1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * Copyright (C) 2006, 2007 University of Szeged, Hungary 6 * 7 * SPDX-License-Identifier: GPL-2.0+ 8 * 9 * Authors: Artem Bityutskiy (Битюцкий Артём) 10 * Adrian Hunter 11 * Zoltan Sogor 12 */ 13 14 /* 15 * This file implements UBIFS I/O subsystem which provides various I/O-related 16 * helper functions (reading/writing/checking/validating nodes) and implements 17 * write-buffering support. Write buffers help to save space which otherwise 18 * would have been wasted for padding to the nearest minimal I/O unit boundary. 19 * Instead, data first goes to the write-buffer and is flushed when the 20 * buffer is full or when it is not used for some time (by timer). This is 21 * similar to the mechanism is used by JFFS2. 22 * 23 * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum 24 * write size (@c->max_write_size). The latter is the maximum amount of bytes 25 * the underlying flash is able to program at a time, and writing in 26 * @c->max_write_size units should presumably be faster. Obviously, 27 * @c->min_io_size <= @c->max_write_size. Write-buffers are of 28 * @c->max_write_size bytes in size for maximum performance. However, when a 29 * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size 30 * boundary) which contains data is written, not the whole write-buffer, 31 * because this is more space-efficient. 32 * 33 * This optimization adds few complications to the code. Indeed, on the one 34 * hand, we want to write in optimal @c->max_write_size bytes chunks, which 35 * also means aligning writes at the @c->max_write_size bytes offsets. On the 36 * other hand, we do not want to waste space when synchronizing the write 37 * buffer, so during synchronization we writes in smaller chunks. And this makes 38 * the next write offset to be not aligned to @c->max_write_size bytes. So the 39 * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned 40 * to @c->max_write_size bytes again. We do this by temporarily shrinking 41 * write-buffer size (@wbuf->size). 42 * 43 * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by 44 * mutexes defined inside these objects. Since sometimes upper-level code 45 * has to lock the write-buffer (e.g. journal space reservation code), many 46 * functions related to write-buffers have "nolock" suffix which means that the 47 * caller has to lock the write-buffer before calling this function. 48 * 49 * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not 50 * aligned, UBIFS starts the next node from the aligned address, and the padded 51 * bytes may contain any rubbish. In other words, UBIFS does not put padding 52 * bytes in those small gaps. Common headers of nodes store real node lengths, 53 * not aligned lengths. Indexing nodes also store real lengths in branches. 54 * 55 * UBIFS uses padding when it pads to the next min. I/O unit. In this case it 56 * uses padding nodes or padding bytes, if the padding node does not fit. 57 * 58 * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when 59 * they are read from the flash media. 60 */ 61 62 #ifndef __UBOOT__ 63 #include <linux/crc32.h> 64 #include <linux/slab.h> 65 #else 66 #include <linux/compat.h> 67 #include <linux/err.h> 68 #endif 69 #include "ubifs.h" 70 71 /** 72 * ubifs_ro_mode - switch UBIFS to read read-only mode. 73 * @c: UBIFS file-system description object 74 * @err: error code which is the reason of switching to R/O mode 75 */ 76 void ubifs_ro_mode(struct ubifs_info *c, int err) 77 { 78 if (!c->ro_error) { 79 c->ro_error = 1; 80 c->no_chk_data_crc = 0; 81 c->vfs_sb->s_flags |= MS_RDONLY; 82 ubifs_warn("switched to read-only mode, error %d", err); 83 dump_stack(); 84 } 85 } 86 87 /* 88 * Below are simple wrappers over UBI I/O functions which include some 89 * additional checks and UBIFS debugging stuff. See corresponding UBI function 90 * for more information. 