xref: /openbmc/u-boot/fs/ubifs/io.c (revision 9ee16897)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  * Copyright (C) 2006, 2007 University of Szeged, Hungary
6  *
7  * SPDX-License-Identifier:	GPL-2.0+
8  *
9  * Authors: Artem Bityutskiy (Битюцкий Артём)
10  *          Adrian Hunter
11  *          Zoltan Sogor
12  */
13 
14 /*
15  * This file implements UBIFS I/O subsystem which provides various I/O-related
16  * helper functions (reading/writing/checking/validating nodes) and implements
17  * write-buffering support. Write buffers help to save space which otherwise
18  * would have been wasted for padding to the nearest minimal I/O unit boundary.
19  * Instead, data first goes to the write-buffer and is flushed when the
20  * buffer is full or when it is not used for some time (by timer). This is
21  * similar to the mechanism is used by JFFS2.
22  *
23  * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum
24  * write size (@c->max_write_size). The latter is the maximum amount of bytes
25  * the underlying flash is able to program at a time, and writing in
26  * @c->max_write_size units should presumably be faster. Obviously,
27  * @c->min_io_size <= @c->max_write_size. Write-buffers are of
28  * @c->max_write_size bytes in size for maximum performance. However, when a
29  * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size
30  * boundary) which contains data is written, not the whole write-buffer,
31  * because this is more space-efficient.
32  *
33  * This optimization adds few complications to the code. Indeed, on the one
34  * hand, we want to write in optimal @c->max_write_size bytes chunks, which
35  * also means aligning writes at the @c->max_write_size bytes offsets. On the
36  * other hand, we do not want to waste space when synchronizing the write
37  * buffer, so during synchronization we writes in smaller chunks. And this makes
38  * the next write offset to be not aligned to @c->max_write_size bytes. So the
39  * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned
40  * to @c->max_write_size bytes again. We do this by temporarily shrinking
41  * write-buffer size (@wbuf->size).
42  *
43  * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
44  * mutexes defined inside these objects. Since sometimes upper-level code
45  * has to lock the write-buffer (e.g. journal space reservation code), many
46  * functions related to write-buffers have "nolock" suffix which means that the
47  * caller has to lock the write-buffer before calling this function.
48  *
49  * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
50  * aligned, UBIFS starts the next node from the aligned address, and the padded
51  * bytes may contain any rubbish. In other words, UBIFS does not put padding
52  * bytes in those small gaps. Common headers of nodes store real node lengths,
53  * not aligned lengths. Indexing nodes also store real lengths in branches.
54  *
55  * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
56  * uses padding nodes or padding bytes, if the padding node does not fit.
57  *
58  * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when
59  * they are read from the flash media.
60  */
61 
62 #ifndef __UBOOT__
63 #include <linux/crc32.h>
64 #include <linux/slab.h>
65 #else
66 #include <linux/compat.h>
67 #include <linux/err.h>
68 #endif
69 #include "ubifs.h"
70 
71 /**
72  * ubifs_ro_mode - switch UBIFS to read read-only mode.
73  * @c: UBIFS file-system description object
74  * @err: error code which is the reason of switching to R/O mode
75  */
76 void ubifs_ro_mode(struct ubifs_info *c, int err)
77 {
78 	if (!c->ro_error) {
79 		c->ro_error = 1;
80 		c->no_chk_data_crc = 0;
81 		c->vfs_sb->s_flags |= MS_RDONLY;
82 		ubifs_warn("switched to read-only mode, error %d", err);
83 		dump_stack();
84 	}
85 }
86 
87 /*
88  * Below are simple wrappers over UBI I/O functions which include some
89  * additional checks and UBIFS debugging stuff. See corresponding UBI function
90  * for more information.
91  */
92 
93 int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs,
94 		   int len, int even_ebadmsg)
95 {
96 	int err;
97 
98 	err = ubi_read(c->ubi, lnum, buf, offs, len);
99 	/*
100 	 * In case of %-EBADMSG print the error message only if the
101 	 * @even_ebadmsg is true.
