @c: UBIFS file-system description object 300 * @buf: buffer to put padding to 301 * @pad: how many bytes to pad 302 * 303 * The flash media obliges us to write only in chunks of %c->min_io_size and 304 * when we have to write less data we add padding node to the write-buffer and 305 * pad it to the next minimal I/O unit's boundary. Padding nodes help when the 306 * media is being scanned. If the amount of wasted space is not enough to fit a 307 * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes 308 * pattern (%UBIFS_PADDING_BYTE). 309 * 310 * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is 311 * used. 312 */ 313 void ubifs_pad(const struct ubifs_info *c, void *buf, int pad) 314 { 315 uint32_t crc; 316 317 ubifs_assert(pad >= 0 && !(pad & 7)); 318 319 if (pad >= UBIFS_PAD_NODE_SZ) { 320 struct ubifs_ch *ch = buf; 321 struct ubifs_pad_node *pad_node = buf; 322 323 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); 324 ch->node_type = UBIFS_PAD_NODE; 325 ch->group_type = UBIFS_NO_NODE_GROUP; 326 ch->padding[0] = ch->padding[1] = 0; 327 ch->sqnum = 0; 328 ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ); 329 pad -= UBIFS_PAD_NODE_SZ; 330 pad_node->pad_len = cpu_to_le32(pad); 331 crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8); 332 ch->crc = cpu_to_le32(crc); 333 memset(buf + UBIFS_PAD_NODE_SZ, 0, pad); 334 } else if (pad > 0) 335 /* Too little space, padding node won't fit */ 336 memset(buf, UBIFS_PADDING_BYTE, pad); 337 } 338 339 /** 340 * next_sqnum - get next sequence number. 341 * @c: UBIFS file-system description object 342 */ 343 static unsigned long long next_sqnum(struct ubifs_info *c) 344 { 345 unsigned long long sqnum; 346 347 spin_lock(&c->cnt_lock); 348 sqnum = ++c->max_sqnum; 349 spin_unlock(&c->cnt_lock); 350 351 if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) { 352 if (sqnum >= SQNUM_WATERMARK) { 353 ubifs_err("sequence number overflow %llu, end of life", 354 sqnum); 355 ubifs_ro_mode(c, -EINVAL); 356 } 357 ubifs_warn("running out of sequence numbers, end of life soon"); 358 } 359 360 return sqnum; 361 } 362 363 /** 364 * ubifs_prepare_node - prepare node to be written to flash. 365 * @c: UBIFS file-system description object 366 * @node: the node to pad 367 * @len: node length 368 * @pad: if the buffer has to be padded 369 * 370 * This function prepares node at @node to be written to the media - it 371 * calculates node CRC, fills the common header, and adds proper padding up to 372 * the next minimum I/O unit if @pad is not zero. 373 */ 374 void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad) 375 { 376 uint32_t crc; 377 struct ubifs_ch *ch = node; 378 unsigned long long sqnum = next_sqnum(c); 379 380 ubifs_assert(len >= UBIFS_CH_SZ); 381 382 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); 383 ch->len = cpu_to_le32(len); 384 ch->group_type = UBIFS_NO_NODE_GROUP; 385 ch->sqnum = cpu_to_le64(sqnum); 386 ch->padding[0] = ch->padding[1] = 0; 387 crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8); 388 ch->crc = cpu_to_le32(crc); 389 390 if (pad) { 391 len = ALIGN(len, 8); 392 pad = ALIGN(len, c->min_io_size) - len; 393 ubifs_pad(c, node + len, pad); 394 } 395 } 396 397 /** 398 * ubifs_prep_grp_node - prepare node of a group to be written to flash. 399 * @c: UBIFS file-system description object 400 * @node: the node to pad 401 * @len: node length 402 * @last: indicates the last node of the group 403 * 404 * This function prepares node at @node to be written to the media - it 405 * calculates node CRC and fills the common header. 