1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * Copyright (C) 2006, 2007 University of Szeged, Hungary 6 * 7 * SPDX-License-Identifier: GPL-2.0+ 8 * 9 * Authors: Artem Bityutskiy (Битюцкий Артём) 10 * Adrian Hunter 11 * Zoltan Sogor 12 */ 13 14 /* 15 * This file implements UBIFS I/O subsystem which provides various I/O-related 16 * helper functions (reading/writing/checking/validating nodes) and implements 17 * write-buffering support. Write buffers help to save space which otherwise 18 * would have been wasted for padding to the nearest minimal I/O unit boundary. 19 * Instead, data first goes to the write-buffer and is flushed when the 20 * buffer is full or when it is not used for some time (by timer). This is 21 * similar to the mechanism is used by JFFS2. 22 * 23 * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum 24 * write size (@c->max_write_size). The latter is the maximum amount of bytes 25 * the underlying flash is able to program at a time, and writing in 26 * @c->max_write_size units should presumably be faster. Obviously, 27 * @c->min_io_size <= @c->max_write_size. Write-buffers are of 28 * @c->max_write_size bytes in size for maximum performance. However, when a 29 * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size 30 * boundary) which contains data is written, not the whole write-buffer, 31 * because this is more space-efficient. 32 * 33 * This optimization adds few complications to the code. Indeed, on the one 34 * hand, we want to write in optimal @c->max_write_size bytes chunks, which 35 * also means aligning writes at the @c->max_write_size bytes offsets. On the 36 * other hand, we do not want to waste space when synchronizing the write 37 * buffer, so during synchronization we writes in smaller chunks. And this makes 38 * the next write offset to be not aligned to @c->max_write_size bytes. So the 39 * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned 40 * to @c->max_write_size bytes again. We do this by temporarily shrinking 41 * write-buffer size (@wbuf->size). 42 * 43 * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by 44 * mutexes defined inside these objects. Since sometimes upper-level code 45 * has to lock the write-buffer (e.g. journal space reservation code), many 46 * functions related to write-buffers have "nolock" suffix which means that the 47 * caller has to lock the write-buffer before calling this function. 48 * 49 * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not 50 * aligned, UBIFS starts the next node from the aligned address, and the padded 51 * bytes may contain any rubbish. In other words, UBIFS does not put padding 52 * bytes in those small gaps. Common headers of nodes store real node lengths, 53 * not aligned lengths. Indexing nodes also store real lengths in branches. 54 * 55 * UBIFS uses padding when it pads to the next min. I/O unit. In this case it 56 * uses padding nodes or padding bytes, if the padding node does not fit. 57 * 58 * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when 59 * they are read from the flash media. 60 */ 61 62 #ifndef __UBOOT__ 63 #include <linux/crc32.h> 64 #include <linux/slab.h> 65 #else 66 #include <linux/compat.h> 67 #include <linux/err.h> 68 #endif 69 #include "ubifs.h" 70 71 /** 72 * ubifs_ro_mode - switch UBIFS to read read-only mode. 73 * @c: UBIFS file-system description object 74 * @err: error code which is the reason of switching to R/O mode 75 */ 76 void ubifs_ro_mode(struct ubifs_info *c, int err) 77 { 78 if (!c->ro_error) { 79 c->ro_error = 1; 80 c->no_chk_data_crc = 0; 81 c->vfs_sb->s_flags |= MS_RDONLY; 82 ubifs_warn(c, "switched to read-only mode, error %d", err); 83 dump_stack(); 84 } 85 } 86 87 /* 88 * Below are simple wrappers over UBI I/O functions which include some 89 * additional checks and UBIFS debugging stuff. See corresponding UBI function 90 * for more information. 