102 	 */
103 	if (err && (err != -EBADMSG || even_ebadmsg)) {
104 		ubifs_err("reading %d bytes from LEB %d:%d failed, error %d",
105 			  len, lnum, offs, err);
106 		dump_stack();
107 	}
108 	return err;
109 }
110 
111 int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs,
112 		    int len)
113 {
114 	int err;
115 
116 	ubifs_assert(!c->ro_media && !c->ro_mount);
117 	if (c->ro_error)
118 		return -EROFS;
119 	if (!dbg_is_tst_rcvry(c))
120 		err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
121 	else
122 		err = dbg_leb_write(c, lnum, buf, offs, len);
123 	if (err) {
124 		ubifs_err("writing %d bytes to LEB %d:%d failed, error %d",
125 			  len, lnum, offs, err);
126 		ubifs_ro_mode(c, err);
127 		dump_stack();
128 	}
129 	return err;
130 }
131 
132 int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len)
133 {
134 	int err;
135 
136 	ubifs_assert(!c->ro_media && !c->ro_mount);
137 	if (c->ro_error)
138 		return -EROFS;
139 	if (!dbg_is_tst_rcvry(c))
140 		err = ubi_leb_change(c->ubi, lnum, buf, len);
141 	else
142 		err = dbg_leb_change(c, lnum, buf, len);
143 	if (err) {
144 		ubifs_err("changing %d bytes in LEB %d failed, error %d",
145 			  len, lnum, err);
146 		ubifs_ro_mode(c, err);
147 		dump_stack();
148 	}
149 	return err;
150 }
151 
152 int ubifs_leb_unmap(struct ubifs_info *c, int lnum)
153 {
154 	int err;
155 
156 	ubifs_assert(!c->ro_media && !c->ro_mount);
157 	if (c->ro_error)
158 		return -EROFS;
159 	if (!dbg_is_tst_rcvry(c))
160 		err = ubi_leb_unmap(c->ubi, lnum);
161 	else
162 		err = dbg_leb_unmap(c, lnum);
163 	if (err) {
164 		ubifs_err("unmap LEB %d failed, error %d", lnum, err);
165 		ubifs_ro_mode(c, err);
166 		dump_stack();
167 	}
168 	return err;
169 }
170 
171 int ubifs_leb_map(struct ubifs_info *c, int lnum)
172 {
173 	int err;
174 
175 	ubifs_assert(!c->ro_media && !c->ro_mount);
176 	if (c->ro_error)
177 		return -EROFS;
178 	if (!dbg_is_tst_rcvry(c))
179 		err = ubi_leb_map(c->ubi, lnum);
180 	else
181 		err = dbg_leb_map(c, lnum);
182 	if (err) {
183 		ubifs_err("mapping LEB %d failed, error %d", lnum, err);
184 		ubifs_ro_mode(c, err);
185 		dump_stack();
186 	}
187 	return err;
188 }
189 
190 int ubifs_is_mapped(const struct ubifs_info *c, int lnum)
191 {
192 	int err;
193 
194 	err = ubi_is_mapped(c->ubi, lnum);
195 	if (err < 0) {
196 		ubifs_err("ubi_is_mapped failed for LEB %d, error %d",
197 			  lnum, err);
198 		dump_stack();
199 	}
200 	return err;
201 }
202 
203 /**
204  * ubifs_check_node - check node.
205  * @c: UBIFS file-system description object
206  * @buf: node to check
207  * @lnum: logical eraseblock number
208  * @offs: offset within the logical eraseblock
209  * @quiet: print no messages
210  * @must_chk_crc: indicates whether to always check the CRC
211  *
212  * This function checks node magic number and CRC checksum. This function also
213  * validates node length to prevent UBIFS from becoming crazy when an attacker
214  * feeds it a file-system image with incorrect nodes. For example, too large
215  * node length in the common header could cause UBIFS to read memory outside of
216  * allocated buffer when checking the CRC checksum.
217  *
218  * This function may skip data nodes CRC checking if @c->no_chk_data_crc is
219  * true, which is controlled by corresponding UBIFS mount option. However, if
220  * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
221  * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are
222  * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC
223  * is checked. This is because during mounting or re-mounting from R/O mode to
224  * R/W mode we may read journal nodes (when replying the journal or doing the
225  * recovery) and the journal nodes may potentially be corrupted, so checking is
226  * required.
227  *
228  * This function returns zero in case of success and %-EUCLEAN in case of bad
229  * CRC or magic.
230  */
231 int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum,
232 		     int offs, int quiet, int must_chk_crc)
233 {
234 	int err = -EINVAL, type, node_len;
235 	uint32_t crc, node_crc, magic;
236 	const struct ubifs_ch *ch = buf;
237 
238 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
239 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
240 
241 	magic = le32_to_cpu(ch->magic);
242 	if (magic != UBIFS_NODE_MAGIC) {
243 		if (!quiet)
244 			ubifs_err("bad magic %#08x, expected %#08x",
245 				  magic, UBIFS_NODE_MAGIC);
246 		err = -EUCLEAN;
247 		goto out;
248 	}
249 
250 	type = ch->node_type;
251 	if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
252 		if (!quiet)
253 			ubifs_err("bad node type %d", type);
254 		goto out;
255 	}
256 
257 	node_len = le32_to_cpu(ch->len);
258 	if (node_len + offs > c->leb_size)
259 		goto out_len;
260 
261 	if (c->ranges[type].max_len == 0) {
262 		if (node_len != c->ranges[type].len)
263 			goto out_len;
264 	} else if (node_len < c->ranges[type].min_len ||
265 		   node_len > c->ranges[type].max_len)
266 		goto out_len;
267 
268 	if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting &&
269 	    !c->remounting_rw && c->no_chk_data_crc)
270 		return 0;
271 
272 	crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
273 	node_crc = le32_to_cpu(ch->crc);
274 	if (crc != node_crc) {
275 		if (!quiet)
276 			ubifs_err("bad CRC: calculated %#08x, read %#08x",
277 				  crc, node_crc);
278 		err = -EUCLEAN;
279 		goto out;
280 	}
281 
282 	return 0;
283 
284 out_len:
285 	if (!quiet)
286 		ubifs_err("bad node length %d", node_len);
287 out:
288 	if (!quiet) {
289 		ubifs_err("bad node at LEB %d:%d", lnum, offs);
290 		ubifs_dump_node(c, buf);
291 		dump_stack();
292 	}
293 	return err;
294 }
295 
296 /**
297  * ubifs_pad - pad flash space.