91 */ 92 93 int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs, 94 int len, int even_ebadmsg) 95 { 96 int err; 97 98 err = ubi_read(c->ubi, lnum, buf, offs, len); 99 /* 100 * In case of %-EBADMSG print the error message only if the 101 * @even_ebadmsg is true. 102 */ 103 if (err && (err != -EBADMSG || even_ebadmsg)) { 104 ubifs_err("reading %d bytes from LEB %d:%d failed, error %d", 105 len, lnum, offs, err); 106 dump_stack(); 107 } 108 return err; 109 } 110 111 int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs, 112 int len) 113 { 114 int err; 115 116 ubifs_assert(!c->ro_media && !c->ro_mount); 117 if (c->ro_error) 118 return -EROFS; 119 if (!dbg_is_tst_rcvry(c)) 120 err = ubi_leb_write(c->ubi, lnum, buf, offs, len); 121 else 122 err = dbg_leb_write(c, lnum, buf, offs, len); 123 if (err) { 124 ubifs_err("writing %d bytes to LEB %d:%d failed, error %d", 125 len, lnum, offs, err); 126 ubifs_ro_mode(c, err); 127 dump_stack(); 128 } 129 return err; 130 } 131 132 int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len) 133 { 134 int err; 135 136 ubifs_assert(!c->ro_media && !c->ro_mount); 137 if (c->ro_error) 138 return -EROFS; 139 if (!dbg_is_tst_rcvry(c)) 140 err = ubi_leb_change(c->ubi, lnum, buf, len); 141 else 142 err = dbg_leb_change(c, lnum, buf, len); 143 if (err) { 144 ubifs_err("changing %d bytes in LEB %d failed, error %d", 145 len, lnum, err); 146 ubifs_ro_mode(c, err); 147 dump_stack(); 148 } 149 return err; 150 } 151 152 int ubifs_leb_unmap(struct ubifs_info *c, int lnum) 153 { 154 int err; 155 156 ubifs_assert(!c->ro_media && !c->ro_mount); 157 if (c->ro_error) 158 return -EROFS; 159 if (!dbg_is_tst_rcvry(c)) 160 err = ubi_leb_unmap(c->ubi, lnum); 161 else 162 err = dbg_leb_unmap(c, lnum); 163 if (err) { 164 ubifs_err("unmap LEB %d failed, error %d", lnum, err); 165 ubifs_ro_mode(c, err); 166 dump_stack(); 167 } 168 return err; 169 } 170 171 int ubifs_leb_map(struct ubifs_info *c, int lnum) 172 { 173 int err; 174 175 ubifs_assert(!c->ro_media && !c->ro_mount); 176 if (c->ro_error) 177 return -EROFS; 178 if (!dbg_is_tst_rcvry(c)) 179 err = ubi_leb_map(c->ubi, lnum); 180 else 181 err = dbg_leb_map(c, lnum); 182 if (err) { 183 ubifs_err("mapping LEB %d failed, error %d", lnum, err); 184 ubifs_ro_mode(c, err); 185 dump_stack(); 186 } 187 return err; 188 } 189 190 int ubifs_is_mapped(const struct ubifs_info *c, int lnum) 191 { 192 int err; 193 194 err = ubi_is_mapped(c->ubi, lnum); 195 if (err < 0) { 196 ubifs_err("ubi_is_mapped failed for LEB %d, error %d", 197 lnum, err); 198 dump_stack(); 199 } 200 return err; 201 } 202 203 /** 204 * ubifs_check_node - check node. 205 * @c: UBIFS file-system description object 206 * @buf: node to check 207 * @lnum: logical eraseblock number 208 * @offs: offset within the logical eraseblock 209 * @quiet: print no messages 210 * @must_chk_crc: indicates whether to always check the CRC 211 * 212 * This function checks node magic number and CRC checksum. This function also 213 * validates node length to prevent UBIFS from becoming crazy when an attacker 214 * feeds it a file-system image with incorrect nodes. For example, too large 215 * node length in the common header could cause UBIFS to read memory outside of 216 * allocated buffer when checking the CRC checksum. 217 * 218 * This function may skip data nodes CRC checking if @c->no_chk_data_crc is 219 * true, which is controlled by corresponding UBIFS mount option. However, if 220 * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is 221 * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are 222 * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC 223 * is checked. This is because during mounting or re-mounting from R/O mode to 224 * R/W mode we may read journal nodes (when replying the journal or doing the 225 * recovery) and the journal nodes may potentially be corrupted, so checking is 226 * required. 227 * 228 * This function returns zero in case of success and %-EUCLEAN in case of bad 229 * CRC or magic. 230 */ 231 int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum, 232 int offs, int quiet, int must_chk_crc) 233 { 234 int err = -EINVAL, type, node_len; 235 uint32_t crc, node_crc, magic; 236 const struct ubifs_ch *ch = buf; 237 238 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 239 ubifs_assert(!(offs & 7) && offs < c->leb_size); 240 241 magic = le32_to_cpu(ch->magic); 242 if (magic != UBIFS_NODE_MAGIC) { 243 if (!quiet) 244 ubifs_err("bad magic %#08x, expected %#08x", 245 magic, UBIFS_NODE_MAGIC); 246 err = -EUCLEAN; 247 goto out; 248 } 249 250 type = ch->node_type; 251 if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) { 252 if (!quiet) 253 ubifs_err("bad node type %d", type); 254 goto out; 255 } 256 257 node_len = le32_to_cpu(ch->len); 258 if (node_len + offs > c->leb_size) 259 goto out_len; 260 261 if (c->ranges[type].max_len == 0) { 262 if (node_len != c->ranges[type].len) 263 goto out_len; 264 } else if (node_len < c->ranges[type].min_len || 265 node_len > c->ranges[type].max_len) 266 goto out_len; 267 268 if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting && 269 !c->remounting_rw && c->no_chk_data_crc) 270 return 0; 271 272 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8); 273 node_crc = le32_to_cpu(ch->crc); 274 if (crc != node_crc) { 275 if (!quiet) 276 ubifs_err("bad CRC: calculated %#08x, read %#08x", 277 crc, node_crc); 278 err = -EUCLEAN; 279 goto out; 280 } 281 282 return 0; 283 284 out_len: 285 if (!quiet) 286 ubifs_err("bad node length %d", node_len); 287 out: 288 if (!quiet) { 289 ubifs_err("bad node at LEB %d:%d", lnum, offs); 290 ubifs_dump_node(c, buf); 291 dump_stack(); 292 } 293 return err; 294 } 295 296 /** 297 * ubifs_pad - pad flash space. 