xref: /openbmc/u-boot/fs/ubifs/io.c (revision 47539e23)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  * Copyright (C) 2006, 2007 University of Szeged, Hungary
6  *
7  * SPDX-License-Identifier:	GPL-2.0+
8  *
9  * Authors: Artem Bityutskiy (Битюцкий Артём)
10  *          Adrian Hunter
11  *          Zoltan Sogor
12  */
13 
14 /*
15  * This file implements UBIFS I/O subsystem which provides various I/O-related
16  * helper functions (reading/writing/checking/validating nodes) and implements
17  * write-buffering support. Write buffers help to save space which otherwise
18  * would have been wasted for padding to the nearest minimal I/O unit boundary.
19  * Instead, data first goes to the write-buffer and is flushed when the
20  * buffer is full or when it is not used for some time (by timer). This is
21  * similar to the mechanism is used by JFFS2.
22  *
23  * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum
24  * write size (@c->max_write_size). The latter is the maximum amount of bytes
25  * the underlying flash is able to program at a time, and writing in
26  * @c->max_write_size units should presumably be faster. Obviously,
27  * @c->min_io_size <= @c->max_write_size. Write-buffers are of
28  * @c->max_write_size bytes in size for maximum performance. However, when a
29  * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size
30  * boundary) which contains data is written, not the whole write-buffer,
31  * because this is more space-efficient.
32  *
33  * This optimization adds few complications to the code. Indeed, on the one
34  * hand, we want to write in optimal @c->max_write_size bytes chunks, which
35  * also means aligning writes at the @c->max_write_size bytes offsets. On the
36  * other hand, we do not want to waste space when synchronizing the write
37  * buffer, so during synchronization we writes in smaller chunks. And this makes
38  * the next write offset to be not aligned to @c->max_write_size bytes. So the
39  * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned
40  * to @c->max_write_size bytes again. We do this by temporarily shrinking
41  * write-buffer size (@wbuf->size).
42  *
43  * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
44  * mutexes defined inside these objects. Since sometimes upper-level code
45  * has to lock the write-buffer (e.g. journal space reservation code), many
46  * functions related to write-buffers have "nolock" suffix which means that the
47  * caller has to lock the write-buffer before calling this function.
48  *
49  * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
50  * aligned, UBIFS starts the next node from the aligned address, and the padded
51  * bytes may contain any rubbish. In other words, UBIFS does not put padding
52  * bytes in those small gaps. Common headers of nodes store real node lengths,
53  * not aligned lengths. Indexing nodes also store real lengths in branches.
54  *
55  * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
56  * uses padding nodes or padding bytes, if the padding node does not fit.
57  *
58  * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when
59  * they are read from the flash media.
60  */
61 
62 #define __UBOOT__
63 #ifndef __UBOOT__
64 #include <linux/crc32.h>
65 #include <linux/slab.h>
66 #else
67 #include <linux/compat.h>
68 #include <linux/err.h>
69 #endif
70 #include "ubifs.h"
71 
72 /**
73  * ubifs_ro_mode - switch UBIFS to read read-only mode.
74  * @c: UBIFS file-system description object
75  * @err: error code which is the reason of switching to R/O mode
76  */
77 void ubifs_ro_mode(struct ubifs_info *c, int err)
78 {
79 	if (!c->ro_error) {
80 		c->ro_error = 1;
81 		c->no_chk_data_crc = 0;
82 		c->vfs_sb->s_flags |= MS_RDONLY;
83 		ubifs_warn("switched to read-only mode, error %d", err);
84 		dump_stack();
85 	}
86 }
87 
88 /*
89  * Below are simple wrappers over UBI I/O functions which include some
90  * additional checks and UBIFS debugging stuff. See corresponding UBI function
91  * for more information.
92  */
93 
94 int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs,
95 		   int len, int even_ebadmsg)
96 {
97 	int err;
98 
99 	err = ubi_read(c->ubi, lnum, buf, offs, len);
100 	/*
101 	 * In case of %-EBADMSG print the error message only if the
102 	 * @even_ebadmsg is true.