298  * @c: UBIFS file-system description object
299  * @buf: buffer to put padding to
300  * @pad: how many bytes to pad
301  *
302  * The flash media obliges us to write only in chunks of %c->min_io_size and
303  * when we have to write less data we add padding node to the write-buffer and
304  * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
305  * media is being scanned. If the amount of wasted space is not enough to fit a
306  * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
307  * pattern (%UBIFS_PADDING_BYTE).
308  *
309  * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
310  * used.
311  */
312 void ubifs_pad(const struct ubifs_info *c, void *buf, int pad)
313 {
314 	uint32_t crc;
315 
316 	ubifs_assert(pad >= 0 && !(pad & 7));
317 
318 	if (pad >= UBIFS_PAD_NODE_SZ) {
319 		struct ubifs_ch *ch = buf;
320 		struct ubifs_pad_node *pad_node = buf;
321 
322 		ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
323 		ch->node_type = UBIFS_PAD_NODE;
324 		ch->group_type = UBIFS_NO_NODE_GROUP;
325 		ch->padding[0] = ch->padding[1] = 0;
326 		ch->sqnum = 0;
327 		ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ);
328 		pad -= UBIFS_PAD_NODE_SZ;
329 		pad_node->pad_len = cpu_to_le32(pad);
330 		crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8);
331 		ch->crc = cpu_to_le32(crc);
332 		memset(buf + UBIFS_PAD_NODE_SZ, 0, pad);
333 	} else if (pad > 0)
334 		/* Too little space, padding node won't fit */
335 		memset(buf, UBIFS_PADDING_BYTE, pad);
336 }
337 
338 /**
339  * next_sqnum - get next sequence number.
340  * @c: UBIFS file-system description object
341  */
342 static unsigned long long next_sqnum(struct ubifs_info *c)
343 {
344 	unsigned long long sqnum;
345 
346 	spin_lock(&c->cnt_lock);
347 	sqnum = ++c->max_sqnum;
348 	spin_unlock(&c->cnt_lock);
349 
350 	if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) {
351 		if (sqnum >= SQNUM_WATERMARK) {
352 			ubifs_err("sequence number overflow %llu, end of life",
353 				  sqnum);
354 			ubifs_ro_mode(c, -EINVAL);
355 		}
356 		ubifs_warn("running out of sequence numbers, end of life soon");
357 	}
358 
359 	return sqnum;
360 }
361 
362 /**
363  * ubifs_prepare_node - prepare node to be written to flash.
364  * @c: UBIFS file-system description object
365  * @node: the node to pad
366  * @len: node length
367  * @pad: if the buffer has to be padded
368  *
369  * This function prepares node at @node to be written to the media - it
370  * calculates node CRC, fills the common header, and adds proper padding up to
371  * the next minimum I/O unit if @pad is not zero.
372  */
373 void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad)
374 {
375 	uint32_t crc;
376 	struct ubifs_ch *ch = node;
377 	unsigned long long sqnum = next_sqnum(c);
378 
379 	ubifs_assert(len >= UBIFS_CH_SZ);
380 
381 	ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
382 	ch->len = cpu_to_le32(len);
383 	ch->group_type = UBIFS_NO_NODE_GROUP;
384 	ch->sqnum = cpu_to_le64(sqnum);
385 	ch->padding[0] = ch->padding[1] = 0;
386 	crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
387 	ch->crc = cpu_to_le32(crc);
388 
389 	if (pad) {
390 		len = ALIGN(len, 8);
391 		pad = ALIGN(len, c->min_io_size) - len;
392 		ubifs_pad(c, node + len, pad);
393 	}
394 }
395 
396 /**
397  * ubifs_prep_grp_node - prepare node of a group to be written to flash.
398  * @c: UBIFS file-system description object
399  * @node: the node to pad
400  * @len: node length
401  * @last: indicates the last node of the group
402  *
403  * This function prepares node at @node to be written to the media - it
404  * calculates node CRC and fills the common header.
405  */
406 void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last)
407 {
408 	uint32_t crc;
409 	struct ubifs_ch *ch = node;
410 	unsigned long long sqnum = next_sqnum(c);
411 
412 	ubifs_assert(len >= UBIFS_CH_SZ);
413 
414 	ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
415 	ch->len = cpu_to_le32(len);
416 	if (last)
417 		ch->group_type = UBIFS_LAST_OF_NODE_GROUP;
418 	else
419 		ch->group_type = UBIFS_IN_NODE_GROUP;
420 	ch->sqnum = cpu_to_le64(sqnum);
421 	ch->padding[0] = ch->padding[1] = 0;
422 	crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
423 	ch->crc = cpu_to_le32(crc);
424 }
425 
426 #ifndef __UBOOT__
427 /**
428  * wbuf_timer_callback - write-buffer timer callback function.
