xref: /openbmc/u-boot/fs/ubifs/io.c (revision 00a457b2)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  * Copyright (C) 2006, 2007 University of Szeged, Hungary
6  *
7  * SPDX-License-Identifier:	GPL-2.0+
8  *
9  * Authors: Artem Bityutskiy (Битюцкий Артём)
10  *          Adrian Hunter
11  *          Zoltan Sogor
12  */
13 
14 /*
15  * This file implements UBIFS I/O subsystem which provides various I/O-related
16  * helper functions (reading/writing/checking/validating nodes) and implements
17  * write-buffering support. Write buffers help to save space which otherwise
18  * would have been wasted for padding to the nearest minimal I/O unit boundary.
19  * Instead, data first goes to the write-buffer and is flushed when the
20  * buffer is full or when it is not used for some time (by timer). This is
21  * similar to the mechanism is used by JFFS2.
22  *
23  * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum
24  * write size (@c->max_write_size). The latter is the maximum amount of bytes
25  * the underlying flash is able to program at a time, and writing in
26  * @c->max_write_size units should presumably be faster. Obviously,
27  * @c->min_io_size <= @c->max_write_size. Write-buffers are of
28  * @c->max_write_size bytes in size for maximum performance. However, when a
29  * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size
30  * boundary) which contains data is written, not the whole write-buffer,
31  * because this is more space-efficient.
32  *
33  * This optimization adds few complications to the code. Indeed, on the one
34  * hand, we want to write in optimal @c->max_write_size bytes chunks, which
35  * also means aligning writes at the @c->max_write_size bytes offsets. On the
36  * other hand, we do not want to waste space when synchronizing the write
37  * buffer, so during synchronization we writes in smaller chunks. And this makes
38  * the next write offset to be not aligned to @c->max_write_size bytes. So the
39  * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned
40  * to @c->max_write_size bytes again. We do this by temporarily shrinking
41  * write-buffer size (@wbuf->size).
42  *
43  * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
44  * mutexes defined inside these objects. Since sometimes upper-level code
45  * has to lock the write-buffer (e.g. journal space reservation code), many
46  * functions related to write-buffers have "nolock" suffix which means that the
47  * caller has to lock the write-buffer before calling this function.
48  *
49  * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
50  * aligned, UBIFS starts the next node from the aligned address, and the padded
51  * bytes may contain any rubbish. In other words, UBIFS does not put padding
52  * bytes in those small gaps. Common headers of nodes store real node lengths,
53  * not aligned lengths. Indexing nodes also store real lengths in branches.
54  *
55  * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
56  * uses padding nodes or padding bytes, if the padding node does not fit.
57  *
58  * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when
59  * they are read from the flash media.
60  */
61 
62 #ifndef __UBOOT__
63 #include <linux/crc32.h>
64 #include <linux/slab.h>
65 #else
66 #include <linux/compat.h>
67 #include <linux/err.h>
68 #endif
69 #include "ubifs.h"
70 
71 /**
72  * ubifs_ro_mode - switch UBIFS to read read-only mode.
73  * @c: UBIFS file-system description object
74  * @err: error code which is the reason of switching to R/O mode
75  */
76 void ubifs_ro_mode(struct ubifs_info *c, int err)
77 {
78 	if (!c->ro_error) {
79 		c->ro_error = 1;
80 		c->no_chk_data_crc = 0;
81 		c->vfs_sb->s_flags |= MS_RDONLY;
82 		ubifs_warn(c, "switched to read-only mode, error %d", err);
83 		dump_stack();
84 	}
85 }
86 
87 /*
88  * Below are simple wrappers over UBI I/O functions which include some
89  * additional checks and UBIFS debugging stuff. See corresponding UBI function
90  * for more information.
91  */
92 
93 int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs,
94 		   int len, int even_ebadmsg)
95 {
96 	int err;
97 
98 	err = ubi_read(c->ubi, lnum, buf, offs, len);
99 	/*
100 	 * In case of %-EBADMSG print the error message only if the
101 	 * @even_ebadmsg is true.