103 	 */
104 	if (err && (err != -EBADMSG || even_ebadmsg)) {
105 		ubifs_err("reading %d bytes from LEB %d:%d failed, error %d",
106 			  len, lnum, offs, err);
107 		dump_stack();
108 	}
109 	return err;
110 }
111 
112 int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs,
113 		    int len)
114 {
115 	int err;
116 
117 	ubifs_assert(!c->ro_media && !c->ro_mount);
118 	if (c->ro_error)
119 		return -EROFS;
120 	if (!dbg_is_tst_rcvry(c))
121 		err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
122 	else
123 		err = dbg_leb_write(c, lnum, buf, offs, len);
124 	if (err) {
125 		ubifs_err("writing %d bytes to LEB %d:%d failed, error %d",
126 			  len, lnum, offs, err);
127 		ubifs_ro_mode(c, err);
128 		dump_stack();
129 	}
130 	return err;
131 }
132 
133 int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len)
134 {
135 	int err;
136 
137 	ubifs_assert(!c->ro_media && !c->ro_mount);
138 	if (c->ro_error)
139 		return -EROFS;
140 	if (!dbg_is_tst_rcvry(c))
141 		err = ubi_leb_change(c->ubi, lnum, buf, len);
142 	else
143 		err = dbg_leb_change(c, lnum, buf, len);
144 	if (err) {
145 		ubifs_err("changing %d bytes in LEB %d failed, error %d",
146 			  len, lnum, err);
147 		ubifs_ro_mode(c, err);
148 		dump_stack();
149 	}
150 	return err;
151 }
152 
153 int ubifs_leb_unmap(struct ubifs_info *c, int lnum)
154 {
155 	int err;
156 
157 	ubifs_assert(!c->ro_media && !c->ro_mount);
158 	if (c->ro_error)
159 		return -EROFS;
160 	if (!dbg_is_tst_rcvry(c))
161 		err = ubi_leb_unmap(c->ubi, lnum);
162 	else
163 		err = dbg_leb_unmap(c, lnum);
164 	if (err) {
165 		ubifs_err("unmap LEB %d failed, error %d", lnum, err);
166 		ubifs_ro_mode(c, err);
167 		dump_stack();
168 	}
169 	return err;
170 }
171 
172 int ubifs_leb_map(struct ubifs_info *c, int lnum)
173 {
174 	int err;
175 
176 	ubifs_assert(!c->ro_media && !c->ro_mount);
177 	if (c->ro_error)
178 		return -EROFS;
179 	if (!dbg_is_tst_rcvry(c))
180 		err = ubi_leb_map(c->ubi, lnum);
181 	else
182 		err = dbg_leb_map(c, lnum);
183 	if (err) {
184 		ubifs_err("mapping LEB %d failed, error %d", lnum, err);
185 		ubifs_ro_mode(c, err);
186 		dump_stack();
187 	}
188 	return err;
189 }
190 
191 int ubifs_is_mapped(const struct ubifs_info *c, int lnum)
192 {
193 	int err;
194 
195 	err = ubi_is_mapped(c->ubi, lnum);
196 	if (err < 0) {
197 		ubifs_err("ubi_is_mapped failed for LEB %d, error %d",
198 			  lnum, err);
199 		dump_stack();
200 	}
201 	return err;
202 }
203 
204 /**
205  * ubifs_check_node - check node.
206  * @c: UBIFS file-system description object
207  * @buf: node to check
208  * @lnum: logical eraseblock number
209  * @offs: offset within the logical eraseblock
210  * @quiet: print no messages
211  * @must_chk_crc: indicates whether to always check the CRC
212  *
213  * This function checks node magic number and CRC checksum. This function also
214  * validates node length to prevent UBIFS from becoming crazy when an attacker
215  * feeds it a file-system image with incorrect nodes. For example, too large
216  * node length in the common header could cause UBIFS to read memory outside of
217  * allocated buffer when checking the CRC checksum.
218  *
219  * This function may skip data nodes CRC checking if @c->no_chk_data_crc is
220  * true, which is controlled by corresponding UBIFS mount option. However, if
221  * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
222  * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are
223  * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC
224  * is checked. This is because during mounting or re-mounting from R/O mode to
225  * R/W mode we may read journal nodes (when replying the journal or doing the
226  * recovery) and the journal nodes may potentially be corrupted, so checking is
227  * required.
228  *
229  * This function returns zero in case of success and %-EUCLEAN in case of bad
230  * CRC or magic.
231  */
232 int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum,
233 		     int offs, int quiet, int must_chk_crc)
234 {
235 	int err = -EINVAL, type, node_len;
236 	uint32_t crc, node_crc, magic;
237 	const struct ubifs_ch *ch = buf;
238 
239 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
240 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
241 
242 	magic = le32_to_cpu(ch->magic);
243 	if (magic != UBIFS_NODE_MAGIC) {
244 		if (!quiet)
245 			ubifs_err("bad magic %#08x, expected %#08x",
246 				  magic, UBIFS_NODE_MAGIC);
247 		err = -EUCLEAN;
248 		goto out;
249 	}
250 
251 	type = ch->node_type;
252 	if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
253 		if (!quiet)
254 			ubifs_err("bad node type %d", type);
255 		goto out;
256 	}
257 
258 	node_len = le32_to_cpu(ch->len);
259 	if (node_len + offs > c->leb_size)
260 		goto out_len;
261 
262 	if (c->ranges[type].max_len == 0) {
263 		if (node_len != c->ranges[type].len)
264 			goto out_len;
265 	} else if (node_len < c->ranges[type].min_len ||
266 		   node_len > c->ranges[type].max_len)
267 		goto out_len;
268 
269 	if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting &&
270 	    !c->remounting_rw && c->no_chk_data_crc)
271 		return 0;
272 
273 	crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
274 	node_crc = le32_to_cpu(ch->crc);
275 	if (crc != node_crc) {
276 		if (!quiet)
277 			ubifs_err("bad CRC: calculated %#08x, read %#08x",
278 				  crc, node_crc);
279 		err = -EUCLEAN;
280 		goto out;
281 	}
282 
283 	return 0;
284 
285 out_len:
286 	if (!quiet)
287 		ubifs_err("bad node length %d", node_len);
288 out:
289 	if (!quiet) {
290 		ubifs_err("bad node at LEB %d:%d", lnum, offs);
291 		ubifs_dump_node(c, buf);
292 		dump_stack();
293 	}
294 	return err;
295 }
296 
297 /**
298  * ubifs_pad - pad flash space.