91 */ 92 93 int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs, 94 int len, int even_ebadmsg) 95 { 96 int err; 97 98 err = ubi_read(c->ubi, lnum, buf, offs, len); 99 /* 100 * In case of %-EBADMSG print the error message only if the 101 * @even_ebadmsg is true. 102 */ 103 if (err && (err != -EBADMSG || even_ebadmsg)) { 104 ubifs_err(c, "reading %d bytes from LEB %d:%d failed, error %d", 105 len, lnum, offs, err); 106 dump_stack(); 107 } 108 return err; 109 } 110 111 int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs, 112 int len) 113 { 114 int err; 115 116 ubifs_assert(!c->ro_media && !c->ro_mount); 117 if (c->ro_error) 118 return -EROFS; 119 if (!dbg_is_tst_rcvry(c)) 120 err = ubi_leb_write(c->ubi, lnum, buf, offs, len); 121 #ifndef __UBOOT__ 122 else 123 err = dbg_leb_write(c, lnum, buf, offs, len); 124 #endif 125 if (err) { 126 ubifs_err(c, "writing %d bytes to LEB %d:%d failed, error %d", 127 len, lnum, offs, err); 128 ubifs_ro_mode(c, err); 129 dump_stack(); 130 } 131 return err; 132 } 133 134 int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len) 135 { 136 int err; 137 138 ubifs_assert(!c->ro_media && !c->ro_mount); 139 if (c->ro_error) 140 return -EROFS; 141 if (!dbg_is_tst_rcvry(c)) 142 err = ubi_leb_change(c->ubi, lnum, buf, len); 143 #ifndef __UBOOT__ 144 else 145 err = dbg_leb_change(c, lnum, buf, len); 146 #endif 147 if (err) { 148 ubifs_err(c, "changing %d bytes in LEB %d failed, error %d", 149 len, lnum, err); 150 ubifs_ro_mode(c, err); 151 dump_stack(); 152 } 153 return err; 154 } 155 156 int ubifs_leb_unmap(struct ubifs_info *c, int lnum) 157 { 158 int err; 159 160 ubifs_assert(!c->ro_media && !c->ro_mount); 161 if (c->ro_error) 162 return -EROFS; 163 if (!dbg_is_tst_rcvry(c)) 164 err = ubi_leb_unmap(c->ubi, lnum); 165 #ifndef __UBOOT__ 166 else 167 err = dbg_leb_unmap(c, lnum); 168 #endif 169 if (err) { 170 ubifs_err(c, "unmap LEB %d failed, error %d", lnum, err); 171 ubifs_ro_mode(c, err); 172 dump_stack(); 173 } 174 return err; 175 } 176 177 int ubifs_leb_map(struct ubifs_info *c, int lnum) 178 { 179 int err; 180 181 ubifs_assert(!c->ro_media && !c->ro_mount); 182 if (c->ro_error) 183 return -EROFS; 184 if (!dbg_is_tst_rcvry(c)) 185 err = ubi_leb_map(c->ubi, lnum); 186 #ifndef __UBOOT__ 187 else 188 err = dbg_leb_map(c, lnum); 189 #endif 190 if (err) { 191 ubifs_err(c, "mapping LEB %d failed, error %d", lnum, err); 192 ubifs_ro_mode(c, err); 193 dump_stack(); 194 } 195 return err; 196 } 197 198 int ubifs_is_mapped(const struct ubifs_info *c, int lnum) 199 { 200 int err; 201 202 err = ubi_is_mapped(c->ubi, lnum); 203 if (err < 0) { 204 ubifs_err(c, "ubi_is_mapped failed for LEB %d, error %d", 205 lnum, err); 206 dump_stack(); 207 } 208 return err; 209 } 210 211 /** 212 * ubifs_check_node - check node. 213 * @c: UBIFS file-system description object 214 * @buf: node to check 215 * @lnum: logical eraseblock number 216 * @offs: offset within the logical eraseblock 217 * @quiet: print no messages 218 * @must_chk_crc: indicates whether to always check the CRC 219 * 220 * This function checks node magic number and CRC checksum. This function also 221 * validates node length to prevent UBIFS from becoming crazy when an attacker 222 * feeds it a file-system image with incorrect nodes. For example, too large 223 * node length in the common header could cause UBIFS to read memory outside of 224 * allocated buffer when checking the CRC checksum. 225 * 226 * This function may skip data nodes CRC checking if @c->no_chk_data_crc is 227 * true, which is controlled by corresponding UBIFS mount option. However, if 228 * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is 229 * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are 230 * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC 231 * is checked. This is because during mounting or re-mounting from R/O mode to 232 * R/W mode we may read journal nodes (when replying the journal or doing the 233 * recovery) and the journal nodes may potentially be corrupted, so checking is 234 * required. 235 * 236 * This function returns zero in case of success and %-EUCLEAN in case of bad 237 * CRC or magic. 238 */ 239 int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum, 240 int offs, int quiet, int must_chk_crc) 241 { 242 int err = -EINVAL, type, node_len; 243 uint32_t crc, node_crc, magic; 244 const struct ubifs_ch *ch = buf; 245 246 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 247 ubifs_assert(!(offs & 7) && offs < c->leb_size); 248 249 magic = le32_to_cpu(ch->magic); 250 if (magic != UBIFS_NODE_MAGIC) { 251 if (!quiet) 252 ubifs_err(c, "bad magic %#08x, expected %#08x", 253 magic, UBIFS_NODE_MAGIC); 254 err = -EUCLEAN; 255 goto out; 256 } 257 258 type = ch->node_type; 259 if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) { 260 if (!quiet) 261 ubifs_err(c, "bad node type %d", type); 262 goto out; 263 } 264 265 node_len = le32_to_cpu(ch->len); 266 if (node_len + offs > c->leb_size) 267 goto out_len; 268 269 if (c->ranges[type].max_len == 0) { 270 if (node_len != c->ranges[type].len) 271 goto out_len; 272 } else if (node_len < c->ranges[type].min_len || 273 node_len > c->ranges[type].max_len) 274 goto out_len; 275 276 if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting && 277 !c->remounting_rw && c->no_chk_data_crc) 278 return 0; 279 280 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8); 281 node_crc = le32_to_cpu(ch->crc); 282 if (crc != node_crc) { 283 if (!quiet) 284 ubifs_err(c, "bad CRC: calculated %#08x, read %#08x", 285 crc, node_crc); 286 err = -EUCLEAN; 287 goto out; 288 } 289 290 return 0; 291 292 out_len: 293 if (!quiet) 294 ubifs_err(c, "bad node length %d", node_len); 295 out: 296 if (!quiet) { 297 ubifs_err(c, "bad node at LEB %d:%d", lnum, offs); 298 ubifs_dump_node(c, buf); 299 dump_stack(); 300 } 301 return err; 302 } 303 304 /** 305 * ubifs_pad - pad flash space. 