406 */ 407 void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last) 408 { 409 uint32_t crc; 410 struct ubifs_ch *ch = node; 411 unsigned long long sqnum = next_sqnum(c); 412 413 ubifs_assert(len >= UBIFS_CH_SZ); 414 415 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); 416 ch->len = cpu_to_le32(len); 417 if (last) 418 ch->group_type = UBIFS_LAST_OF_NODE_GROUP; 419 else 420 ch->group_type = UBIFS_IN_NODE_GROUP; 421 ch->sqnum = cpu_to_le64(sqnum); 422 ch->padding[0] = ch->padding[1] = 0; 423 crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8); 424 ch->crc = cpu_to_le32(crc); 425 } 426 427 #ifndef __UBOOT__ 428 /** 429 * wbuf_timer_callback - write-buffer timer callback function. 430 * @data: timer data (write-buffer descriptor) 431 * 432 * This function is called when the write-buffer timer expires. 433 */ 434 static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer) 435 { 436 struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer); 437 438 dbg_io("jhead %s", dbg_jhead(wbuf->jhead)); 439 wbuf->need_sync = 1; 440 wbuf->c->need_wbuf_sync = 1; 441 ubifs_wake_up_bgt(wbuf->c); 442 return HRTIMER_NORESTART; 443 } 444 445 /** 446 * new_wbuf_timer - start new write-buffer timer. 447 * @wbuf: write-buffer descriptor 448 */ 449 static void new_wbuf_timer_nolock(struct ubifs_wbuf *wbuf) 450 { 451 ubifs_assert(!hrtimer_active(&wbuf->timer)); 452 453 if (wbuf->no_timer) 454 return; 455 dbg_io("set timer for jhead %s, %llu-%llu millisecs", 456 dbg_jhead(wbuf->jhead), 457 div_u64(ktime_to_ns(wbuf->softlimit), USEC_PER_SEC), 458 div_u64(ktime_to_ns(wbuf->softlimit) + wbuf->delta, 459 USEC_PER_SEC)); 460 hrtimer_start_range_ns(&wbuf->timer, wbuf->softlimit, wbuf->delta, 461 HRTIMER_MODE_REL); 462 } 463 #endif 464 465 /** 466 * cancel_wbuf_timer - cancel write-buffer timer. 467 * @wbuf: write-buffer descriptor 468 */ 469 static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf) 470 { 471 if (wbuf->no_timer) 472 return; 473 wbuf->need_sync = 0; 474 #ifndef __UBOOT__ 475 hrtimer_cancel(&wbuf->timer); 476 #endif 477 } 478 479 /** 480 * ubifs_wbuf_sync_nolock - synchronize write-buffer. 481 * @wbuf: write-buffer to synchronize 482 * 483 * This function synchronizes write-buffer @buf and returns zero in case of 484 * success or a negative error code in case of failure. 485 * 486 * Note, although write-buffers are of @c->max_write_size, this function does 487 * not necessarily writes all @c->max_write_size bytes to the flash. Instead, 488 * if the write-buffer is only partially filled with data, only the used part 489 * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized. 490 * This way we waste less space. 491 */ 492 int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf) 493 { 494 struct ubifs_info *c = wbuf->c; 495 int err, dirt, sync_len; 496 497 cancel_wbuf_timer_nolock(wbuf); 498 if (!wbuf->used || wbuf->lnum == -1) 499 /* Write-buffer is empty or not seeked */ 500 return 0; 501 502 dbg_io("LEB %d:%d, %d bytes, jhead %s", 503 wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead)); 504 ubifs_assert(!(wbuf->avail & 7)); 505 ubifs_assert(wbuf->offs + wbuf->size <= c->leb_size); 506 ubifs_assert(wbuf->size >= c->min_io_size); 507 ubifs_assert(wbuf->size <= c->max_write_size); 508 ubifs_assert(wbuf->size % c->min_io_size == 0); 509 ubifs_assert(!c->ro_media && !c->ro_mount); 510 if (c->leb_size - wbuf->offs >= c->max_write_size) 511 ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size)); 512 513 if (c->ro_error) 514 return -EROFS; 515 516 /* 517 * Do not write whole write buffer but write only the minimum necessary 518 * amount of min. I/O units. 519 */ 520 sync_len = ALIGN(wbuf->used, c->min_io_size); 521 dirt = sync_len - wbuf->used; 522 if (dirt) 523 ubifs_pad(c, wbuf->buf + wbuf->used, dirt); 524 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len); 525 if (err) 526 return err; 527 528 spin_lock(&wbuf->lock); 529 wbuf->offs += sync_len; 530 /* 531 * Now @wbuf->offs is not necessarily aligned to @c->max_write_size. 532 * But our goal is to optimize writes and make sure we write in 533 * @c->max_write_size chunks and to @c->max_write_size-aligned offset. 