299  * @c: UBIFS file-system description object
300  * @buf: buffer to put padding to
301  * @pad: how many bytes to pad
302  *
303  * The flash media obliges us to write only in chunks of %c->min_io_size and
304  * when we have to write less data we add padding node to the write-buffer and
305  * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
306  * media is being scanned. If the amount of wasted space is not enough to fit a
307  * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
308  * pattern (%UBIFS_PADDING_BYTE).
309  *
310  * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
311  * used.
312  */
313 void ubifs_pad(const struct ubifs_info *c, void *buf, int pad)
314 {
315 	uint32_t crc;
316 
317 	ubifs_assert(pad >= 0 && !(pad & 7));
318 
319 	if (pad >= UBIFS_PAD_NODE_SZ) {
320 		struct ubifs_ch *ch = buf;
321 		struct ubifs_pad_node *pad_node = buf;
322 
323 		ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
324 		ch->node_type = UBIFS_PAD_NODE;
325 		ch->group_type = UBIFS_NO_NODE_GROUP;
326 		ch->padding[0] = ch->padding[1] = 0;
327 		ch->sqnum = 0;
328 		ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ);
329 		pad -= UBIFS_PAD_NODE_SZ;
330 		pad_node->pad_len = cpu_to_le32(pad);
331 		crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8);
332 		ch->crc = cpu_to_le32(crc);
333 		memset(buf + UBIFS_PAD_NODE_SZ, 0, pad);
334 	} else if (pad > 0)
335 		/* Too little space, padding node won't fit */
336 		memset(buf, UBIFS_PADDING_BYTE, pad);
337 }
338 
339 /**
340  * next_sqnum - get next sequence number.
341  * @c: UBIFS file-system description object
342  */
343 static unsigned long long next_sqnum(struct ubifs_info *c)
344 {
345 	unsigned long long sqnum;
346 
347 	spin_lock(&c->cnt_lock);
348 	sqnum = ++c->max_sqnum;
349 	spin_unlock(&c->cnt_lock);
350 
351 	if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) {
352 		if (sqnum >= SQNUM_WATERMARK) {
353 			ubifs_err("sequence number overflow %llu, end of life",
354 				  sqnum);
355 			ubifs_ro_mode(c, -EINVAL);
356 		}
357 		ubifs_warn("running out of sequence numbers, end of life soon");
358 	}
359 
360 	return sqnum;
361 }
362 
363 /**
364  * ubifs_prepare_node - prepare node to be written to flash.
365  * @c: UBIFS file-system description object
366  * @node: the node to pad
367  * @len: node length
368  * @pad: if the buffer has to be padded
369  *
370  * This function prepares node at @node to be written to the media - it
371  * calculates node CRC, fills the common header, and adds proper padding up to
372  * the next minimum I/O unit if @pad is not zero.
373  */
374 void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad)
375 {
376 	uint32_t crc;
377 	struct ubifs_ch *ch = node;
378 	unsigned long long sqnum = next_sqnum(c);
379 
380 	ubifs_assert(len >= UBIFS_CH_SZ);
381 
382 	ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
383 	ch->len = cpu_to_le32(len);
384 	ch->group_type = UBIFS_NO_NODE_GROUP;
385 	ch->sqnum = cpu_to_le64(sqnum);
386 	ch->padding[0] = ch->padding[1] = 0;
387 	crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
388 	ch->crc = cpu_to_le32(crc);
389 
390 	if (pad) {
391 		len = ALIGN(len, 8);
392 		pad = ALIGN(len, c->min_io_size) - len;
393 		ubifs_pad(c, node + len, pad);
394 	}
395 }
396 
397 /**
398  * ubifs_prep_grp_node - prepare node of a group to be written to flash.
399  * @c: UBIFS file-system description object
400  * @node: the node to pad
401  * @len: node length
402  * @last: indicates the last node of the group
403  *
404  * This function prepares node at @node to be written to the media - it
405  * calculates node CRC and fills the common header.
406  */
407 void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last)
408 {
409 	uint32_t crc;
410 	struct ubifs_ch *ch = node;
411 	unsigned long long sqnum = next_sqnum(c);
412 
413 	ubifs_assert(len >= UBIFS_CH_SZ);
414 
415 	ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
416 	ch->len = cpu_to_le32(len);
417 	if (last)
418 		ch->group_type = UBIFS_LAST_OF_NODE_GROUP;
419 	else
420 		ch->group_type = UBIFS_IN_NODE_GROUP;
421 	ch->sqnum = cpu_to_le64(sqnum);
422 	ch->padding[0] = ch->padding[1] = 0;
423 	crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
424 	ch->crc = cpu_to_le32(crc);
425 }
426 
427 #ifndef __UBOOT__
428 /**
429  * wbuf_timer_callback - write-buffer timer callback function.