306 * @c: UBIFS file-system description object 307 * @buf: buffer to put padding to 308 * @pad: how many bytes to pad 309 * 310 * The flash media obliges us to write only in chunks of %c->min_io_size and 311 * when we have to write less data we add padding node to the write-buffer and 312 * pad it to the next minimal I/O unit's boundary. Padding nodes help when the 313 * media is being scanned. If the amount of wasted space is not enough to fit a 314 * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes 315 * pattern (%UBIFS_PADDING_BYTE). 316 * 317 * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is 318 * used. 319 */ 320 void ubifs_pad(const struct ubifs_info *c, void *buf, int pad) 321 { 322 uint32_t crc; 323 324 ubifs_assert(pad >= 0 && !(pad & 7)); 325 326 if (pad >= UBIFS_PAD_NODE_SZ) { 327 struct ubifs_ch *ch = buf; 328 struct ubifs_pad_node *pad_node = buf; 329 330 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); 331 ch->node_type = UBIFS_PAD_NODE; 332 ch->group_type = UBIFS_NO_NODE_GROUP; 333 ch->padding[0] = ch->padding[1] = 0; 334 ch->sqnum = 0; 335 ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ); 336 pad -= UBIFS_PAD_NODE_SZ; 337 pad_node->pad_len = cpu_to_le32(pad); 338 crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8); 339 ch->crc = cpu_to_le32(crc); 340 memset(buf + UBIFS_PAD_NODE_SZ, 0, pad); 341 } else if (pad > 0) 342 /* Too little space, padding node won't fit */ 343 memset(buf, UBIFS_PADDING_BYTE, pad); 344 } 345 346 /** 347 * next_sqnum - get next sequence number. 348 * @c: UBIFS file-system description object 349 */ 350 static unsigned long long next_sqnum(struct ubifs_info *c) 351 { 352 unsigned long long sqnum; 353 354 spin_lock(&c->cnt_lock); 355 sqnum = ++c->max_sqnum; 356 spin_unlock(&c->cnt_lock); 357 358 if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) { 359 if (sqnum >= SQNUM_WATERMARK) { 360 ubifs_err(c, "sequence number overflow %llu, end of life", 361 sqnum); 362 ubifs_ro_mode(c, -EINVAL); 363 } 364 ubifs_warn(c, "running out of sequence numbers, end of life soon"); 365 } 366 367 return sqnum; 368 } 369 370 /** 371 * ubifs_prepare_node - prepare node to be written to flash. 372 * @c: UBIFS file-system description object 373 * @node: the node to pad 374 * @len: node length 375 * @pad: if the buffer has to be padded 376 * 377 * This function prepares node at @node to be written to the media - it 378 * calculates node CRC, fills the common header, and adds proper padding up to 379 * the next minimum I/O unit if @pad is not zero. 380 */ 381 void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad) 382 { 383 uint32_t crc; 384 struct ubifs_ch *ch = node; 385 unsigned long long sqnum = next_sqnum(c); 386 387 ubifs_assert(len >= UBIFS_CH_SZ); 388 389 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); 390 ch->len = cpu_to_le32(len); 391 ch->group_type = UBIFS_NO_NODE_GROUP; 392 ch->sqnum = cpu_to_le64(sqnum); 393 ch->padding[0] = ch->padding[1] = 0; 394 crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8); 395 ch->crc = cpu_to_le32(crc); 396 397 if (pad) { 398 len = ALIGN(len, 8); 399 pad = ALIGN(len, c->min_io_size) - len; 400 ubifs_pad(c, node + len, pad); 401 } 402 } 403 404 /** 405 * ubifs_prep_grp_node - prepare node of a group to be written to flash. 406 * @c: UBIFS file-system description object 407 * @node: the node to pad 408 * @len: node length 409 * @last: indicates the last node of the group 410 * 411 * This function prepares node at @node to be written to the media - it 412 * calculates node CRC and fills the common header. 