102 	 */
103 	if (err && (err != -EBADMSG || even_ebadmsg)) {
104 		ubifs_err(c, "reading %d bytes from LEB %d:%d failed, error %d",
105 			  len, lnum, offs, err);
106 		dump_stack();
107 	}
108 	return err;
109 }
110 
111 int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs,
112 		    int len)
113 {
114 	int err;
115 
116 	ubifs_assert(!c->ro_media && !c->ro_mount);
117 	if (c->ro_error)
118 		return -EROFS;
119 	if (!dbg_is_tst_rcvry(c))
120 		err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
121 #ifndef __UBOOT__
122 	else
123 		err = dbg_leb_write(c, lnum, buf, offs, len);
124 #endif
125 	if (err) {
126 		ubifs_err(c, "writing %d bytes to LEB %d:%d failed, error %d",
127 			  len, lnum, offs, err);
128 		ubifs_ro_mode(c, err);
129 		dump_stack();
130 	}
131 	return err;
132 }
133 
134 int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len)
135 {
136 	int err;
137 
138 	ubifs_assert(!c->ro_media && !c->ro_mount);
139 	if (c->ro_error)
140 		return -EROFS;
141 	if (!dbg_is_tst_rcvry(c))
142 		err = ubi_leb_change(c->ubi, lnum, buf, len);
143 #ifndef __UBOOT__
144 	else
145 		err = dbg_leb_change(c, lnum, buf, len);
146 #endif
147 	if (err) {
148 		ubifs_err(c, "changing %d bytes in LEB %d failed, error %d",
149 			  len, lnum, err);
150 		ubifs_ro_mode(c, err);
151 		dump_stack();
152 	}
153 	return err;
154 }
155 
156 int ubifs_leb_unmap(struct ubifs_info *c, int lnum)
157 {
158 	int err;
159 
160 	ubifs_assert(!c->ro_media && !c->ro_mount);
161 	if (c->ro_error)
162 		return -EROFS;
163 	if (!dbg_is_tst_rcvry(c))
164 		err = ubi_leb_unmap(c->ubi, lnum);
165 #ifndef __UBOOT__
166 	else
167 		err = dbg_leb_unmap(c, lnum);
168 #endif
169 	if (err) {
170 		ubifs_err(c, "unmap LEB %d failed, error %d", lnum, err);
171 		ubifs_ro_mode(c, err);
172 		dump_stack();
173 	}
174 	return err;
175 }
176 
177 int ubifs_leb_map(struct ubifs_info *c, int lnum)
178 {
179 	int err;
180 
181 	ubifs_assert(!c->ro_media && !c->ro_mount);
182 	if (c->ro_error)
183 		return -EROFS;
184 	if (!dbg_is_tst_rcvry(c))
185 		err = ubi_leb_map(c->ubi, lnum);
186 #ifndef __UBOOT__
187 	else
188 		err = dbg_leb_map(c, lnum);
189 #endif
190 	if (err) {
191 		ubifs_err(c, "mapping LEB %d failed, error %d", lnum, err);
192 		ubifs_ro_mode(c, err);
193 		dump_stack();
194 	}
195 	return err;
196 }
197 
198 int ubifs_is_mapped(const struct ubifs_info *c, int lnum)
199 {
200 	int err;
201 
202 	err = ubi_is_mapped(c->ubi, lnum);
203 	if (err < 0) {
204 		ubifs_err(c, "ubi_is_mapped failed for LEB %d, error %d",
205 			  lnum, err);
206 		dump_stack();
207 	}
208 	return err;
209 }
210 
211 /**
212  * ubifs_check_node - check node.
213  * @c: UBIFS file-system description object
214  * @buf: node to check
215  * @lnum: logical eraseblock number
216  * @offs: offset within the logical eraseblock
217  * @quiet: print no messages
218  * @must_chk_crc: indicates whether to always check the CRC
219  *
220  * This function checks node magic number and CRC checksum. This function also
221  * validates node length to prevent UBIFS from becoming crazy when an attacker
222  * feeds it a file-system image with incorrect nodes. For example, too large
223  * node length in the common header could cause UBIFS to read memory outside of
224  * allocated buffer when checking the CRC checksum.