534 * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make 535 * sure that @wbuf->offs + @wbuf->size is aligned to 536 * @c->max_write_size. This way we make sure that after next 537 * write-buffer flush we are again at the optimal offset (aligned to 538 * @c->max_write_size). 539 */ 540 if (c->leb_size - wbuf->offs < c->max_write_size) 541 wbuf->size = c->leb_size - wbuf->offs; 542 else if (wbuf->offs & (c->max_write_size - 1)) 543 wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs; 544 else 545 wbuf->size = c->max_write_size; 546 wbuf->avail = wbuf->size; 547 wbuf->used = 0; 548 wbuf->next_ino = 0; 549 spin_unlock(&wbuf->lock); 550 551 if (wbuf->sync_callback) 552 err = wbuf->sync_callback(c, wbuf->lnum, 553 c->leb_size - wbuf->offs, dirt); 554 return err; 555 } 556 557 /** 558 * ubifs_wbuf_seek_nolock - seek write-buffer. 559 * @wbuf: write-buffer 560 * @lnum: logical eraseblock number to seek to 561 * @offs: logical eraseblock offset to seek to 562 * 563 * This function targets the write-buffer to logical eraseblock @lnum:@offs. 564 * The write-buffer has to be empty. Returns zero in case of success and a 565 * negative error code in case of failure. 566 */ 567 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs) 568 { 569 const struct ubifs_info *c = wbuf->c; 570 571 dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead)); 572 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt); 573 ubifs_assert(offs >= 0 && offs <= c->leb_size); 574 ubifs_assert(offs % c->min_io_size == 0 && !(offs & 7)); 575 ubifs_assert(lnum != wbuf->lnum); 576 ubifs_assert(wbuf->used == 0); 577 578 spin_lock(&wbuf->lock); 579 wbuf->lnum = lnum; 580 wbuf->offs = offs; 581 if (c->leb_size - wbuf->offs < c->max_write_size) 582 wbuf->size = c->leb_size - wbuf->offs; 583 else if (wbuf->offs & (c->max_write_size - 1)) 584 wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs; 585 else 586 wbuf->size = c->max_write_size; 587 wbuf->avail = wbuf->size; 588 wbuf->used = 0; 589 spin_unlock(&wbuf->lock); 590 591 return 0; 592 } 593 594 #ifndef __UBOOT__ 595 /** 596 * ubifs_bg_wbufs_sync - synchronize write-buffers. 597 * @c: UBIFS file-system description object 598 * 599 * This function is called by background thread to synchronize write-buffers. 600 * Returns zero in case of success and a negative error code in case of 601 * failure. 602 */ 603 int ubifs_bg_wbufs_sync(struct ubifs_info *c) 604 { 605 int err, i; 606 607 ubifs_assert(!c->ro_media && !c->ro_mount); 608 if (!c->need_wbuf_sync) 609 return 0; 610 c->need_wbuf_sync = 0; 611 612 if (c->ro_error) { 613 err = -EROFS; 614 goto out_timers; 615 } 616 617 dbg_io("synchronize"); 618 for (i = 0; i < c->jhead_cnt; i++) { 619 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; 620 621 cond_resched(); 622 623 /* 624 * If the mutex is locked then wbuf is being changed, so 625 * synchronization is not necessary. 626 */ 627 if (mutex_is_locked(&wbuf->io_mutex)) 628 continue; 629 630 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 631 if (!wbuf->need_sync) { 632 mutex_unlock(&wbuf->io_mutex); 633 continue; 634 } 635 636 err = ubifs_wbuf_sync_nolock(wbuf); 637 mutex_unlock(&wbuf->io_mutex); 638 if (err) { 639 ubifs_err("cannot sync write-buffer, error %d", err); 640 ubifs_ro_mode(c, err); 641 goto out_timers; 642 } 643 } 644 645 return 0; 646 647 out_timers: 648 /* Cancel all timers to prevent repeated errors */ 649 for (i = 0; i < c->jhead_cnt; i++) { 650 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; 651 652 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 653 cancel_wbuf_timer_nolock(wbuf); 654 mutex_unlock(&wbuf->io_mutex); 655 } 656 return err; 657 } 658 659 /** 660 * ubifs_wbuf_write_nolock - write data to flash via write-buffer. 