413 */ 414 void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last) 415 { 416 uint32_t crc; 417 struct ubifs_ch *ch = node; 418 unsigned long long sqnum = next_sqnum(c); 419 420 ubifs_assert(len >= UBIFS_CH_SZ); 421 422 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); 423 ch->len = cpu_to_le32(len); 424 if (last) 425 ch->group_type = UBIFS_LAST_OF_NODE_GROUP; 426 else 427 ch->group_type = UBIFS_IN_NODE_GROUP; 428 ch->sqnum = cpu_to_le64(sqnum); 429 ch->padding[0] = ch->padding[1] = 0; 430 crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8); 431 ch->crc = cpu_to_le32(crc); 432 } 433 434 #ifndef __UBOOT__ 435 /** 436 * wbuf_timer_callback - write-buffer timer callback function. 437 * @timer: timer data (write-buffer descriptor) 438 * 439 * This function is called when the write-buffer timer expires. 440 */ 441 static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer) 442 { 443 struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer); 444 445 dbg_io("jhead %s", dbg_jhead(wbuf->jhead)); 446 wbuf->need_sync = 1; 447 wbuf->c->need_wbuf_sync = 1; 448 ubifs_wake_up_bgt(wbuf->c); 449 return HRTIMER_NORESTART; 450 } 451 452 /** 453 * new_wbuf_timer - start new write-buffer timer. 454 * @wbuf: write-buffer descriptor 455 */ 456 static void new_wbuf_timer_nolock(struct ubifs_wbuf *wbuf) 457 { 458 ubifs_assert(!hrtimer_active(&wbuf->timer)); 459 460 if (wbuf->no_timer) 461 return; 462 dbg_io("set timer for jhead %s, %llu-%llu millisecs", 463 dbg_jhead(wbuf->jhead), 464 div_u64(ktime_to_ns(wbuf->softlimit), USEC_PER_SEC), 465 div_u64(ktime_to_ns(wbuf->softlimit) + wbuf->delta, 466 USEC_PER_SEC)); 467 hrtimer_start_range_ns(&wbuf->timer, wbuf->softlimit, wbuf->delta, 468 HRTIMER_MODE_REL); 469 } 470 #endif 471 472 /** 473 * cancel_wbuf_timer - cancel write-buffer timer. 474 * @wbuf: write-buffer descriptor 475 */ 476 static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf) 477 { 478 if (wbuf->no_timer) 479 return; 480 wbuf->need_sync = 0; 481 #ifndef __UBOOT__ 482 hrtimer_cancel(&wbuf->timer); 483 #endif 484 } 485 486 /** 487 * ubifs_wbuf_sync_nolock - synchronize write-buffer. 488 * @wbuf: write-buffer to synchronize 489 * 490 * This function synchronizes write-buffer @buf and returns zero in case of 491 * success or a negative error code in case of failure. 492 * 493 * Note, although write-buffers are of @c->max_write_size, this function does 494 * not necessarily writes all @c->max_write_size bytes to the flash. Instead, 495 * if the write-buffer is only partially filled with data, only the used part 496 * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized. 497 * This way we waste less space. 498 */ 499 int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf) 500 { 501 struct ubifs_info *c = wbuf->c; 502 int err, dirt, sync_len; 503 504 cancel_wbuf_timer_nolock(wbuf); 505 if (!wbuf->used || wbuf->lnum == -1) 506 /* Write-buffer is empty or not seeked */ 507 return 0; 508 509 dbg_io("LEB %d:%d, %d bytes, jhead %s", 510 wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead)); 511 ubifs_assert(!(wbuf->avail & 7)); 512 ubifs_assert(wbuf->offs + wbuf->size <= c->leb_size); 513 ubifs_assert(wbuf->size >= c->min_io_size); 514 ubifs_assert(wbuf->size <= c->max_write_size); 515 ubifs_assert(wbuf->size % c->min_io_size == 0); 516 ubifs_assert(!c->ro_media && !c->ro_mount); 517 if (c->leb_size - wbuf->offs >= c->max_write_size) 518 ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size)); 519 520 if (c->ro_error) 521 return -EROFS; 522 523 /* 524 * Do not write whole write buffer but write only the minimum necessary 525 * amount of min. I/O units. 526 */ 527 sync_len = ALIGN(wbuf->used, c->min_io_size); 528 dirt = sync_len - wbuf->used; 529 if (dirt) 530 ubifs_pad(c, wbuf->buf + wbuf->used, dirt); 531 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len); 532 if (err) 533 return err; 534 535 spin_lock(&wbuf->lock); 536 wbuf->offs += sync_len; 537 /* 538 * Now @wbuf->offs is not necessarily aligned to @c->max_write_size. 539 * But our goal is to optimize writes and make sure we write in 540 * @c->max_write_size chunks and to @c->max_write_size-aligned offset. 541 * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make 542 * sure that @wbuf->offs + @wbuf->size is aligned to 543 * @c->max_write_size. This way we make sure that after next 544 * write-buffer flush we are again at the optimal offset (aligned to 545 * @c->max_write_size). 546 */ 547 if (c->leb_size - wbuf->offs < c->max_write_size) 548 wbuf->size = c->leb_size - wbuf->offs; 549 else if (wbuf->offs & (c->max_write_size - 1)) 550 wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs; 551 else 552 wbuf->size = c->max_write_size; 553 wbuf->avail = wbuf->size; 554 wbuf->used = 0; 555 wbuf->next_ino = 0; 556 spin_unlock(&wbuf->lock); 557 558 if (wbuf->sync_callback) 559 err = wbuf->sync_callback(c, wbuf->lnum, 560 c->leb_size - wbuf->offs, dirt); 561 return err; 562 } 563 564 /** 565 * ubifs_wbuf_seek_nolock - seek write-buffer. 