430  * @data: timer data (write-buffer descriptor)
431  *
432  * This function is called when the write-buffer timer expires.
433  */
434 static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer)
435 {
436 	struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer);
437 
438 	dbg_io("jhead %s", dbg_jhead(wbuf->jhead));
439 	wbuf->need_sync = 1;
440 	wbuf->c->need_wbuf_sync = 1;
441 	ubifs_wake_up_bgt(wbuf->c);
442 	return HRTIMER_NORESTART;
443 }
444 
445 /**
446  * new_wbuf_timer - start new write-buffer timer.
447  * @wbuf: write-buffer descriptor
448  */
449 static void new_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
450 {
451 	ubifs_assert(!hrtimer_active(&wbuf->timer));
452 
453 	if (wbuf->no_timer)
454 		return;
455 	dbg_io("set timer for jhead %s, %llu-%llu millisecs",
456 	       dbg_jhead(wbuf->jhead),
457 	       div_u64(ktime_to_ns(wbuf->softlimit), USEC_PER_SEC),
458 	       div_u64(ktime_to_ns(wbuf->softlimit) + wbuf->delta,
459 		       USEC_PER_SEC));
460 	hrtimer_start_range_ns(&wbuf->timer, wbuf->softlimit, wbuf->delta,
461 			       HRTIMER_MODE_REL);
462 }
463 #endif
464 
465 /**
466  * cancel_wbuf_timer - cancel write-buffer timer.
467  * @wbuf: write-buffer descriptor
468  */
469 static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
470 {
471 	if (wbuf->no_timer)
472 		return;
473 	wbuf->need_sync = 0;
474 #ifndef __UBOOT__
475 	hrtimer_cancel(&wbuf->timer);
476 #endif
477 }
478 
479 /**
480  * ubifs_wbuf_sync_nolock - synchronize write-buffer.
481  * @wbuf: write-buffer to synchronize
482  *
483  * This function synchronizes write-buffer @buf and returns zero in case of
484  * success or a negative error code in case of failure.
485  *
486  * Note, although write-buffers are of @c->max_write_size, this function does
487  * not necessarily writes all @c->max_write_size bytes to the flash. Instead,
488  * if the write-buffer is only partially filled with data, only the used part
489  * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized.
490  * This way we waste less space.
491  */
492 int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
493 {
494 	struct ubifs_info *c = wbuf->c;
495 	int err, dirt, sync_len;
496 
497 	cancel_wbuf_timer_nolock(wbuf);
498 	if (!wbuf->used || wbuf->lnum == -1)
499 		/* Write-buffer is empty or not seeked */
500 		return 0;
501 
502 	dbg_io("LEB %d:%d, %d bytes, jhead %s",
503 	       wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead));
504 	ubifs_assert(!(wbuf->avail & 7));
505 	ubifs_assert(wbuf->offs + wbuf->size <= c->leb_size);
506 	ubifs_assert(wbuf->size >= c->min_io_size);
507 	ubifs_assert(wbuf->size <= c->max_write_size);
508 	ubifs_assert(wbuf->size % c->min_io_size == 0);
509 	ubifs_assert(!c->ro_media && !c->ro_mount);
510 	if (c->leb_size - wbuf->offs >= c->max_write_size)
511 		ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size));
512 
513 	if (c->ro_error)
514 		return -EROFS;
515 
516 	/*
517 	 * Do not write whole write buffer but write only the minimum necessary
518 	 * amount of min. I/O units.
519 	 */
520 	sync_len = ALIGN(wbuf->used, c->min_io_size);
521 	dirt = sync_len - wbuf->used;
522 	if (dirt)
523 		ubifs_pad(c, wbuf->buf + wbuf->used, dirt);
524 	err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len);
525 	if (err)
526 		return err;
527 
528 	spin_lock(&wbuf->lock);
529 	wbuf->offs += sync_len;
530 	/*
531 	 * Now @wbuf->offs is not necessarily aligned to @c->max_write_size.
532 	 * But our goal is to optimize writes and make sure we write in
533 	 * @c->max_write_size chunks and to @c->max_write_size-aligned offset.
534 	 * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make
535 	 * sure that @wbuf->offs + @wbuf->size is aligned to
536 	 * @c->max_write_size. This way we make sure that after next
537 	 * write-buffer flush we are again at the optimal offset (aligned to
538 	 * @c->max_write_size).
539 	 */
540 	if (c->leb_size - wbuf->offs < c->max_write_size)
541 		wbuf->size = c->leb_size - wbuf->offs;
542 	else if (wbuf->offs & (c->max_write_size - 1))
543 		wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
544 	else
545 		wbuf->size = c->max_write_size;
546 	wbuf->avail = wbuf->size;
547 	wbuf->used = 0;
548 	wbuf->next_ino = 0;
549 	spin_unlock(&wbuf->lock);
550 
551 	if (wbuf->sync_callback)
552 		err = wbuf->sync_callback(c, wbuf->lnum,
553 					  c->leb_size - wbuf->offs, dirt);
554 	return err;
555 }
556 
557 /**
558  * ubifs_wbuf_seek_nolock - seek write-buffer.