661 * @wbuf: write-buffer 662 * @buf: node to write 663 * @len: node length 664 * 665 * This function writes data to flash via write-buffer @wbuf. This means that 666 * the last piece of the node won't reach the flash media immediately if it 667 * does not take whole max. write unit (@c->max_write_size). Instead, the node 668 * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or 669 * because more data are appended to the write-buffer). 670 * 671 * This function returns zero in case of success and a negative error code in 672 * case of failure. If the node cannot be written because there is no more 673 * space in this logical eraseblock, %-ENOSPC is returned. 674 */ 675 int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len) 676 { 677 struct ubifs_info *c = wbuf->c; 678 int err, written, n, aligned_len = ALIGN(len, 8); 679 680 dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len, 681 dbg_ntype(((struct ubifs_ch *)buf)->node_type), 682 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used); 683 ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt); 684 ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0); 685 ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size); 686 ubifs_assert(wbuf->avail > 0 && wbuf->avail <= wbuf->size); 687 ubifs_assert(wbuf->size >= c->min_io_size); 688 ubifs_assert(wbuf->size <= c->max_write_size); 689 ubifs_assert(wbuf->size % c->min_io_size == 0); 690 ubifs_assert(mutex_is_locked(&wbuf->io_mutex)); 691 ubifs_assert(!c->ro_media && !c->ro_mount); 692 ubifs_assert(!c->space_fixup); 693 if (c->leb_size - wbuf->offs >= c->max_write_size) 694 ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size)); 695 696 if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) { 697 err = -ENOSPC; 698 goto out; 699 } 700 701 cancel_wbuf_timer_nolock(wbuf); 702 703 if (c->ro_error) 704 return -EROFS; 705 706 if (aligned_len <= wbuf->avail) { 707 /* 708 * The node is not very large and fits entirely within 709 * write-buffer. 710 */ 711 memcpy(wbuf->buf + wbuf->used, buf, len); 712 713 if (aligned_len == wbuf->avail) { 714 dbg_io("flush jhead %s wbuf to LEB %d:%d", 715 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs); 716 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, 717 wbuf->offs, wbuf->size); 718 if (err) 719 goto out; 720 721 spin_lock(&wbuf->lock); 722 wbuf->offs += wbuf->size; 723 if (c->leb_size - wbuf->offs >= c->max_write_size) 724 wbuf->size = c->max_write_size; 725 else 726 wbuf->size = c->leb_size - wbuf->offs; 727 wbuf->avail = wbuf->size; 728 wbuf->used = 0; 729 wbuf->next_ino = 0; 730 spin_unlock(&wbuf->lock); 731 } else { 732 spin_lock(&wbuf->lock); 733 wbuf->avail -= aligned_len; 734 wbuf->used += aligned_len; 735 spin_unlock(&wbuf->lock); 736 } 737 738 goto exit; 739 } 740 741 written = 0; 742 743 if (wbuf->used) { 744 /* 745 * The node is large enough and does not fit entirely within 746 * current available space. We have to fill and flush 747 * write-buffer and switch to the next max. write unit. 748 */ 749 dbg_io("flush jhead %s wbuf to LEB %d:%d", 750 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs); 751 memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail); 752 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, 753 wbuf->size); 754 if (err) 755 goto out; 756 757 wbuf->offs += wbuf->size; 758 len -= wbuf->avail; 759 aligned_len -= wbuf->avail; 760 written += wbuf->avail; 761 } else if (wbuf->offs & (c->max_write_size - 1)) { 762 /* 763 * The write-buffer offset is not aligned to 764 * @c->max_write_size and @wbuf->size is less than 765 * @c->max_write_size. Write @wbuf->size bytes to make sure the 766 * following writes are done in optimal @c->max_write_size 767 * chunks. 