429  * @data: timer data (write-buffer descriptor)
430  *
431  * This function is called when the write-buffer timer expires.
432  */
433 static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer)
434 {
435 	struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer);
436 
437 	dbg_io("jhead %s", dbg_jhead(wbuf->jhead));
438 	wbuf->need_sync = 1;
439 	wbuf->c->need_wbuf_sync = 1;
440 	ubifs_wake_up_bgt(wbuf->c);
441 	return HRTIMER_NORESTART;
442 }
443 
444 /**
445  * new_wbuf_timer - start new write-buffer timer.
446  * @wbuf: write-buffer descriptor
447  */
448 static void new_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
449 {
450 	ubifs_assert(!hrtimer_active(&wbuf->timer));
451 
452 	if (wbuf->no_timer)
453 		return;
454 	dbg_io("set timer for jhead %s, %llu-%llu millisecs",
455 	       dbg_jhead(wbuf->jhead),
456 	       div_u64(ktime_to_ns(wbuf->softlimit), USEC_PER_SEC),
457 	       div_u64(ktime_to_ns(wbuf->softlimit) + wbuf->delta,
458 		       USEC_PER_SEC));
459 	hrtimer_start_range_ns(&wbuf->timer, wbuf->softlimit, wbuf->delta,
460 			       HRTIMER_MODE_REL);
461 }
462 #endif
463 
464 /**
465  * cancel_wbuf_timer - cancel write-buffer timer.
466  * @wbuf: write-buffer descriptor
467  */
468 static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
469 {
470 	if (wbuf->no_timer)
471 		return;
472 	wbuf->need_sync = 0;
473 #ifndef __UBOOT__
474 	hrtimer_cancel(&wbuf->timer);
475 #endif
476 }
477 
478 /**
479  * ubifs_wbuf_sync_nolock - synchronize write-buffer.
480  * @wbuf: write-buffer to synchronize
481  *
482  * This function synchronizes write-buffer @buf and returns zero in case of
483  * success or a negative error code in case of failure.
484  *
485  * Note, although write-buffers are of @c->max_write_size, this function does
486  * not necessarily writes all @c->max_write_size bytes to the flash. Instead,
487  * if the write-buffer is only partially filled with data, only the used part
488  * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized.
489  * This way we waste less space.
490  */
491 int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
492 {
493 	struct ubifs_info *c = wbuf->c;
494 	int err, dirt, sync_len;
495 
496 	cancel_wbuf_timer_nolock(wbuf);
497 	if (!wbuf->used || wbuf->lnum == -1)
498 		/* Write-buffer is empty or not seeked */
499 		return 0;
500 
501 	dbg_io("LEB %d:%d, %d bytes, jhead %s",
502 	       wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead));
503 	ubifs_assert(!(wbuf->avail & 7));
504 	ubifs_assert(wbuf->offs + wbuf->size <= c->leb_size);
505 	ubifs_assert(wbuf->size >= c->min_io_size);
506 	ubifs_assert(wbuf->size <= c->max_write_size);
507 	ubifs_assert(wbuf->size % c->min_io_size == 0);
508 	ubifs_assert(!c->ro_media && !c->ro_mount);
509 	if (c->leb_size - wbuf->offs >= c->max_write_size)
510 		ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size));
511 
512 	if (c->ro_error)
513 		return -EROFS;
514 
515 	/*
516 	 * Do not write whole write buffer but write only the minimum necessary
517 	 * amount of min. I/O units.
518 	 */
519 	sync_len = ALIGN(wbuf->used, c->min_io_size);
520 	dirt = sync_len - wbuf->used;
521 	if (dirt)
522 		ubifs_pad(c, wbuf->buf + wbuf->used, dirt);
523 	err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len);
524 	if (err)
525 		return err;
526 
527 	spin_lock(&wbuf->lock);
528 	wbuf->offs += sync_len;
529 	/*
530 	 * Now @wbuf->offs is not necessarily aligned to @c->max_write_size.
531 	 * But our goal is to optimize writes and make sure we write in
532 	 * @c->max_write_size chunks and to @c->max_write_size-aligned offset.
533 	 * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make
534 	 * sure that @wbuf->offs + @wbuf->size is aligned to
535 	 * @c->max_write_size. This way we make sure that after next
536 	 * write-buffer flush we are again at the optimal offset (aligned to
537 	 * @c->max_write_size).
538 	 */
539 	if (c->leb_size - wbuf->offs < c->max_write_size)
540 		wbuf->size = c->leb_size - wbuf->offs;
541 	else if (wbuf->offs & (c->max_write_size - 1))
542 		wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
543 	else
544 		wbuf->size = c->max_write_size;
545 	wbuf->avail = wbuf->size;
546 	wbuf->used = 0;
547 	wbuf->next_ino = 0;
548 	spin_unlock(&wbuf->lock);
549 
550 	if (wbuf->sync_callback)
551 		err = wbuf->sync_callback(c, wbuf->lnum,
552 					  c->leb_size - wbuf->offs, dirt);
553 	return err;
554 }
555 
556 /**
557  * ubifs_wbuf_seek_nolock - seek write-buffer.