298 * @c: UBIFS file-system description object 299 * @buf: buffer to put padding to 300 * @pad: how many bytes to pad 301 * 302 * The flash media obliges us to write only in chunks of %c->min_io_size and 303 * when we have to write less data we add padding node to the write-buffer and 304 * pad it to the next minimal I/O unit's boundary. Padding nodes help when the 305 * media is being scanned. If the amount of wasted space is not enough to fit a 306 * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes 307 * pattern (%UBIFS_PADDING_BYTE). 308 * 309 * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is 310 * used. 311 */ 312 void ubifs_pad(const struct ubifs_info *c, void *buf, int pad) 313 { 314 uint32_t crc; 315 316 ubifs_assert(pad >= 0 && !(pad & 7)); 317 318 if (pad >= UBIFS_PAD_NODE_SZ) { 319 struct ubifs_ch *ch = buf; 320 struct ubifs_pad_node *pad_node = buf; 321 322 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); 323 ch->node_type = UBIFS_PAD_NODE; 324 ch->group_type = UBIFS_NO_NODE_GROUP; 325 ch->padding[0] = ch->padding[1] = 0; 326 ch->sqnum = 0; 327 ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ); 328 pad -= UBIFS_PAD_NODE_SZ; 329 pad_node->pad_len = cpu_to_le32(pad); 330 crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8); 331 ch->crc = cpu_to_le32(crc); 332 memset(buf + UBIFS_PAD_NODE_SZ, 0, pad); 333 } else if (pad > 0) 334 /* Too little space, padding node won't fit */ 335 memset(buf, UBIFS_PADDING_BYTE, pad); 336 } 337 338 /** 339 * next_sqnum - get next sequence number. 340 * @c: UBIFS file-system description object 341 */ 342 static unsigned long long next_sqnum(struct ubifs_info *c) 343 { 344 unsigned long long sqnum; 345 346 spin_lock(&c->cnt_lock); 347 sqnum = ++c->max_sqnum; 348 spin_unlock(&c->cnt_lock); 349 350 if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) { 351 if (sqnum >= SQNUM_WATERMARK) { 352 ubifs_err("sequence number overflow %llu, end of life", 353 sqnum); 354 ubifs_ro_mode(c, -EINVAL); 355 } 356 ubifs_warn("running out of sequence numbers, end of life soon"); 357 } 358 359 return sqnum; 360 } 361 362 /** 363 * ubifs_prepare_node - prepare node to be written to flash. 364 * @c: UBIFS file-system description object 365 * @node: the node to pad 366 * @len: node length 367 * @pad: if the buffer has to be padded 368 * 369 * This function prepares node at @node to be written to the media - it 370 * calculates node CRC, fills the common header, and adds proper padding up to 371 * the next minimum I/O unit if @pad is not zero. 372 */ 373 void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad) 374 { 375 uint32_t crc; 376 struct ubifs_ch *ch = node; 377 unsigned long long sqnum = next_sqnum(c); 378 379 ubifs_assert(len >= UBIFS_CH_SZ); 380 381 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); 382 ch->len = cpu_to_le32(len); 383 ch->group_type = UBIFS_NO_NODE_GROUP; 384 ch->sqnum = cpu_to_le64(sqnum); 385 ch->padding[0] = ch->padding[1] = 0; 386 crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8); 387 ch->crc = cpu_to_le32(crc); 388 389 if (pad) { 390 len = ALIGN(len, 8); 391 pad = ALIGN(len, c->min_io_size) - len; 392 ubifs_pad(c, node + len, pad); 393 } 394 } 395 396 /** 397 * ubifs_prep_grp_node - prepare node of a group to be written to flash. 398 * @c: UBIFS file-system description object 399 * @node: the node to pad 400 * @len: node length 401 * @last: indicates the last node of the group 402 * 403 * This function prepares node at @node to be written to the media - it 404 * calculates node CRC and fills the common header. 405 */ 406 void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last) 407 { 408 uint32_t crc; 409 struct ubifs_ch *ch = node; 410 unsigned long long sqnum = next_sqnum(c); 411 412 ubifs_assert(len >= UBIFS_CH_SZ); 413 414 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); 415 ch->len = cpu_to_le32(len); 416 if (last) 417 ch->group_type = UBIFS_LAST_OF_NODE_GROUP; 418 else 419 ch->group_type = UBIFS_IN_NODE_GROUP; 420 ch->sqnum = cpu_to_le64(sqnum); 421 ch->padding[0] = ch->padding[1] = 0; 422 crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8); 423 ch->crc = cpu_to_le32(crc); 424 } 425 426 #ifndef __UBOOT__ 427 /** 428 * wbuf_timer_callback - write-buffer timer callback function. 