566 * @wbuf: write-buffer 567 * @lnum: logical eraseblock number to seek to 568 * @offs: logical eraseblock offset to seek to 569 * 570 * This function targets the write-buffer to logical eraseblock @lnum:@offs. 571 * The write-buffer has to be empty. Returns zero in case of success and a 572 * negative error code in case of failure. 573 */ 574 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs) 575 { 576 const struct ubifs_info *c = wbuf->c; 577 578 dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead)); 579 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt); 580 ubifs_assert(offs >= 0 && offs <= c->leb_size); 581 ubifs_assert(offs % c->min_io_size == 0 && !(offs & 7)); 582 ubifs_assert(lnum != wbuf->lnum); 583 ubifs_assert(wbuf->used == 0); 584 585 spin_lock(&wbuf->lock); 586 wbuf->lnum = lnum; 587 wbuf->offs = offs; 588 if (c->leb_size - wbuf->offs < c->max_write_size) 589 wbuf->size = c->leb_size - wbuf->offs; 590 else if (wbuf->offs & (c->max_write_size - 1)) 591 wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs; 592 else 593 wbuf->size = c->max_write_size; 594 wbuf->avail = wbuf->size; 595 wbuf->used = 0; 596 spin_unlock(&wbuf->lock); 597 598 return 0; 599 } 600 601 #ifndef __UBOOT__ 602 /** 603 * ubifs_bg_wbufs_sync - synchronize write-buffers. 604 * @c: UBIFS file-system description object 605 * 606 * This function is called by background thread to synchronize write-buffers. 607 * Returns zero in case of success and a negative error code in case of 608 * failure. 609 */ 610 int ubifs_bg_wbufs_sync(struct ubifs_info *c) 611 { 612 int err, i; 613 614 ubifs_assert(!c->ro_media && !c->ro_mount); 615 if (!c->need_wbuf_sync) 616 return 0; 617 c->need_wbuf_sync = 0; 618 619 if (c->ro_error) { 620 err = -EROFS; 621 goto out_timers; 622 } 623 624 dbg_io("synchronize"); 625 for (i = 0; i < c->jhead_cnt; i++) { 626 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; 627 628 cond_resched(); 629 630 /* 631 * If the mutex is locked then wbuf is being changed, so 632 * synchronization is not necessary. 633 */ 634 if (mutex_is_locked(&wbuf->io_mutex)) 635 continue; 636 637 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 638 if (!wbuf->need_sync) { 639 mutex_unlock(&wbuf->io_mutex); 640 continue; 641 } 642 643 err = ubifs_wbuf_sync_nolock(wbuf); 644 mutex_unlock(&wbuf->io_mutex); 645 if (err) { 646 ubifs_err(c, "cannot sync write-buffer, error %d", err); 647 ubifs_ro_mode(c, err); 648 goto out_timers; 649 } 650 } 651 652 return 0; 653 654 out_timers: 655 /* Cancel all timers to prevent repeated errors */ 656 for (i = 0; i < c->jhead_cnt; i++) { 657 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; 658 659 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 660 cancel_wbuf_timer_nolock(wbuf); 661 mutex_unlock(&wbuf->io_mutex); 662 } 663 return err; 664 } 665 666 /** 667 * ubifs_wbuf_write_nolock - write data to flash via write-buffer. 668 * @wbuf: write-buffer 669 * @buf: node to write 670 * @len: node length 671 * 672 * This function writes data to flash via write-buffer @wbuf. This means that 673 * the last piece of the node won't reach the flash media immediately if it 674 * does not take whole max. write unit (@c->max_write_size). Instead, the node 675 * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or 676 * because more data are appended to the write-buffer). 677 * 678 * This function returns zero in case of success and a negative error code in 679 * case of failure. If the node cannot be written because there is no more 680 * space in this logical eraseblock, %-ENOSPC is returned. 681 */ 682 int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len) 683 { 684 struct ubifs_info *c = wbuf->c; 685 int err, written, n, aligned_len = ALIGN(len, 8); 686 687 dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len, 688 dbg_ntype(((struct ubifs_ch *)buf)->node_type), 689 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used); 690 ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt); 691 ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0); 692 ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size); 693 ubifs_assert(wbuf->avail > 0 && wbuf->avail <= wbuf->size); 694 ubifs_assert(wbuf->size >= c->min_io_size); 695 ubifs_assert(wbuf->size <= c->max_write_size); 696 ubifs_assert(wbuf->size % c->min_io_size == 0); 697 ubifs_assert(mutex_is_locked(&wbuf->io_mutex)); 698 ubifs_assert(!c->ro_media && !c->ro_mount); 699 ubifs_assert(!c->space_fixup); 700 if (c->leb_size - wbuf->offs >= c->max_write_size) 701 ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size)); 702 703 if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) { 704 err = -ENOSPC; 705 goto out; 706 } 707 708 cancel_wbuf_timer_nolock(wbuf); 709 710 if (c->ro_error) 711 return -EROFS; 712 713 if (aligned_len <= wbuf->avail) { 714 /* 715 * The node is not very large and fits entirely within 716 * write-buffer. 