558  * @wbuf: write-buffer
559  * @lnum: logical eraseblock number to seek to
560  * @offs: logical eraseblock offset to seek to
561  *
562  * This function targets the write-buffer to logical eraseblock @lnum:@offs.
563  * The write-buffer has to be empty. Returns zero in case of success and a
564  * negative error code in case of failure.
565  */
566 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs)
567 {
568 	const struct ubifs_info *c = wbuf->c;
569 
570 	dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead));
571 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt);
572 	ubifs_assert(offs >= 0 && offs <= c->leb_size);
573 	ubifs_assert(offs % c->min_io_size == 0 && !(offs & 7));
574 	ubifs_assert(lnum != wbuf->lnum);
575 	ubifs_assert(wbuf->used == 0);
576 
577 	spin_lock(&wbuf->lock);
578 	wbuf->lnum = lnum;
579 	wbuf->offs = offs;
580 	if (c->leb_size - wbuf->offs < c->max_write_size)
581 		wbuf->size = c->leb_size - wbuf->offs;
582 	else if (wbuf->offs & (c->max_write_size - 1))
583 		wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
584 	else
585 		wbuf->size = c->max_write_size;
586 	wbuf->avail = wbuf->size;
587 	wbuf->used = 0;
588 	spin_unlock(&wbuf->lock);
589 
590 	return 0;
591 }
592 
593 #ifndef __UBOOT__
594 /**
595  * ubifs_bg_wbufs_sync - synchronize write-buffers.
596  * @c: UBIFS file-system description object
597  *
598  * This function is called by background thread to synchronize write-buffers.
599  * Returns zero in case of success and a negative error code in case of
600  * failure.
601  */
602 int ubifs_bg_wbufs_sync(struct ubifs_info *c)
603 {
604 	int err, i;
605 
606 	ubifs_assert(!c->ro_media && !c->ro_mount);
607 	if (!c->need_wbuf_sync)
608 		return 0;
609 	c->need_wbuf_sync = 0;
610 
611 	if (c->ro_error) {
612 		err = -EROFS;
613 		goto out_timers;
614 	}
615 
616 	dbg_io("synchronize");
617 	for (i = 0; i < c->jhead_cnt; i++) {
618 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
619 
620 		cond_resched();
621 
622 		/*
623 		 * If the mutex is locked then wbuf is being changed, so
624 		 * synchronization is not necessary.
625 		 */
626 		if (mutex_is_locked(&wbuf->io_mutex))
627 			continue;
628 
629 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
630 		if (!wbuf->need_sync) {
631 			mutex_unlock(&wbuf->io_mutex);
632 			continue;
633 		}
634 
635 		err = ubifs_wbuf_sync_nolock(wbuf);
636 		mutex_unlock(&wbuf->io_mutex);
637 		if (err) {
638 			ubifs_err("cannot sync write-buffer, error %d", err);
639 			ubifs_ro_mode(c, err);
640 			goto out_timers;
641 		}
642 	}
643 
644 	return 0;
645 
646 out_timers:
647 	/* Cancel all timers to prevent repeated errors */
648 	for (i = 0; i < c->jhead_cnt; i++) {
649 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
650 
651 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
652 		cancel_wbuf_timer_nolock(wbuf);
653 		mutex_unlock(&wbuf->io_mutex);
654 	}
655 	return err;
656 }
657 
658 /**
659  * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
660  * @wbuf: write-buffer
661  * @buf: node to write
662  * @len: node length
663  *
664  * This function writes data to flash via write-buffer @wbuf. This means that
665  * the last piece of the node won't reach the flash media immediately if it
666  * does not take whole max. write unit (@c->max_write_size). Instead, the node
667  * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or
668  * because more data are appended to the write-buffer).
669  *
670  * This function returns zero in case of success and a negative error code in
671  * case of failure. If the node cannot be written because there is no more
672  * space in this logical eraseblock, %-ENOSPC is returned.
673  */
674 int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
675 {
676 	struct ubifs_info *c = wbuf->c;
677 	int err, written, n, aligned_len = ALIGN(len, 8);
678 
679 	dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len,
680 	       dbg_ntype(((struct ubifs_ch *)buf)->node_type),
681 	       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used);
682 	ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt);
683 	ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0);
684 	ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size);
685 	ubifs_assert(wbuf->avail > 0 && wbuf->avail <= wbuf->size);
686 	ubifs_assert(wbuf->size >= c->min_io_size);
687 	ubifs_assert(wbuf->size <= c->max_write_size);
688 	ubifs_assert(wbuf->size % c->min_io_size == 0);
689 	ubifs_assert(mutex_is_locked(&wbuf->io_mutex));
690 	ubifs_assert(!c->ro_media && !c->ro_mount);
691 	ubifs_assert(!c->space_fixup);
692 	if (c->leb_size - wbuf->offs >= c->max_write_size)
693 		ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size));
694 
695 	if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) {
696 		err = -ENOSPC;
697 		goto out;
698 	}
699 
700 	cancel_wbuf_timer_nolock(wbuf);
701 
702 	if (c->ro_error)
703 		return -EROFS;
704 
705 	if (aligned_len <= wbuf->avail) {
706 		/*
707 		 * The node is not very large and fits entirely within
708 		 * write-buffer.