429 * @data: timer data (write-buffer descriptor) 430 * 431 * This function is called when the write-buffer timer expires. 432 */ 433 static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer) 434 { 435 struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer); 436 437 dbg_io("jhead %s", dbg_jhead(wbuf->jhead)); 438 wbuf->need_sync = 1; 439 wbuf->c->need_wbuf_sync = 1; 440 ubifs_wake_up_bgt(wbuf->c); 441 return HRTIMER_NORESTART; 442 } 443 444 /** 445 * new_wbuf_timer - start new write-buffer timer. 446 * @wbuf: write-buffer descriptor 447 */ 448 static void new_wbuf_timer_nolock(struct ubifs_wbuf *wbuf) 449 { 450 ubifs_assert(!hrtimer_active(&wbuf->timer)); 451 452 if (wbuf->no_timer) 453 return; 454 dbg_io("set timer for jhead %s, %llu-%llu millisecs", 455 dbg_jhead(wbuf->jhead), 456 div_u64(ktime_to_ns(wbuf->softlimit), USEC_PER_SEC), 457 div_u64(ktime_to_ns(wbuf->softlimit) + wbuf->delta, 458 USEC_PER_SEC)); 459 hrtimer_start_range_ns(&wbuf->timer, wbuf->softlimit, wbuf->delta, 460 HRTIMER_MODE_REL); 461 } 462 #endif 463 464 /** 465 * cancel_wbuf_timer - cancel write-buffer timer. 466 * @wbuf: write-buffer descriptor 467 */ 468 static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf) 469 { 470 if (wbuf->no_timer) 471 return; 472 wbuf->need_sync = 0; 473 #ifndef __UBOOT__ 474 hrtimer_cancel(&wbuf->timer); 475 #endif 476 } 477 478 /** 479 * ubifs_wbuf_sync_nolock - synchronize write-buffer. 480 * @wbuf: write-buffer to synchronize 481 * 482 * This function synchronizes write-buffer @buf and returns zero in case of 483 * success or a negative error code in case of failure. 484 * 485 * Note, although write-buffers are of @c->max_write_size, this function does 486 * not necessarily writes all @c->max_write_size bytes to the flash. Instead, 487 * if the write-buffer is only partially filled with data, only the used part 488 * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized. 489 * This way we waste less space. 490 */ 491 int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf) 492 { 493 struct ubifs_info *c = wbuf->c; 494 int err, dirt, sync_len; 495 496 cancel_wbuf_timer_nolock(wbuf); 497 if (!wbuf->used || wbuf->lnum == -1) 498 /* Write-buffer is empty or not seeked */ 499 return 0; 500 501 dbg_io("LEB %d:%d, %d bytes, jhead %s", 502 wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead)); 503 ubifs_assert(!(wbuf->avail & 7)); 504 ubifs_assert(wbuf->offs + wbuf->size <= c->leb_size); 505 ubifs_assert(wbuf->size >= c->min_io_size); 506 ubifs_assert(wbuf->size <= c->max_write_size); 507 ubifs_assert(wbuf->size % c->min_io_size == 0); 508 ubifs_assert(!c->ro_media && !c->ro_mount); 509 if (c->leb_size - wbuf->offs >= c->max_write_size) 510 ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size)); 511 512 if (c->ro_error) 513 return -EROFS; 514 515 /* 516 * Do not write whole write buffer but write only the minimum necessary 517 * amount of min. I/O units. 518 */ 519 sync_len = ALIGN(wbuf->used, c->min_io_size); 520 dirt = sync_len - wbuf->used; 521 if (dirt) 522 ubifs_pad(c, wbuf->buf + wbuf->used, dirt); 523 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len); 524 if (err) 525 return err; 526 527 spin_lock(&wbuf->lock); 528 wbuf->offs += sync_len; 529 /* 530 * Now @wbuf->offs is not necessarily aligned to @c->max_write_size. 531 * But our goal is to optimize writes and make sure we write in 532 * @c->max_write_size chunks and to @c->max_write_size-aligned offset. 533 * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make 534 * sure that @wbuf->offs + @wbuf->size is aligned to 535 * @c->max_write_size. This way we make sure that after next 536 * write-buffer flush we are again at the optimal offset (aligned to 537 * @c->max_write_size). 538 */ 539 if (c->leb_size - wbuf->offs < c->max_write_size) 540 wbuf->size = c->leb_size - wbuf->offs; 541 else if (wbuf->offs & (c->max_write_size - 1)) 542 wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs; 543 else 544 wbuf->size = c->max_write_size; 545 wbuf->avail = wbuf->size; 546 wbuf->used = 0; 547 wbuf->next_ino = 0; 548 spin_unlock(&wbuf->lock); 549 550 if (wbuf->sync_callback) 551 err = wbuf->sync_callback(c, wbuf->lnum, 552 c->leb_size - wbuf->offs, dirt); 553 return err; 554 } 555 556 /** 557 * ubifs_wbuf_seek_nolock - seek write-buffer. 