768 */ 769 dbg_io("write %d bytes to LEB %d:%d", 770 wbuf->size, wbuf->lnum, wbuf->offs); 771 err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs, 772 wbuf->size); 773 if (err) 774 goto out; 775 776 wbuf->offs += wbuf->size; 777 len -= wbuf->size; 778 aligned_len -= wbuf->size; 779 written += wbuf->size; 780 } 781 782 /* 783 * The remaining data may take more whole max. write units, so write the 784 * remains multiple to max. write unit size directly to the flash media. 785 * We align node length to 8-byte boundary because we anyway flash wbuf 786 * if the remaining space is less than 8 bytes. 787 */ 788 n = aligned_len >> c->max_write_shift; 789 if (n) { 790 n <<= c->max_write_shift; 791 dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum, 792 wbuf->offs); 793 err = ubifs_leb_write(c, wbuf->lnum, buf + written, 794 wbuf->offs, n); 795 if (err) 796 goto out; 797 wbuf->offs += n; 798 aligned_len -= n; 799 len -= n; 800 written += n; 801 } 802 803 spin_lock(&wbuf->lock); 804 if (aligned_len) 805 /* 806 * And now we have what's left and what does not take whole 807 * max. write unit, so write it to the write-buffer and we are 808 * done. 809 */ 810 memcpy(wbuf->buf, buf + written, len); 811 812 if (c->leb_size - wbuf->offs >= c->max_write_size) 813 wbuf->size = c->max_write_size; 814 else 815 wbuf->size = c->leb_size - wbuf->offs; 816 wbuf->avail = wbuf->size - aligned_len; 817 wbuf->used = aligned_len; 818 wbuf->next_ino = 0; 819 spin_unlock(&wbuf->lock); 820 821 exit: 822 if (wbuf->sync_callback) { 823 int free = c->leb_size - wbuf->offs - wbuf->used; 824 825 err = wbuf->sync_callback(c, wbuf->lnum, free, 0); 826 if (err) 827 goto out; 828 } 829 830 if (wbuf->used) 831 new_wbuf_timer_nolock(wbuf); 832 833 return 0; 834 835 out: 836 ubifs_err("cannot write %d bytes to LEB %d:%d, error %d", 837 len, wbuf->lnum, wbuf->offs, err); 838 ubifs_dump_node(c, buf); 839 dump_stack(); 840 ubifs_dump_leb(c, wbuf->lnum); 841 return err; 842 } 843 844 /** 845 * ubifs_write_node - write node to the media. 846 * @c: UBIFS file-system description object 847 * @buf: the node to write 848 * @len: node length 849 * @lnum: logical eraseblock number 850 * @offs: offset within the logical eraseblock 851 * 852 * This function automatically fills node magic number, assigns sequence 853 * number, and calculates node CRC checksum. The length of the @buf buffer has 854 * to be aligned to the minimal I/O unit size. This function automatically 855 * appends padding node and padding bytes if needed. Returns zero in case of 856 * success and a negative error code in case of failure. 857 */ 858 int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum, 859 int offs) 860 { 861 int err, buf_len = ALIGN(len, c->min_io_size); 862 863 dbg_io("LEB %d:%d, %s, length %d (aligned %d)", 864 lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len, 865 buf_len); 866 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 867 ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size); 868 ubifs_assert(!c->ro_media && !c->ro_mount); 869 ubifs_assert(!c->space_fixup); 870 871 if (c->ro_error) 872 return -EROFS; 873 874 ubifs_prepare_node(c, buf, len, 1); 875 err = ubifs_leb_write(c, lnum, buf, offs, buf_len); 876 if (err) 877 ubifs_dump_node(c, buf); 878 879 return err; 880 } 881 #endif 882 883 /** 884 * ubifs_read_node_wbuf - read node from the media or write-buffer. 885 * @wbuf: wbuf to check for un-written data 886 * @buf: buffer to read to 887 * @type: node type 888 * @len: node length 889 * @lnum: logical eraseblock number 890 * @offs: offset within the logical eraseblock 891 * 892 * This function reads a node of known type and length, checks it and stores 893 * in @buf. If the node partially or fully sits in the write-buffer, this 894 * function takes data from the buffer, otherwise it reads the flash media. 