709 		 */
710 		memcpy(wbuf->buf + wbuf->used, buf, len);
711 
712 		if (aligned_len == wbuf->avail) {
713 			dbg_io("flush jhead %s wbuf to LEB %d:%d",
714 			       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
715 			err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf,
716 					      wbuf->offs, wbuf->size);
717 			if (err)
718 				goto out;
719 
720 			spin_lock(&wbuf->lock);
721 			wbuf->offs += wbuf->size;
722 			if (c->leb_size - wbuf->offs >= c->max_write_size)
723 				wbuf->size = c->max_write_size;
724 			else
725 				wbuf->size = c->leb_size - wbuf->offs;
726 			wbuf->avail = wbuf->size;
727 			wbuf->used = 0;
728 			wbuf->next_ino = 0;
729 			spin_unlock(&wbuf->lock);
730 		} else {
731 			spin_lock(&wbuf->lock);
732 			wbuf->avail -= aligned_len;
733 			wbuf->used += aligned_len;
734 			spin_unlock(&wbuf->lock);
735 		}
736 
737 		goto exit;
738 	}
739 
740 	written = 0;
741 
742 	if (wbuf->used) {
743 		/*
744 		 * The node is large enough and does not fit entirely within
745 		 * current available space. We have to fill and flush
746 		 * write-buffer and switch to the next max. write unit.
747 		 */
748 		dbg_io("flush jhead %s wbuf to LEB %d:%d",
749 		       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
750 		memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
751 		err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs,
752 				      wbuf->size);
753 		if (err)
754 			goto out;
755 
756 		wbuf->offs += wbuf->size;
757 		len -= wbuf->avail;
758 		aligned_len -= wbuf->avail;
759 		written += wbuf->avail;
760 	} else if (wbuf->offs & (c->max_write_size - 1)) {
761 		/*
762 		 * The write-buffer offset is not aligned to
763 		 * @c->max_write_size and @wbuf->size is less than
764 		 * @c->max_write_size. Write @wbuf->size bytes to make sure the
765 		 * following writes are done in optimal @c->max_write_size
766 		 * chunks.
767 		 */
768 		dbg_io("write %d bytes to LEB %d:%d",
769 		       wbuf->size, wbuf->lnum, wbuf->offs);
770 		err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs,
771 				      wbuf->size);
772 		if (err)
773 			goto out;
774 
775 		wbuf->offs += wbuf->size;
776 		len -= wbuf->size;
777 		aligned_len -= wbuf->size;
778 		written += wbuf->size;
779 	}
780 
781 	/*
782 	 * The remaining data may take more whole max. write units, so write the
783 	 * remains multiple to max. write unit size directly to the flash media.
784 	 * We align node length to 8-byte boundary because we anyway flash wbuf
785 	 * if the remaining space is less than 8 bytes.
786 	 */
787 	n = aligned_len >> c->max_write_shift;
788 	if (n) {
789 		n <<= c->max_write_shift;
790 		dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum,
791 		       wbuf->offs);
792 		err = ubifs_leb_write(c, wbuf->lnum, buf + written,
793 				      wbuf->offs, n);
794 		if (err)
795 			goto out;
796 		wbuf->offs += n;
797 		aligned_len -= n;
798 		len -= n;
799 		written += n;
800 	}
801 
802 	spin_lock(&wbuf->lock);
803 	if (aligned_len)
804 		/*
805 		 * And now we have what's left and what does not take whole
806 		 * max. write unit, so write it to the write-buffer and we are
807 		 * done.
808 		 */
809 		memcpy(wbuf->buf, buf + written, len);
810 
811 	if (c->leb_size - wbuf->offs >= c->max_write_size)
812 		wbuf->size = c->max_write_size;
813 	else
814 		wbuf->size = c->leb_size - wbuf->offs;
815 	wbuf->avail = wbuf->size - aligned_len;
816 	wbuf->used = aligned_len;
817 	wbuf->next_ino = 0;
818 	spin_unlock(&wbuf->lock);
819 
820 exit:
821 	if (wbuf->sync_callback) {
822 		int free = c->leb_size - wbuf->offs - wbuf->used;
823 
824 		err = wbuf->sync_callback(c, wbuf->lnum, free, 0);
825 		if (err)
826 			goto out;
827 	}
828 
829 	if (wbuf->used)
830 		new_wbuf_timer_nolock(wbuf);
831 
832 	return 0;
833 
834 out:
835 	ubifs_err("cannot write %d bytes to LEB %d:%d, error %d",
836 		  len, wbuf->lnum, wbuf->offs, err);
837 	ubifs_dump_node(c, buf);
838 	dump_stack();
839 	ubifs_dump_leb(c, wbuf->lnum);
840 	return err;
841 }
842 
843 /**
844  * ubifs_write_node - write node to the media.