558 * @wbuf: write-buffer 559 * @lnum: logical eraseblock number to seek to 560 * @offs: logical eraseblock offset to seek to 561 * 562 * This function targets the write-buffer to logical eraseblock @lnum:@offs. 563 * The write-buffer has to be empty. Returns zero in case of success and a 564 * negative error code in case of failure. 565 */ 566 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs) 567 { 568 const struct ubifs_info *c = wbuf->c; 569 570 dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead)); 571 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt); 572 ubifs_assert(offs >= 0 && offs <= c->leb_size); 573 ubifs_assert(offs % c->min_io_size == 0 && !(offs & 7)); 574 ubifs_assert(lnum != wbuf->lnum); 575 ubifs_assert(wbuf->used == 0); 576 577 spin_lock(&wbuf->lock); 578 wbuf->lnum = lnum; 579 wbuf->offs = offs; 580 if (c->leb_size - wbuf->offs < c->max_write_size) 581 wbuf->size = c->leb_size - wbuf->offs; 582 else if (wbuf->offs & (c->max_write_size - 1)) 583 wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs; 584 else 585 wbuf->size = c->max_write_size; 586 wbuf->avail = wbuf->size; 587 wbuf->used = 0; 588 spin_unlock(&wbuf->lock); 589 590 return 0; 591 } 592 593 #ifndef __UBOOT__ 594 /** 595 * ubifs_bg_wbufs_sync - synchronize write-buffers. 596 * @c: UBIFS file-system description object 597 * 598 * This function is called by background thread to synchronize write-buffers. 599 * Returns zero in case of success and a negative error code in case of 600 * failure. 601 */ 602 int ubifs_bg_wbufs_sync(struct ubifs_info *c) 603 { 604 int err, i; 605 606 ubifs_assert(!c->ro_media && !c->ro_mount); 607 if (!c->need_wbuf_sync) 608 return 0; 609 c->need_wbuf_sync = 0; 610 611 if (c->ro_error) { 612 err = -EROFS; 613 goto out_timers; 614 } 615 616 dbg_io("synchronize"); 617 for (i = 0; i < c->jhead_cnt; i++) { 618 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; 619 620 cond_resched(); 621 622 /* 623 * If the mutex is locked then wbuf is being changed, so 624 * synchronization is not necessary. 625 */ 626 if (mutex_is_locked(&wbuf->io_mutex)) 627 continue; 628 629 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 630 if (!wbuf->need_sync) { 631 mutex_unlock(&wbuf->io_mutex); 632 continue; 633 } 634 635 err = ubifs_wbuf_sync_nolock(wbuf); 636 mutex_unlock(&wbuf->io_mutex); 637 if (err) { 638 ubifs_err("cannot sync write-buffer, error %d", err); 639 ubifs_ro_mode(c, err); 640 goto out_timers; 641 } 642 } 643 644 return 0; 645 646 out_timers: 647 /* Cancel all timers to prevent repeated errors */ 648 for (i = 0; i < c->jhead_cnt; i++) { 649 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; 650 651 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 652 cancel_wbuf_timer_nolock(wbuf); 653 mutex_unlock(&wbuf->io_mutex); 654 } 655 return err; 656 } 657 658 /** 659 * ubifs_wbuf_write_nolock - write data to flash via write-buffer. 660 * @wbuf: write-buffer 661 * @buf: node to write 662 * @len: node length 663 * 664 * This function writes data to flash via write-buffer @wbuf. This means that 665 * the last piece of the node won't reach the flash media immediately if it 666 * does not take whole max. write unit (@c->max_write_size). Instead, the node 667 * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or 668 * because more data are appended to the write-buffer). 669 * 670 * This function returns zero in case of success and a negative error code in 671 * case of failure. If the node cannot be written because there is no more 672 * space in this logical eraseblock, %-ENOSPC is returned. 673 */ 674 int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len) 675 { 676 struct ubifs_info *c = wbuf->c; 677 int err, written, n, aligned_len = ALIGN(len, 8); 678 679 dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len, 680 dbg_ntype(((struct ubifs_ch *)buf)->node_type), 681 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used); 682 ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt); 683 ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0); 684 ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size); 685 ubifs_assert(wbuf->avail > 0 && wbuf->avail <= wbuf->size); 686 ubifs_assert(wbuf->size >= c->min_io_size); 687 ubifs_assert(wbuf->size <= c->max_write_size); 688 ubifs_assert(wbuf->size % c->min_io_size == 0); 689 ubifs_assert(mutex_is_locked(&wbuf->io_mutex)); 690 ubifs_assert(!c->ro_media && !c->ro_mount); 691 ubifs_assert(!c->space_fixup); 692 if (c->leb_size - wbuf->offs >= c->max_write_size) 693 ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size)); 694 695 if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) { 696 err = -ENOSPC; 697 goto out; 698 } 699 700 cancel_wbuf_timer_nolock(wbuf); 701 702 if (c->ro_error) 703 return -EROFS; 704 705 if (aligned_len <= wbuf->avail) { 706 /* 707 * The node is not very large and fits entirely within 708 * write-buffer. 