895 * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative 896 * error code in case of failure. 897 */ 898 int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len, 899 int lnum, int offs) 900 { 901 const struct ubifs_info *c = wbuf->c; 902 int err, rlen, overlap; 903 struct ubifs_ch *ch = buf; 904 905 dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs, 906 dbg_ntype(type), len, dbg_jhead(wbuf->jhead)); 907 ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 908 ubifs_assert(!(offs & 7) && offs < c->leb_size); 909 ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT); 910 911 spin_lock(&wbuf->lock); 912 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs); 913 if (!overlap) { 914 /* We may safely unlock the write-buffer and read the data */ 915 spin_unlock(&wbuf->lock); 916 return ubifs_read_node(c, buf, type, len, lnum, offs); 917 } 918 919 /* Don't read under wbuf */ 920 rlen = wbuf->offs - offs; 921 if (rlen < 0) 922 rlen = 0; 923 924 /* Copy the rest from the write-buffer */ 925 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen); 926 spin_unlock(&wbuf->lock); 927 928 if (rlen > 0) { 929 /* Read everything that goes before write-buffer */ 930 err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0); 931 if (err && err != -EBADMSG) 932 return err; 933 } 934 935 if (type != ch->node_type) { 936 ubifs_err("bad node type (%d but expected %d)", 937 ch->node_type, type); 938 goto out; 939 } 940 941 err = ubifs_check_node(c, buf, lnum, offs, 0, 0); 942 if (err) { 943 ubifs_err("expected node type %d", type); 944 return err; 945 } 946 947 rlen = le32_to_cpu(ch->len); 948 if (rlen != len) { 949 ubifs_err("bad node length %d, expected %d", rlen, len); 950 goto out; 951 } 952 953 return 0; 954 955 out: 956 ubifs_err("bad node at LEB %d:%d", lnum, offs); 957 ubifs_dump_node(c, buf); 958 dump_stack(); 959 return -EINVAL; 960 } 961 962 /** 963 * ubifs_read_node - read node. 964 * @c: UBIFS file-system description object 965 * @buf: buffer to read to 966 * @type: node type 967 * @len: node length (not aligned) 968 * @lnum: logical eraseblock number 969 * @offs: offset within the logical eraseblock 970 * 971 * This function reads a node of known type and and length, checks it and 972 * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched 973 * and a negative error code in case of failure. 974 */ 975 int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len, 976 int lnum, int offs) 977 { 978 int err, l; 979 struct ubifs_ch *ch = buf; 980 981 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); 982 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 983 ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size); 984 ubifs_assert(!(offs & 7) && offs < c->leb_size); 985 ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT); 986 987 err = ubifs_leb_read(c, lnum, buf, offs, len, 0); 988 if (err && err != -EBADMSG) 989 return err; 990 991 if (type != ch->node_type) { 992 ubifs_err("bad node type (%d but expected %d)", 993 ch->node_type, type); 994 goto out; 995 } 996 997 err = ubifs_check_node(c, buf, lnum, offs, 0, 0); 998 if (err) { 999 ubifs_err("expected node type %d", type); 1000 return err; 1001 } 1002 1003 l = le32_to_cpu(ch->len); 1004 if (l != len) { 1005 ubifs_err("bad node length %d, expected %d", l, len); 1006 goto out; 1007 } 1008 1009 return 0; 1010 1011 out: 1012 ubifs_err("bad node at LEB %d:%d, LEB mapping status %d", lnum, offs, 1013 ubi_is_mapped(c->ubi, lnum)); 1014 ubifs_dump_node(c, buf); 1015 dump_stack(); 1016 return -EINVAL; 1017 } 1018 1019 /** 1020 * ubifs_wbuf_init - initialize write-buffer. 