845  * @c: UBIFS file-system description object
846  * @buf: the node to write
847  * @len: node length
848  * @lnum: logical eraseblock number
849  * @offs: offset within the logical eraseblock
850  *
851  * This function automatically fills node magic number, assigns sequence
852  * number, and calculates node CRC checksum. The length of the @buf buffer has
853  * to be aligned to the minimal I/O unit size. This function automatically
854  * appends padding node and padding bytes if needed. Returns zero in case of
855  * success and a negative error code in case of failure.
856  */
857 int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum,
858 		     int offs)
859 {
860 	int err, buf_len = ALIGN(len, c->min_io_size);
861 
862 	dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
863 	       lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len,
864 	       buf_len);
865 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
866 	ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size);
867 	ubifs_assert(!c->ro_media && !c->ro_mount);
868 	ubifs_assert(!c->space_fixup);
869 
870 	if (c->ro_error)
871 		return -EROFS;
872 
873 	ubifs_prepare_node(c, buf, len, 1);
874 	err = ubifs_leb_write(c, lnum, buf, offs, buf_len);
875 	if (err)
876 		ubifs_dump_node(c, buf);
877 
878 	return err;
879 }
880 #endif
881 
882 /**
883  * ubifs_read_node_wbuf - read node from the media or write-buffer.
884  * @wbuf: wbuf to check for un-written data
885  * @buf: buffer to read to
886  * @type: node type
887  * @len: node length
888  * @lnum: logical eraseblock number
889  * @offs: offset within the logical eraseblock
890  *
891  * This function reads a node of known type and length, checks it and stores
892  * in @buf. If the node partially or fully sits in the write-buffer, this
893  * function takes data from the buffer, otherwise it reads the flash media.
894  * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
895  * error code in case of failure.
896  */
897 int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
898 			 int lnum, int offs)
899 {
900 	const struct ubifs_info *c = wbuf->c;
901 	int err, rlen, overlap;
902 	struct ubifs_ch *ch = buf;
903 
904 	dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs,
905 	       dbg_ntype(type), len, dbg_jhead(wbuf->jhead));
906 	ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
907 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
908 	ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
909 
910 	spin_lock(&wbuf->lock);
911 	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
912 	if (!overlap) {
913 		/* We may safely unlock the write-buffer and read the data */
914 		spin_unlock(&wbuf->lock);
915 		return ubifs_read_node(c, buf, type, len, lnum, offs);
916 	}
917 
918 	/* Don't read under wbuf */
919 	rlen = wbuf->offs - offs;
920 	if (rlen < 0)
921 		rlen = 0;
922 
923 	/* Copy the rest from the write-buffer */
924 	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
925 	spin_unlock(&wbuf->lock);
926 
927 	if (rlen > 0) {
928 		/* Read everything that goes before write-buffer */
929 		err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
930 		if (err && err != -EBADMSG)
931 			return err;
932 	}
933 
934 	if (type != ch->node_type) {
935 		ubifs_err("bad node type (%d but expected %d)",
936 			  ch->node_type, type);
937 		goto out;
938 	}
939 
940 	err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
941 	if (err) {
942 		ubifs_err("expected node type %d", type);
943 		return err;
944 	}
945 
946 	rlen = le32_to_cpu(ch->len);
947 	if (rlen != len) {
948 		ubifs_err("bad node length %d, expected %d", rlen, len);
949 		goto out;
950 	}
951 
952 	return 0;
953 
954 out:
955 	ubifs_err("bad node at LEB %d:%d", lnum, offs);
956 	ubifs_dump_node(c, buf);
957 	dump_stack();
958 	return -EINVAL;
959 }
960 
961 /**
962  * ubifs_read_node - read node.
963  * @c: UBIFS file-system description object
964  * @buf: buffer to read to
965  * @type: node type
966  * @len: node length (not aligned)
967  * @lnum: logical eraseblock number
968  * @offs: offset within the logical eraseblock
969  *
970  * This function reads a node of known type and and length, checks it and
971  * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
972  * and a negative error code in case of failure.
973  */
974 int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
975 		    int lnum, int offs)
976 {
977 	int err, l;
978 	struct ubifs_ch *ch = buf;
979 
980 	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
981 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
982 	ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size);
983 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
984 	ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
985 
986 	err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
987 	if (err && err != -EBADMSG)
988 		return err;
989 
990 	if (type != ch->node_type) {
991 		ubifs_err("bad node type (%d but expected %d)",
992 			  ch->node_type, type);
993 		goto out;
994 	}
995 
996 	err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
997 	if (err) {
998 		ubifs_err("expected node type %d", type);
999 		return err;
1000 	}
1001 
1002 	l = le32_to_cpu(ch->len);
1003 	if (l != len) {
1004 		ubifs_err("bad node length %d, expected %d", l, len);
1005 		goto out;
1006 	}
1007 
1008 	return 0;
1009 
1010 out:
1011 	ubifs_err("bad node at LEB %d:%d, LEB mapping status %d", lnum, offs,
1012 		  ubi_is_mapped(c->ubi, lnum));
1013 	ubifs_dump_node(c, buf);
1014 	dump_stack();
1015 	return -EINVAL;
1016 }
1017 
1018 /**
1019  * ubifs_wbuf_init - initialize write-buffer.