559  * @wbuf: write-buffer
560  * @lnum: logical eraseblock number to seek to
561  * @offs: logical eraseblock offset to seek to
562  *
563  * This function targets the write-buffer to logical eraseblock @lnum:@offs.
564  * The write-buffer has to be empty. Returns zero in case of success and a
565  * negative error code in case of failure.
566  */
567 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs)
568 {
569 	const struct ubifs_info *c = wbuf->c;
570 
571 	dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead));
572 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt);
573 	ubifs_assert(offs >= 0 && offs <= c->leb_size);
574 	ubifs_assert(offs % c->min_io_size == 0 && !(offs & 7));
575 	ubifs_assert(lnum != wbuf->lnum);
576 	ubifs_assert(wbuf->used == 0);
577 
578 	spin_lock(&wbuf->lock);
579 	wbuf->lnum = lnum;
580 	wbuf->offs = offs;
581 	if (c->leb_size - wbuf->offs < c->max_write_size)
582 		wbuf->size = c->leb_size - wbuf->offs;
583 	else if (wbuf->offs & (c->max_write_size - 1))
584 		wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
585 	else
586 		wbuf->size = c->max_write_size;
587 	wbuf->avail = wbuf->size;
588 	wbuf->used = 0;
589 	spin_unlock(&wbuf->lock);
590 
591 	return 0;
592 }
593 
594 #ifndef __UBOOT__
595 /**
596  * ubifs_bg_wbufs_sync - synchronize write-buffers.
597  * @c: UBIFS file-system description object
598  *
599  * This function is called by background thread to synchronize write-buffers.
600  * Returns zero in case of success and a negative error code in case of
601  * failure.
602  */
603 int ubifs_bg_wbufs_sync(struct ubifs_info *c)
604 {
605 	int err, i;
606 
607 	ubifs_assert(!c->ro_media && !c->ro_mount);
608 	if (!c->need_wbuf_sync)
609 		return 0;
610 	c->need_wbuf_sync = 0;
611 
612 	if (c->ro_error) {
613 		err = -EROFS;
614 		goto out_timers;
615 	}
616 
617 	dbg_io("synchronize");
618 	for (i = 0; i < c->jhead_cnt; i++) {
619 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
620 
621 		cond_resched();
622 
623 		/*
624 		 * If the mutex is locked then wbuf is being changed, so
625 		 * synchronization is not necessary.
626 		 */
627 		if (mutex_is_locked(&wbuf->io_mutex))
628 			continue;
629 
630 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
631 		if (!wbuf->need_sync) {
632 			mutex_unlock(&wbuf->io_mutex);
633 			continue;
634 		}
635 
636 		err = ubifs_wbuf_sync_nolock(wbuf);
637 		mutex_unlock(&wbuf->io_mutex);
638 		if (err) {
639 			ubifs_err("cannot sync write-buffer, error %d", err);
640 			ubifs_ro_mode(c, err);
641 			goto out_timers;
642 		}
643 	}
644 
645 	return 0;
646 
647 out_timers:
648 	/* Cancel all timers to prevent repeated errors */
649 	for (i = 0; i < c->jhead_cnt; i++) {
650 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
651 
652 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
653 		cancel_wbuf_timer_nolock(wbuf);
654 		mutex_unlock(&wbuf->io_mutex);
655 	}
656 	return err;
657 }
658 
659 /**
660  * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
661  * @wbuf: write-buffer
662  * @buf: node to write
663  * @len: node length
664  *
665  * This function writes data to flash via write-buffer @wbuf. This means that
666  * the last piece of the node won't reach the flash media immediately if it
667  * does not take whole max. write unit (@c->max_write_size). Instead, the node
668  * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or
669  * because more data are appended to the write-buffer).
670  *
671  * This function returns zero in case of success and a negative error code in
672  * case of failure. If the node cannot be written because there is no more
673  * space in this logical eraseblock, %-ENOSPC is returned.
674  */
675 int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
676 {
677 	struct ubifs_info *c = wbuf->c;
678 	int err, written, n, aligned_len = ALIGN(len, 8);
679 
680 	dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len,
681 	       dbg_ntype(((struct ubifs_ch *)buf)->node_type),
682 	       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used);
683 	ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt);
684 	ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0);
685 	ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size);
686 	ubifs_assert(wbuf->avail > 0 && wbuf->avail <= wbuf->size);
687 	ubifs_assert(wbuf->size >= c->min_io_size);
688 	ubifs_assert(wbuf->size <= c->max_write_size);
689 	ubifs_assert(wbuf->size % c->min_io_size == 0);
690 	ubifs_assert(mutex_is_locked(&wbuf->io_mutex));
691 	ubifs_assert(!c->ro_media && !c->ro_mount);
692 	ubifs_assert(!c->space_fixup);
693 	if (c->leb_size - wbuf->offs >= c->max_write_size)
694 		ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size));
695 
696 	if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) {
697 		err = -ENOSPC;
698 		goto out;
699 	}
700 
701 	cancel_wbuf_timer_nolock(wbuf);
702 
703 	if (c->ro_error)
704 		return -EROFS;
705 
706 	if (aligned_len <= wbuf->avail) {
707 		/*
708 		 * The node is not very large and fits entirely within
709 		 * write-buffer.