709 */ 710 memcpy(wbuf->buf + wbuf->used, buf, len); 711 712 if (aligned_len == wbuf->avail) { 713 dbg_io("flush jhead %s wbuf to LEB %d:%d", 714 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs); 715 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, 716 wbuf->offs, wbuf->size); 717 if (err) 718 goto out; 719 720 spin_lock(&wbuf->lock); 721 wbuf->offs += wbuf->size; 722 if (c->leb_size - wbuf->offs >= c->max_write_size) 723 wbuf->size = c->max_write_size; 724 else 725 wbuf->size = c->leb_size - wbuf->offs; 726 wbuf->avail = wbuf->size; 727 wbuf->used = 0; 728 wbuf->next_ino = 0; 729 spin_unlock(&wbuf->lock); 730 } else { 731 spin_lock(&wbuf->lock); 732 wbuf->avail -= aligned_len; 733 wbuf->used += aligned_len; 734 spin_unlock(&wbuf->lock); 735 } 736 737 goto exit; 738 } 739 740 written = 0; 741 742 if (wbuf->used) { 743 /* 744 * The node is large enough and does not fit entirely within 745 * current available space. We have to fill and flush 746 * write-buffer and switch to the next max. write unit. 747 */ 748 dbg_io("flush jhead %s wbuf to LEB %d:%d", 749 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs); 750 memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail); 751 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, 752 wbuf->size); 753 if (err) 754 goto out; 755 756 wbuf->offs += wbuf->size; 757 len -= wbuf->avail; 758 aligned_len -= wbuf->avail; 759 written += wbuf->avail; 760 } else if (wbuf->offs & (c->max_write_size - 1)) { 761 /* 762 * The write-buffer offset is not aligned to 763 * @c->max_write_size and @wbuf->size is less than 764 * @c->max_write_size. Write @wbuf->size bytes to make sure the 765 * following writes are done in optimal @c->max_write_size 766 * chunks. 767 */ 768 dbg_io("write %d bytes to LEB %d:%d", 769 wbuf->size, wbuf->lnum, wbuf->offs); 770 err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs, 771 wbuf->size); 772 if (err) 773 goto out; 774 775 wbuf->offs += wbuf->size; 776 len -= wbuf->size; 777 aligned_len -= wbuf->size; 778 written += wbuf->size; 779 } 780 781 /* 782 * The remaining data may take more whole max. write units, so write the 783 * remains multiple to max. write unit size directly to the flash media. 784 * We align node length to 8-byte boundary because we anyway flash wbuf 785 * if the remaining space is less than 8 bytes. 786 */ 787 n = aligned_len >> c->max_write_shift; 788 if (n) { 789 n <<= c->max_write_shift; 790 dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum, 791 wbuf->offs); 792 err = ubifs_leb_write(c, wbuf->lnum, buf + written, 793 wbuf->offs, n); 794 if (err) 795 goto out; 796 wbuf->offs += n; 797 aligned_len -= n; 798 len -= n; 799 written += n; 800 } 801 802 spin_lock(&wbuf->lock); 803 if (aligned_len) 804 /* 805 * And now we have what's left and what does not take whole 806 * max. write unit, so write it to the write-buffer and we are 807 * done. 808 */ 809 memcpy(wbuf->buf, buf + written, len); 810 811 if (c->leb_size - wbuf->offs >= c->max_write_size) 812 wbuf->size = c->max_write_size; 813 else 814 wbuf->size = c->leb_size - wbuf->offs; 815 wbuf->avail = wbuf->size - aligned_len; 816 wbuf->used = aligned_len; 817 wbuf->next_ino = 0; 818 spin_unlock(&wbuf->lock); 819 820 exit: 821 if (wbuf->sync_callback) { 822 int free = c->leb_size - wbuf->offs - wbuf->used; 823 824 err = wbuf->sync_callback(c, wbuf->lnum, free, 0); 825 if (err) 826 goto out; 827 } 828 829 if (wbuf->used) 830 new_wbuf_timer_nolock(wbuf); 831 832 return 0; 833 834 out: 835 ubifs_err("cannot write %d bytes to LEB %d:%d, error %d", 836 len, wbuf->lnum, wbuf->offs, err); 837 ubifs_dump_node(c, buf); 838 dump_stack(); 839 ubifs_dump_leb(c, wbuf->lnum); 840 return err; 841 } 842 843 /** 844 * ubifs_write_node - write node to the media. 