1021 * @c: UBIFS file-system description object 1022 * @wbuf: write-buffer to initialize 1023 * 1024 * This function initializes write-buffer. Returns zero in case of success 1025 * %-ENOMEM in case of failure. 1026 */ 1027 int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf) 1028 { 1029 size_t size; 1030 1031 wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL); 1032 if (!wbuf->buf) 1033 return -ENOMEM; 1034 1035 size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t); 1036 wbuf->inodes = kmalloc(size, GFP_KERNEL); 1037 if (!wbuf->inodes) { 1038 kfree(wbuf->buf); 1039 wbuf->buf = NULL; 1040 return -ENOMEM; 1041 } 1042 1043 wbuf->used = 0; 1044 wbuf->lnum = wbuf->offs = -1; 1045 /* 1046 * If the LEB starts at the max. write size aligned address, then 1047 * write-buffer size has to be set to @c->max_write_size. Otherwise, 1048 * set it to something smaller so that it ends at the closest max. 1049 * write size boundary. 1050 */ 1051 size = c->max_write_size - (c->leb_start % c->max_write_size); 1052 wbuf->avail = wbuf->size = size; 1053 wbuf->sync_callback = NULL; 1054 mutex_init(&wbuf->io_mutex); 1055 spin_lock_init(&wbuf->lock); 1056 wbuf->c = c; 1057 wbuf->next_ino = 0; 1058 1059 #ifndef __UBOOT__ 1060 hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1061 wbuf->timer.function = wbuf_timer_callback_nolock; 1062 wbuf->softlimit = ktime_set(WBUF_TIMEOUT_SOFTLIMIT, 0); 1063 wbuf->delta = WBUF_TIMEOUT_HARDLIMIT - WBUF_TIMEOUT_SOFTLIMIT; 1064 wbuf->delta *= 1000000000ULL; 1065 ubifs_assert(wbuf->delta <= ULONG_MAX); 1066 #endif 1067 return 0; 1068 } 1069 1070 /** 1071 * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array. 1072 * @wbuf: the write-buffer where to add 1073 * @inum: the inode number 1074 * 1075 * This function adds an inode number to the inode array of the write-buffer. 1076 */ 1077 void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum) 1078 { 1079 if (!wbuf->buf) 1080 /* NOR flash or something similar */ 1081 return; 1082 1083 spin_lock(&wbuf->lock); 1084 if (wbuf->used) 1085 wbuf->inodes[wbuf->next_ino++] = inum; 1086 spin_unlock(&wbuf->lock); 1087 } 1088 1089 /** 1090 * wbuf_has_ino - returns if the wbuf contains data from the inode. 1091 * @wbuf: the write-buffer 1092 * @inum: the inode number 1093 * 1094 * This function returns with %1 if the write-buffer contains some data from the 1095 * given inode otherwise it returns with %0. 1096 */ 1097 static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum) 1098 { 1099 int i, ret = 0; 1100 1101 spin_lock(&wbuf->lock); 1102 for (i = 0; i < wbuf->next_ino; i++) 1103 if (inum == wbuf->inodes[i]) { 1104 ret = 1; 1105 break; 1106 } 1107 spin_unlock(&wbuf->lock); 1108 1109 return ret; 1110 } 1111 1112 /** 1113 * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode. 1114 * @c: UBIFS file-system description object 1115 * @inode: inode to synchronize 1116 * 1117 * This function synchronizes write-buffers which contain nodes belonging to 1118 * @inode. Returns zero in case of success and a negative error code in case of 1119 * failure. 1120 */ 1121 int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode) 1122 { 1123 int i, err = 0; 1124 1125 for (i = 0; i < c->jhead_cnt; i++) { 1126 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; 1127 1128 if (i == GCHD) 1129 /* 1130 * GC head is special, do not look at it. Even if the 1131 * head contains something related to this inode, it is 1132 * a _copy_ of corresponding on-flash node which sits 1133 * somewhere else. 1134 */ 1135 continue; 1136 1137 if (!wbuf_has_ino(wbuf, inode->i_ino)) 1138 continue; 1139 1140 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 1141 if (wbuf_has_ino(wbuf, inode->i_ino)) 1142 err = ubifs_wbuf_sync_nolock(wbuf); 1143 mutex_unlock(&wbuf->io_mutex); 1144 1145 if (err) { 1146 ubifs_ro_mode(c, err); 1147 return err; 1148 } 1149 } 1150 return 0; 1151 } 1152