717 */ 718 memcpy(wbuf->buf + wbuf->used, buf, len); 719 720 if (aligned_len == wbuf->avail) { 721 dbg_io("flush jhead %s wbuf to LEB %d:%d", 722 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs); 723 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, 724 wbuf->offs, wbuf->size); 725 if (err) 726 goto out; 727 728 spin_lock(&wbuf->lock); 729 wbuf->offs += wbuf->size; 730 if (c->leb_size - wbuf->offs >= c->max_write_size) 731 wbuf->size = c->max_write_size; 732 else 733 wbuf->size = c->leb_size - wbuf->offs; 734 wbuf->avail = wbuf->size; 735 wbuf->used = 0; 736 wbuf->next_ino = 0; 737 spin_unlock(&wbuf->lock); 738 } else { 739 spin_lock(&wbuf->lock); 740 wbuf->avail -= aligned_len; 741 wbuf->used += aligned_len; 742 spin_unlock(&wbuf->lock); 743 } 744 745 goto exit; 746 } 747 748 written = 0; 749 750 if (wbuf->used) { 751 /* 752 * The node is large enough and does not fit entirely within 753 * current available space. We have to fill and flush 754 * write-buffer and switch to the next max. write unit. 755 */ 756 dbg_io("flush jhead %s wbuf to LEB %d:%d", 757 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs); 758 memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail); 759 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, 760 wbuf->size); 761 if (err) 762 goto out; 763 764 wbuf->offs += wbuf->size; 765 len -= wbuf->avail; 766 aligned_len -= wbuf->avail; 767 written += wbuf->avail; 768 } else if (wbuf->offs & (c->max_write_size - 1)) { 769 /* 770 * The write-buffer offset is not aligned to 771 * @c->max_write_size and @wbuf->size is less than 772 * @c->max_write_size. Write @wbuf->size bytes to make sure the 773 * following writes are done in optimal @c->max_write_size 774 * chunks. 775 */ 776 dbg_io("write %d bytes to LEB %d:%d", 777 wbuf->size, wbuf->lnum, wbuf->offs); 778 err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs, 779 wbuf->size); 780 if (err) 781 goto out; 782 783 wbuf->offs += wbuf->size; 784 len -= wbuf->size; 785 aligned_len -= wbuf->size; 786 written += wbuf->size; 787 } 788 789 /* 790 * The remaining data may take more whole max. write units, so write the 791 * remains multiple to max. write unit size directly to the flash media. 792 * We align node length to 8-byte boundary because we anyway flash wbuf 793 * if the remaining space is less than 8 bytes. 794 */ 795 n = aligned_len >> c->max_write_shift; 796 if (n) { 797 n <<= c->max_write_shift; 798 dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum, 799 wbuf->offs); 800 err = ubifs_leb_write(c, wbuf->lnum, buf + written, 801 wbuf->offs, n); 802 if (err) 803 goto out; 804 wbuf->offs += n; 805 aligned_len -= n; 806 len -= n; 807 written += n; 808 } 809 810 spin_lock(&wbuf->lock); 811 if (aligned_len) 812 /* 813 * And now we have what's left and what does not take whole 814 * max. write unit, so write it to the write-buffer and we are 815 * done. 816 */ 817 memcpy(wbuf->buf, buf + written, len); 818 819 if (c->leb_size - wbuf->offs >= c->max_write_size) 820 wbuf->size = c->max_write_size; 821 else 822 wbuf->size = c->leb_size - wbuf->offs; 823 wbuf->avail = wbuf->size - aligned_len; 824 wbuf->used = aligned_len; 825 wbuf->next_ino = 0; 826 spin_unlock(&wbuf->lock); 827 828 exit: 829 if (wbuf->sync_callback) { 830 int free = c->leb_size - wbuf->offs - wbuf->used; 831 832 err = wbuf->sync_callback(c, wbuf->lnum, free, 0); 833 if (err) 834 goto out; 835 } 836 837 if (wbuf->used) 838 new_wbuf_timer_nolock(wbuf); 839 840 return 0; 841 842 out: 843 ubifs_err(c, "cannot write %d bytes to LEB %d:%d, error %d", 844 len, wbuf->lnum, wbuf->offs, err); 845 ubifs_dump_node(c, buf); 846 dump_stack(); 847 ubifs_dump_leb(c, wbuf->lnum); 848 return err; 849 } 850 851 /** 852 * ubifs_write_node - write node to the media. 