710 		 */
711 		memcpy(wbuf->buf + wbuf->used, buf, len);
712 
713 		if (aligned_len == wbuf->avail) {
714 			dbg_io("flush jhead %s wbuf to LEB %d:%d",
715 			       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
716 			err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf,
717 					      wbuf->offs, wbuf->size);
718 			if (err)
719 				goto out;
720 
721 			spin_lock(&wbuf->lock);
722 			wbuf->offs += wbuf->size;
723 			if (c->leb_size - wbuf->offs >= c->max_write_size)
724 				wbuf->size = c->max_write_size;
725 			else
726 				wbuf->size = c->leb_size - wbuf->offs;
727 			wbuf->avail = wbuf->size;
728 			wbuf->used = 0;
729 			wbuf->next_ino = 0;
730 			spin_unlock(&wbuf->lock);
731 		} else {
732 			spin_lock(&wbuf->lock);
733 			wbuf->avail -= aligned_len;
734 			wbuf->used += aligned_len;
735 			spin_unlock(&wbuf->lock);
736 		}
737 
738 		goto exit;
739 	}
740 
741 	written = 0;
742 
743 	if (wbuf->used) {
744 		/*
745 		 * The node is large enough and does not fit entirely within
746 		 * current available space. We have to fill and flush
747 		 * write-buffer and switch to the next max. write unit.
748 		 */
749 		dbg_io("flush jhead %s wbuf to LEB %d:%d",
750 		       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
751 		memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
752 		err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs,
753 				      wbuf->size);
754 		if (err)
755 			goto out;
756 
757 		wbuf->offs += wbuf->size;
758 		len -= wbuf->avail;
759 		aligned_len -= wbuf->avail;
760 		written += wbuf->avail;
761 	} else if (wbuf->offs & (c->max_write_size - 1)) {
762 		/*
763 		 * The write-buffer offset is not aligned to
764 		 * @c->max_write_size and @wbuf->size is less than
765 		 * @c->max_write_size. Write @wbuf->size bytes to make sure the
766 		 * following writes are done in optimal @c->max_write_size
767 		 * chunks.
768 		 */
769 		dbg_io("write %d bytes to LEB %d:%d",
770 		       wbuf->size, wbuf->lnum, wbuf->offs);
771 		err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs,
772 				      wbuf->size);
773 		if (err)
774 			goto out;
775 
776 		wbuf->offs += wbuf->size;
777 		len -= wbuf->size;
778 		aligned_len -= wbuf->size;
779 		written += wbuf->size;
780 	}
781 
782 	/*
783 	 * The remaining data may take more whole max. write units, so write the
784 	 * remains multiple to max. write unit size directly to the flash media.
785 	 * We align node length to 8-byte boundary because we anyway flash wbuf
786 	 * if the remaining space is less than 8 bytes.
787 	 */
788 	n = aligned_len >> c->max_write_shift;
789 	if (n) {
790 		n <<= c->max_write_shift;
791 		dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum,
792 		       wbuf->offs);
793 		err = ubifs_leb_write(c, wbuf->lnum, buf + written,
794 				      wbuf->offs, n);
795 		if (err)
796 			goto out;
797 		wbuf->offs += n;
798 		aligned_len -= n;
799 		len -= n;
800 		written += n;
801 	}
802 
803 	spin_lock(&wbuf->lock);
804 	if (aligned_len)
805 		/*
806 		 * And now we have what's left and what does not take whole
807 		 * max. write unit, so write it to the write-buffer and we are
808 		 * done.
809 		 */
810 		memcpy(wbuf->buf, buf + written, len);
811 
812 	if (c->leb_size - wbuf->offs >= c->max_write_size)
813 		wbuf->size = c->max_write_size;
814 	else
815 		wbuf->size = c->leb_size - wbuf->offs;
816 	wbuf->avail = wbuf->size - aligned_len;
817 	wbuf->used = aligned_len;
818 	wbuf->next_ino = 0;
819 	spin_unlock(&wbuf->lock);
820 
821 exit:
822 	if (wbuf->sync_callback) {
823 		int free = c->leb_size - wbuf->offs - wbuf->used;
824 
825 		err = wbuf->sync_callback(c, wbuf->lnum, free, 0);
826 		if (err)
827 			goto out;
828 	}
829 
830 	if (wbuf->used)
831 		new_wbuf_timer_nolock(wbuf);
832 
833 	return 0;
834 
835 out:
836 	ubifs_err("cannot write %d bytes to LEB %d:%d, error %d",
837 		  len, wbuf->lnum, wbuf->offs, err);
838 	ubifs_dump_node(c, buf);
839 	dump_stack();
840 	ubifs_dump_leb(c, wbuf->lnum);
841 	return err;
842 }
843 
844 /**
845  * ubifs_write_node - write node to the media.