1020  * @c: UBIFS file-system description object
1021  * @wbuf: write-buffer to initialize
1022  *
1023  * This function initializes write-buffer. Returns zero in case of success
1024  * %-ENOMEM in case of failure.
1025  */
1026 int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
1027 {
1028 	size_t size;
1029 
1030 	wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL);
1031 	if (!wbuf->buf)
1032 		return -ENOMEM;
1033 
1034 	size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
1035 	wbuf->inodes = kmalloc(size, GFP_KERNEL);
1036 	if (!wbuf->inodes) {
1037 		kfree(wbuf->buf);
1038 		wbuf->buf = NULL;
1039 		return -ENOMEM;
1040 	}
1041 
1042 	wbuf->used = 0;
1043 	wbuf->lnum = wbuf->offs = -1;
1044 	/*
1045 	 * If the LEB starts at the max. write size aligned address, then
1046 	 * write-buffer size has to be set to @c->max_write_size. Otherwise,
1047 	 * set it to something smaller so that it ends at the closest max.
1048 	 * write size boundary.
1049 	 */
1050 	size = c->max_write_size - (c->leb_start % c->max_write_size);
1051 	wbuf->avail = wbuf->size = size;
1052 	wbuf->sync_callback = NULL;
1053 	mutex_init(&wbuf->io_mutex);
1054 	spin_lock_init(&wbuf->lock);
1055 	wbuf->c = c;
1056 	wbuf->next_ino = 0;
1057 
1058 #ifndef __UBOOT__
1059 	hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1060 	wbuf->timer.function = wbuf_timer_callback_nolock;
1061 	wbuf->softlimit = ktime_set(WBUF_TIMEOUT_SOFTLIMIT, 0);
1062 	wbuf->delta = WBUF_TIMEOUT_HARDLIMIT - WBUF_TIMEOUT_SOFTLIMIT;
1063 	wbuf->delta *= 1000000000ULL;
1064 	ubifs_assert(wbuf->delta <= ULONG_MAX);
1065 #endif
1066 	return 0;
1067 }
1068 
1069 /**
1070  * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
1071  * @wbuf: the write-buffer where to add
1072  * @inum: the inode number
1073  *
1074  * This function adds an inode number to the inode array of the write-buffer.
1075  */
1076 void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum)
1077 {
1078 	if (!wbuf->buf)
1079 		/* NOR flash or something similar */
1080 		return;
1081 
1082 	spin_lock(&wbuf->lock);
1083 	if (wbuf->used)
1084 		wbuf->inodes[wbuf->next_ino++] = inum;
1085 	spin_unlock(&wbuf->lock);
1086 }
1087 
1088 /**
1089  * wbuf_has_ino - returns if the wbuf contains data from the inode.
1090  * @wbuf: the write-buffer
1091  * @inum: the inode number
1092  *
1093  * This function returns with %1 if the write-buffer contains some data from the
1094  * given inode otherwise it returns with %0.
1095  */
1096 static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum)
1097 {
1098 	int i, ret = 0;
1099 
1100 	spin_lock(&wbuf->lock);
1101 	for (i = 0; i < wbuf->next_ino; i++)
1102 		if (inum == wbuf->inodes[i]) {
1103 			ret = 1;
1104 			break;
1105 		}
1106 	spin_unlock(&wbuf->lock);
1107 
1108 	return ret;
1109 }
1110 
1111 /**
1112  * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
1113  * @c: UBIFS file-system description object
1114  * @inode: inode to synchronize
1115  *
1116  * This function synchronizes write-buffers which contain nodes belonging to
1117  * @inode. Returns zero in case of success and a negative error code in case of
1118  * failure.
1119  */
1120 int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode)
1121 {
1122 	int i, err = 0;
1123 
1124 	for (i = 0; i < c->jhead_cnt; i++) {
1125 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
1126 
1127 		if (i == GCHD)
1128 			/*
1129 			 * GC head is special, do not look at it. Even if the
1130 			 * head contains something related to this inode, it is
1131 			 * a _copy_ of corresponding on-flash node which sits
1132 			 * somewhere else.
1133 			 */
1134 			continue;
1135 
1136 		if (!wbuf_has_ino(wbuf, inode->i_ino))
1137 			continue;
1138 
1139 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1140 		if (wbuf_has_ino(wbuf, inode->i_ino))
1141 			err = ubifs_wbuf_sync_nolock(wbuf);
1142 		mutex_unlock(&wbuf->io_mutex);
1143 
1144 		if (err) {
1145 			ubifs_ro_mode(c, err);
1146 			return err;
1147 		}
1148 	}
1149 	return 0;
1150 }
1151