853 * @c: UBIFS file-system description object 854 * @buf: the node to write 855 * @len: node length 856 * @lnum: logical eraseblock number 857 * @offs: offset within the logical eraseblock 858 * 859 * This function automatically fills node magic number, assigns sequence 860 * number, and calculates node CRC checksum. The length of the @buf buffer has 861 * to be aligned to the minimal I/O unit size. This function automatically 862 * appends padding node and padding bytes if needed. Returns zero in case of 863 * success and a negative error code in case of failure. 864 */ 865 int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum, 866 int offs) 867 { 868 int err, buf_len = ALIGN(len, c->min_io_size); 869 870 dbg_io("LEB %d:%d, %s, length %d (aligned %d)", 871 lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len, 872 buf_len); 873 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 874 ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size); 875 ubifs_assert(!c->ro_media && !c->ro_mount); 876 ubifs_assert(!c->space_fixup); 877 878 if (c->ro_error) 879 return -EROFS; 880 881 ubifs_prepare_node(c, buf, len, 1); 882 err = ubifs_leb_write(c, lnum, buf, offs, buf_len); 883 if (err) 884 ubifs_dump_node(c, buf); 885 886 return err; 887 } 888 #endif 889 890 /** 891 * ubifs_read_node_wbuf - read node from the media or write-buffer. 892 * @wbuf: wbuf to check for un-written data 893 * @buf: buffer to read to 894 * @type: node type 895 * @len: node length 896 * @lnum: logical eraseblock number 897 * @offs: offset within the logical eraseblock 898 * 899 * This function reads a node of known type and length, checks it and stores 900 * in @buf. If the node partially or fully sits in the write-buffer, this 901 * function takes data from the buffer, otherwise it reads the flash media. 902 * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative 903 * error code in case of failure. 904 */ 905 int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len, 906 int lnum, int offs) 907 { 908 const struct ubifs_info *c = wbuf->c; 909 int err, rlen, overlap; 910 struct ubifs_ch *ch = buf; 911 912 dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs, 913 dbg_ntype(type), len, dbg_jhead(wbuf->jhead)); 914 ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 915 ubifs_assert(!(offs & 7) && offs < c->leb_size); 916 ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT); 917 918 spin_lock(&wbuf->lock); 919 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs); 920 if (!overlap) { 921 /* We may safely unlock the write-buffer and read the data */ 922 spin_unlock(&wbuf->lock); 923 return ubifs_read_node(c, buf, type, len, lnum, offs); 924 } 925 926 /* Don't read under wbuf */ 927 rlen = wbuf->offs - offs; 928 if (rlen < 0) 929 rlen = 0; 930 931 /* Copy the rest from the write-buffer */ 932 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen); 933 spin_unlock(&wbuf->lock); 934 935 if (rlen > 0) { 936 /* Read everything that goes before write-buffer */ 937 err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0); 938 if (err && err != -EBADMSG) 939 return err; 940 } 941 942 if (type != ch->node_type) { 943 ubifs_err(c, "bad node type (%d but expected %d)", 944 ch->node_type, type); 945 goto out; 946 } 947 948 err = ubifs_check_node(c, buf, lnum, offs, 0, 0); 949 if (err) { 950 ubifs_err(c, "expected node type %d", type); 951 return err; 952 } 953 954 rlen = le32_to_cpu(ch->len); 955 if (rlen != len) { 956 ubifs_err(c, "bad node length %d, expected %d", rlen, len); 957 goto out; 958 } 959 960 return 0; 961 962 out: 963 ubifs_err(c, "bad node at LEB %d:%d", lnum, offs); 964 ubifs_dump_node(c, buf); 965 dump_stack(); 966 return -EINVAL; 967 } 968 969 /** 970 * ubifs_read_node - read node. 971 * @c: UBIFS file-system description object 972 * @buf: buffer to read to 973 * @type: node type 974 * @len: node length (not aligned) 975 * @lnum: logical eraseblock number 976 * @offs: offset within the logical eraseblock 977 * 978 * This function reads a node of known type and and length, checks it and 979 * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched 980 * and a negative error code in case of failure. 981 */ 982 int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len, 983 int lnum, int offs) 984 { 985 int err, l; 986 struct ubifs_ch *ch = buf; 987 988 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); 989 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 990 ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size); 991 ubifs_assert(!