846  * @c: UBIFS file-system description object
847  * @buf: the node to write
848  * @len: node length
849  * @lnum: logical eraseblock number
850  * @offs: offset within the logical eraseblock
851  *
852  * This function automatically fills node magic number, assigns sequence
853  * number, and calculates node CRC checksum. The length of the @buf buffer has
854  * to be aligned to the minimal I/O unit size. This function automatically
855  * appends padding node and padding bytes if needed. Returns zero in case of
856  * success and a negative error code in case of failure.
857  */
858 int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum,
859 		     int offs)
860 {
861 	int err, buf_len = ALIGN(len, c->min_io_size);
862 
863 	dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
864 	       lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len,
865 	       buf_len);
866 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
867 	ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size);
868 	ubifs_assert(!c->ro_media && !c->ro_mount);
869 	ubifs_assert(!c->space_fixup);
870 
871 	if (c->ro_error)
872 		return -EROFS;
873 
874 	ubifs_prepare_node(c, buf, len, 1);
875 	err = ubifs_leb_write(c, lnum, buf, offs, buf_len);
876 	if (err)
877 		ubifs_dump_node(c, buf);
878 
879 	return err;
880 }
881 #endif
882 
883 /**
884  * ubifs_read_node_wbuf - read node from the media or write-buffer.
885  * @wbuf: wbuf to check for un-written data
886  * @buf: buffer to read to
887  * @type: node type
888  * @len: node length
889  * @lnum: logical eraseblock number
890  * @offs: offset within the logical eraseblock
891  *
892  * This function reads a node of known type and length, checks it and stores
893  * in @buf. If the node partially or fully sits in the write-buffer, this
894  * function takes data from the buffer, otherwise it reads the flash media.
895  * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
896  * error code in case of failure.
897  */
898 int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
899 			 int lnum, int offs)
900 {
901 	const struct ubifs_info *c = wbuf->c;
902 	int err, rlen, overlap;
903 	struct ubifs_ch *ch = buf;
904 
905 	dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs,
906 	       dbg_ntype(type), len, dbg_jhead(wbuf->jhead));
907 	ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
908 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
909 	ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
910 
911 	spin_lock(&wbuf->lock);
912 	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
913 	if (!overlap) {
914 		/* We may safely unlock the write-buffer and read the data */
915 		spin_unlock(&wbuf->lock);
916 		return ubifs_read_node(c, buf, type, len, lnum, offs);
917 	}
918 
919 	/* Don't read under wbuf */
920 	rlen = wbuf->offs - offs;
921 	if (rlen < 0)
922 		rlen = 0;
923 
924 	/* Copy the rest from the write-buffer */
925 	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
926 	spin_unlock(&wbuf->lock);
927 
928 	if (rlen > 0) {
929 		/* Read everything that goes before write-buffer */
930 		err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
931 		if (err && err != -EBADMSG)
932 			return err;
933 	}
934 
935 	if (type != ch->node_type) {
936 		ubifs_err("bad node type (%d but expected %d)",
937 			  ch->node_type, type);
938 		goto out;
939 	}
940 
941 	err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
942 	if (err) {
943 		ubifs_err("expected node type %d", type);
944 		return err;
945 	}
946 
947 	rlen = le32_to_cpu(ch->len);
948 	if (rlen != len) {
949 		ubifs_err("bad node length %d, expected %d", rlen, len);
950 		goto out;
951 	}
952 
953 	return 0;
954 
955 out:
956 	ubifs_err("bad node at LEB %d:%d", lnum, offs);
957 	ubifs_dump_node(c, buf);
958 	dump_stack();
959 	return -EINVAL;
960 }
961 
962 /**
963  * ubifs_read_node - read node.
964  * @c: UBIFS file-system description object
965  * @buf: buffer to read to
966  * @type: node type
967  * @len: node length (not aligned)
968  * @lnum: logical eraseblock number
969  * @offs: offset within the logical eraseblock
970  *
971  * This function reads a node of known type and and length, checks it and
972  * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
973  * and a negative error code in case of failure.
974  */
975 int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
976 		    int lnum, int offs)
977 {
978 	int err, l;
979 	struct ubifs_ch *ch = buf;
980 
981 	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
982 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
983 	ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size);
984 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
985 	ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
986 
987 	err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
988 	if (err && err != -EBADMSG)
989 		return err;
990 
991 	if (type != ch->node_type) {
992 		ubifs_err("bad node type (%d but expected %d)",
993 			  ch->node_type, type);
994 		goto out;
995 	}
996 
997 	err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
998 	if (err) {
999 		ubifs_err("expected node type %d", type);
1000 		return err;
1001 	}
1002 
1003 	l = le32_to_cpu(ch->len);
1004 	if (l != len) {
1005 		ubifs_err("bad node length %d, expected %d", l, len);
1006 		goto out;
1007 	}
1008 
1009 	return 0;
1010 
1011 out:
1012 	ubifs_err("bad node at LEB %d:%d, LEB mapping status %d", lnum, offs,
1013 		  ubi_is_mapped(c->ubi, lnum));
1014 	ubifs_dump_node(c, buf);
1015 	dump_stack();
1016 	return -EINVAL;
1017 }
1018 
1019 /**
1020  * ubifs_wbuf_init - initialize write-buffer.