845 * @c: UBIFS file-system description object 846 * @buf: the node to write 847 * @len: node length 848 * @lnum: logical eraseblock number 849 * @offs: offset within the logical eraseblock 850 * 851 * This function automatically fills node magic number, assigns sequence 852 * number, and calculates node CRC checksum. The length of the @buf buffer has 853 * to be aligned to the minimal I/O unit size. This function automatically 854 * appends padding node and padding bytes if needed. Returns zero in case of 855 * success and a negative error code in case of failure. 856 */ 857 int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum, 858 int offs) 859 { 860 int err, buf_len = ALIGN(len, c->min_io_size); 861 862 dbg_io("LEB %d:%d, %s, length %d (aligned %d)", 863 lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len, 864 buf_len); 865 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 866 ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size); 867 ubifs_assert(!c->ro_media && !c->ro_mount); 868 ubifs_assert(!c->space_fixup); 869 870 if (c->ro_error) 871 return -EROFS; 872 873 ubifs_prepare_node(c, buf, len, 1); 874 err = ubifs_leb_write(c, lnum, buf, offs, buf_len); 875 if (err) 876 ubifs_dump_node(c, buf); 877 878 return err; 879 } 880 #endif 881 882 /** 883 * ubifs_read_node_wbuf - read node from the media or write-buffer. 884 * @wbuf: wbuf to check for un-written data 885 * @buf: buffer to read to 886 * @type: node type 887 * @len: node length 888 * @lnum: logical eraseblock number 889 * @offs: offset within the logical eraseblock 890 * 891 * This function reads a node of known type and length, checks it and stores 892 * in @buf. If the node partially or fully sits in the write-buffer, this 893 * function takes data from the buffer, otherwise it reads the flash media. 894 * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative 895 * error code in case of failure. 896 */ 897 int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len, 898 int lnum, int offs) 899 { 900 const struct ubifs_info *c = wbuf->c; 901 int err, rlen, overlap; 902 struct ubifs_ch *ch = buf; 903 904 dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs, 905 dbg_ntype(type), len, dbg_jhead(wbuf->jhead)); 906 ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 907 ubifs_assert(!(offs & 7) && offs < c->leb_size); 908 ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT); 909 910 spin_lock(&wbuf->lock); 911 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs); 912 if (!overlap) { 913 /* We may safely unlock the write-buffer and read the data */ 914 spin_unlock(&wbuf->lock); 915 return ubifs_read_node(c, buf, type, len, lnum, offs); 916 } 917 918 /* Don't read under wbuf */ 919 rlen = wbuf->offs - offs; 920 if (rlen < 0) 921 rlen = 0; 922 923 /* Copy the rest from the write-buffer */ 924 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen); 925 spin_unlock(&wbuf->lock); 926 927 if (rlen > 0) { 928 /* Read everything that goes before write-buffer */ 929 err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0); 930 if (err && err != -EBADMSG) 931 return err; 932 } 933 934 if (type != ch->node_type) { 935 ubifs_err("bad node type (%d but expected %d)", 936 ch->node_type, type); 937 goto out; 938 } 939 940 err = ubifs_check_node(c, buf, lnum, offs, 0, 0); 941 if (err) { 942 ubifs_err("expected node type %d", type); 943 return err; 944 } 945 946 rlen = le32_to_cpu(ch->len); 947 if (rlen != len) { 948 ubifs_err("bad node length %d, expected %d", rlen, len); 949 goto out; 950 } 951 952 return 0; 953 954 out: 955 ubifs_err("bad node at LEB %d:%d", lnum, offs); 956 ubifs_dump_node(c, buf); 957 dump_stack(); 958 return -EINVAL; 959 } 960 961 /** 962 * ubifs_read_node - read node. 963 * @c: UBIFS file-system description object 964 * @buf: buffer to read to 965 * @type: node type 966 * @len: node length (not aligned) 967 * @lnum: logical eraseblock number 968 * @offs: offset within the logical eraseblock 969 * 970 * This function reads a node of known type and and length, checks it and 971 * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched 972 * and a negative error code in case of failure. 973 */ 974 int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len, 975 int lnum, int offs) 976 { 977 int err, l; 978 struct ubifs_ch *ch = buf; 979 980 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); 981 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 982 ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size); 983 ubifs_assert(!