(offs & 7) && offs < c->leb_size); 992 ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT); 993 994 err = ubifs_leb_read(c, lnum, buf, offs, len, 0); 995 if (err && err != -EBADMSG) 996 return err; 997 998 if (type != ch->node_type) { 999 ubifs_errc(c, "bad node type (%d but expected %d)", 1000 ch->node_type, type); 1001 goto out; 1002 } 1003 1004 err = ubifs_check_node(c, buf, lnum, offs, 0, 0); 1005 if (err) { 1006 ubifs_errc(c, "expected node type %d", type); 1007 return err; 1008 } 1009 1010 l = le32_to_cpu(ch->len); 1011 if (l != len) { 1012 ubifs_errc(c, "bad node length %d, expected %d", l, len); 1013 goto out; 1014 } 1015 1016 return 0; 1017 1018 out: 1019 ubifs_errc(c, "bad node at LEB %d:%d, LEB mapping status %d", lnum, 1020 offs, ubi_is_mapped(c->ubi, lnum)); 1021 if (!c->probing) { 1022 ubifs_dump_node(c, buf); 1023 dump_stack(); 1024 } 1025 return -EINVAL; 1026 } 1027 1028 /** 1029 * ubifs_wbuf_init - initialize write-buffer. 1030 * @c: UBIFS file-system description object 1031 * @wbuf: write-buffer to initialize 1032 * 1033 * This function initializes write-buffer. Returns zero in case of success 1034 * %-ENOMEM in case of failure. 1035 */ 1036 int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf) 1037 { 1038 size_t size; 1039 1040 wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL); 1041 if (!wbuf->buf) 1042 return -ENOMEM; 1043 1044 size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t); 1045 wbuf->inodes = kmalloc(size, GFP_KERNEL); 1046 if (!wbuf->inodes) { 1047 kfree(wbuf->buf); 1048 wbuf->buf = NULL; 1049 return -ENOMEM; 1050 } 1051 1052 wbuf->used = 0; 1053 wbuf->lnum = wbuf->offs = -1; 1054 /* 1055 * If the LEB starts at the max. write size aligned address, then 1056 * write-buffer size has to be set to @c->max_write_size. Otherwise, 1057 * set it to something smaller so that it ends at the closest max. 1058 * write size boundary. 1059 */ 1060 size = c->max_write_size - (c->leb_start % c->max_write_size); 1061 wbuf->avail = wbuf->size = size; 1062 wbuf->sync_callback = NULL; 1063 mutex_init(&wbuf->io_mutex); 1064 spin_lock_init(&wbuf->lock); 1065 wbuf->c = c; 1066 wbuf->next_ino = 0; 1067 1068 #ifndef __UBOOT__ 1069 hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1070 wbuf->timer.function = wbuf_timer_callback_nolock; 1071 wbuf->softlimit = ktime_set(WBUF_TIMEOUT_SOFTLIMIT, 0); 1072 wbuf->delta = WBUF_TIMEOUT_HARDLIMIT - WBUF_TIMEOUT_SOFTLIMIT; 1073 wbuf->delta *= 1000000000ULL; 1074 ubifs_assert(wbuf->delta <= ULONG_MAX); 1075 #endif 1076 return 0; 1077 } 1078 1079 /** 1080 * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array. 1081 * @wbuf: the write-buffer where to add 1082 * @inum: the inode number 1083 * 1084 * This function adds an inode number to the inode array of the write-buffer. 1085 */ 1086 void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum) 1087 { 1088 if (!wbuf->buf) 1089 /* NOR flash or something similar */ 1090 return; 1091 1092 spin_lock(&wbuf->lock); 1093 if (wbuf->used) 1094 wbuf->inodes[wbuf->next_ino++] = inum; 1095 spin_unlock(&wbuf->lock); 1096 } 1097 1098 /** 1099 * wbuf_has_ino - returns if the wbuf contains data from the inode. 1100 * @wbuf: the write-buffer 1101 * @inum: the inode number 1102 * 1103 * This function returns with %1 if the write-buffer contains some data from the 1104 * given inode otherwise it returns with %0. 1105 */ 1106 static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum) 1107 { 1108 int i, ret = 0; 1109 1110 spin_lock(&wbuf->lock); 1111 for (i = 0; i < wbuf->next_ino; i++) 1112 if (inum == wbuf->inodes[i]) { 1113 ret = 1; 1114 break; 1115 } 1116 spin_unlock(&wbuf->lock); 1117 1118 return ret; 1119 } 1120 1121 /** 1122 * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode. 1123 * @c: UBIFS file-system description object 1124 * @inode: inode to synchronize 1125 * 1126 * This function synchronizes write-buffers which contain nodes belonging to 1127 * @inode. Returns zero in case of success and a negative error code in case of 1128 * failure. 1129 */ 1130 int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode) 1131 { 1132 int i, err = 0; 1133 1134 for (i = 0; i < c->jhead_cnt; i++) { 1135 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; 1136 1137 if (i == GCHD) 1138 /* 1139 * GC head is special, do not look at it. Even if the 1140 * head contains something related to this inode, it is 1141 * a _copy_ of corresponding on-flash node which sits 1142 * somewhere else. 1143 */ 1144 continue; 1145 1146 if (!wbuf_has_ino(wbuf, inode->i_ino)) 1147 continue; 1148 1149 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 1150 if (wbuf_has_ino(wbuf, inode->i_ino)) 1151 err = ubifs_wbuf_sync_nolock(wbuf); 1152 mutex_unlock(&wbuf->io_mutex); 1153 1154 if (err) { 1155 ubifs_ro_mode(c, err); 1156 return err; 1157 } 1158 } 1159 return 0; 1160 } 1161