1021  * @c: UBIFS file-system description object
1022  * @wbuf: write-buffer to initialize
1023  *
1024  * This function initializes write-buffer. Returns zero in case of success
1025  * %-ENOMEM in case of failure.
1026  */
1027 int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
1028 {
1029 	size_t size;
1030 
1031 	wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL);
1032 	if (!wbuf->buf)
1033 		return -ENOMEM;
1034 
1035 	size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
1036 	wbuf->inodes = kmalloc(size, GFP_KERNEL);
1037 	if (!wbuf->inodes) {
1038 		kfree(wbuf->buf);
1039 		wbuf->buf = NULL;
1040 		return -ENOMEM;
1041 	}
1042 
1043 	wbuf->used = 0;
1044 	wbuf->lnum = wbuf->offs = -1;
1045 	/*
1046 	 * If the LEB starts at the max. write size aligned address, then
1047 	 * write-buffer size has to be set to @c->max_write_size. Otherwise,
1048 	 * set it to something smaller so that it ends at the closest max.
1049 	 * write size boundary.
1050 	 */
1051 	size = c->max_write_size - (c->leb_start % c->max_write_size);
1052 	wbuf->avail = wbuf->size = size;
1053 	wbuf->sync_callback = NULL;
1054 	mutex_init(&wbuf->io_mutex);
1055 	spin_lock_init(&wbuf->lock);
1056 	wbuf->c = c;
1057 	wbuf->next_ino = 0;
1058 
1059 #ifndef __UBOOT__
1060 	hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1061 	wbuf->timer.function = wbuf_timer_callback_nolock;
1062 	wbuf->softlimit = ktime_set(WBUF_TIMEOUT_SOFTLIMIT, 0);
1063 	wbuf->delta = WBUF_TIMEOUT_HARDLIMIT - WBUF_TIMEOUT_SOFTLIMIT;
1064 	wbuf->delta *= 1000000000ULL;
1065 	ubifs_assert(wbuf->delta <= ULONG_MAX);
1066 #endif
1067 	return 0;
1068 }
1069 
1070 /**
1071  * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
1072  * @wbuf: the write-buffer where to add
1073  * @inum: the inode number
1074  *
1075  * This function adds an inode number to the inode array of the write-buffer.
1076  */
1077 void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum)
1078 {
1079 	if (!wbuf->buf)
1080 		/* NOR flash or something similar */
1081 		return;
1082 
1083 	spin_lock(&wbuf->lock);
1084 	if (wbuf->used)
1085 		wbuf->inodes[wbuf->next_ino++] = inum;
1086 	spin_unlock(&wbuf->lock);
1087 }
1088 
1089 /**
1090  * wbuf_has_ino - returns if the wbuf contains data from the inode.
1091  * @wbuf: the write-buffer
1092  * @inum: the inode number
1093  *
1094  * This function returns with %1 if the write-buffer contains some data from the
1095  * given inode otherwise it returns with %0.
1096  */
1097 static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum)
1098 {
1099 	int i, ret = 0;
1100 
1101 	spin_lock(&wbuf->lock);
1102 	for (i = 0; i < wbuf->next_ino; i++)
1103 		if (inum == wbuf->inodes[i]) {
1104 			ret = 1;
1105 			break;
1106 		}
1107 	spin_unlock(&wbuf->lock);
1108 
1109 	return ret;
1110 }
1111 
1112 /**
1113  * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
1114  * @c: UBIFS file-system description object
1115  * @inode: inode to synchronize
1116  *
1117  * This function synchronizes write-buffers which contain nodes belonging to
1118  * @inode. Returns zero in case of success and a negative error code in case of
1119  * failure.
1120  */
1121 int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode)
1122 {
1123 	int i, err = 0;
1124 
1125 	for (i = 0; i < c->jhead_cnt; i++) {
1126 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
1127 
1128 		if (i == GCHD)
1129 			/*
1130 			 * GC head is special, do not look at it. Even if the
1131 			 * head contains something related to this inode, it is
1132 			 * a _copy_ of corresponding on-flash node which sits
1133 			 * somewhere else.
1134 			 */
1135 			continue;
1136 
1137 		if (!wbuf_has_ino(wbuf, inode->i_ino))
1138 			continue;
1139 
1140 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1141 		if (wbuf_has_ino(wbuf, inode->i_ino))
1142 			err = ubifs_wbuf_sync_nolock(wbuf);
1143 		mutex_unlock(&wbuf->io_mutex);
1144 
1145 		if (err) {
1146 			ubifs_ro_mode(c, err);
1147 			return err;
1148 		}
1149 	}
1150 	return 0;
1151 }
1152