(offs & 7) && offs < c->leb_size); 984 ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT); 985 986 err = ubifs_leb_read(c, lnum, buf, offs, len, 0); 987 if (err && err != -EBADMSG) 988 return err; 989 990 if (type != ch->node_type) { 991 ubifs_err("bad node type (%d but expected %d)", 992 ch->node_type, type); 993 goto out; 994 } 995 996 err = ubifs_check_node(c, buf, lnum, offs, 0, 0); 997 if (err) { 998 ubifs_err("expected node type %d", type); 999 return err; 1000 } 1001 1002 l = le32_to_cpu(ch->len); 1003 if (l != len) { 1004 ubifs_err("bad node length %d, expected %d", l, len); 1005 goto out; 1006 } 1007 1008 return 0; 1009 1010 out: 1011 ubifs_err("bad node at LEB %d:%d, LEB mapping status %d", lnum, offs, 1012 ubi_is_mapped(c->ubi, lnum)); 1013 ubifs_dump_node(c, buf); 1014 dump_stack(); 1015 return -EINVAL; 1016 } 1017 1018 /** 1019 * ubifs_wbuf_init - initialize write-buffer. 1020 * @c: UBIFS file-system description object 1021 * @wbuf: write-buffer to initialize 1022 * 1023 * This function initializes write-buffer. Returns zero in case of success 1024 * %-ENOMEM in case of failure. 1025 */ 1026 int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf) 1027 { 1028 size_t size; 1029 1030 wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL); 1031 if (!wbuf->buf) 1032 return -ENOMEM; 1033 1034 size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t); 1035 wbuf->inodes = kmalloc(size, GFP_KERNEL); 1036 if (!wbuf->inodes) { 1037 kfree(wbuf->buf); 1038 wbuf->buf = NULL; 1039 return -ENOMEM; 1040 } 1041 1042 wbuf->used = 0; 1043 wbuf->lnum = wbuf->offs = -1; 1044 /* 1045 * If the LEB starts at the max. write size aligned address, then 1046 * write-buffer size has to be set to @c->max_write_size. Otherwise, 1047 * set it to something smaller so that it ends at the closest max. 1048 * write size boundary. 1049 */ 1050 size = c->max_write_size - (c->leb_start % c->max_write_size); 1051 wbuf->avail = wbuf->size = size; 1052 wbuf->sync_callback = NULL; 1053 mutex_init(&wbuf->io_mutex); 1054 spin_lock_init(&wbuf->lock); 1055 wbuf->c = c; 1056 wbuf->next_ino = 0; 1057 1058 #ifndef __UBOOT__ 1059 hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1060 wbuf->timer.function = wbuf_timer_callback_nolock; 1061 wbuf->softlimit = ktime_set(WBUF_TIMEOUT_SOFTLIMIT, 0); 1062 wbuf->delta = WBUF_TIMEOUT_HARDLIMIT - WBUF_TIMEOUT_SOFTLIMIT; 1063 wbuf->delta *= 1000000000ULL; 1064 ubifs_assert(wbuf->delta <= ULONG_MAX); 1065 #endif 1066 return 0; 1067 } 1068 1069 /** 1070 * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array. 1071 * @wbuf: the write-buffer where to add 1072 * @inum: the inode number 1073 * 1074 * This function adds an inode number to the inode array of the write-buffer. 1075 */ 1076 void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum) 1077 { 1078 if (!wbuf->buf) 1079 /* NOR flash or something similar */ 1080 return; 1081 1082 spin_lock(&wbuf->lock); 1083 if (wbuf->used) 1084 wbuf->inodes[wbuf->next_ino++] = inum; 1085 spin_unlock(&wbuf->lock); 1086 } 1087 1088 /** 1089 * wbuf_has_ino - returns if the wbuf contains data from the inode. 1090 * @wbuf: the write-buffer 1091 * @inum: the inode number 1092 * 1093 * This function returns with %1 if the write-buffer contains some data from the 1094 * given inode otherwise it returns with %0. 1095 */ 1096 static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum) 1097 { 1098 int i, ret = 0; 1099 1100 spin_lock(&wbuf->lock); 1101 for (i = 0; i < wbuf->next_ino; i++) 1102 if (inum == wbuf->inodes[i]) { 1103 ret = 1; 1104 break; 1105 } 1106 spin_unlock(&wbuf->lock); 1107 1108 return ret; 1109 } 1110 1111 /** 1112 * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode. 1113 * @c: UBIFS file-system description object 1114 * @inode: inode to synchronize 1115 * 1116 * This function synchronizes write-buffers which contain nodes belonging to 1117 * @inode. Returns zero in case of success and a negative error code in case of 1118 * failure. 1119 */ 1120 int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode) 1121 { 1122 int i, err = 0; 1123 1124 for (i = 0; i < c->jhead_cnt; i++) { 1125 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; 1126 1127 if (i == GCHD) 1128 /* 1129 * GC head is special, do not look at it. Even if the 1130 * head contains something related to this inode, it is 1131 * a _copy_ of corresponding on-flash node which sits 1132 * somewhere else. 1133 */ 1134 continue; 1135 1136 if (!wbuf_has_ino(wbuf, inode->i_ino)) 1137 continue; 1138 1139 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 1140 if (wbuf_has_ino(wbuf, inode->i_ino)) 1141 err = ubifs_wbuf_sync_nolock(wbuf); 1142 mutex_unlock(&wbuf->io_mutex); 1143 1144 if (err) { 1145 ubifs_ro_mode(c, err); 1146 return err; 1147 } 1148 } 1149 return 0; 1150 } 1151