225  *
226  * This function may skip data nodes CRC checking if @c->no_chk_data_crc is
227  * true, which is controlled by corresponding UBIFS mount option. However, if
228  * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
229  * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are
230  * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC
231  * is checked. This is because during mounting or re-mounting from R/O mode to
232  * R/W mode we may read journal nodes (when replying the journal or doing the
233  * recovery) and the journal nodes may potentially be corrupted, so checking is
234  * required.
235  *
236  * This function returns zero in case of success and %-EUCLEAN in case of bad
237  * CRC or magic.
238  */
239 int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum,
240 		     int offs, int quiet, int must_chk_crc)
241 {
242 	int err = -EINVAL, type, node_len;
243 	uint32_t crc, node_crc, magic;
244 	const struct ubifs_ch *ch = buf;
245 
246 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
247 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
248 
249 	magic = le32_to_cpu(ch->magic);
250 	if (magic != UBIFS_NODE_MAGIC) {
251 		if (!quiet)
252 			ubifs_err(c, "bad magic %#08x, expected %#08x",
253 				  magic, UBIFS_NODE_MAGIC);
254 		err = -EUCLEAN;
255 		goto out;
256 	}
257 
258 	type = ch->node_type;
259 	if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
260 		if (!quiet)
261 			ubifs_err(c, "bad node type %d", type);
262 		goto out;
263 	}
264 
265 	node_len = le32_to_cpu(ch->len);
266 	if (node_len + offs > c->leb_size)
267 		goto out_len;
268 
269 	if (c->ranges[type].max_len == 0) {
270 		if (node_len != c->ranges[type].len)
271 			goto out_len;
272 	} else if (node_len < c->ranges[type].min_len ||
273 		   node_len > c->ranges[type].max_len)
274 		goto out_len;
275 
276 	if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting &&
277 	    !c->remounting_rw && c->no_chk_data_crc)
278 		return 0;
279 
280 	crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
281 	node_crc = le32_to_cpu(ch->crc);
282 	if (crc != node_crc) {
283 		if (!quiet)
284 			ubifs_err(c, "bad CRC: calculated %#08x, read %#08x",
285 				  crc, node_crc);
286 		err = -EUCLEAN;
287 		goto out;
288 	}
289 
290 	return 0;
291 
292 out_len:
293 	if (!quiet)
294 		ubifs_err(c, "bad node length %d", node_len);
295 out:
296 	if (!quiet) {
297 		ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
298 		ubifs_dump_node(c, buf);
299 		dump_stack();
300 	}
301 	return err;
302 }
303 
304 /**
305  * ubifs_pad - pad flash space.
306  * @c: UBIFS file-system description object
307  * @buf: buffer to put padding to
308  * @pad: how many bytes to pad
309  *
310  * The flash media obliges us to write only in chunks of %c->min_io_size and
311  * when we have to write less data we add padding node to the write-buffer and
312  * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
313  * media is being scanned. If the amount of wasted space is not enough to fit a
314  * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
315  * pattern (%UBIFS_PADDING_BYTE).
316  *
317  * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
318  * used.
319  */
320 void ubifs_pad(const struct ubifs_info *c, void *buf, int pad)
321 {
322 	uint32_t crc;
323 
324 	ubifs_assert(pad >= 0 && !(pad & 7));
325 
326 	if (pad >= UBIFS_PAD_NODE_SZ) {
327 		struct ubifs_ch *ch = buf;
328 		struct ubifs_pad_node *pad_node = buf;
329 
330 		ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
331 		ch->node_type = UBIFS_PAD_NODE;
332 		ch->group_type = UBIFS_NO_NODE_GROUP;
333 		ch->padding[0] = ch->padding[1] = 0;
334 		ch->sqnum = 0;
335 		ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ);
336 		pad -= UBIFS_PAD_NODE_SZ;
337 		pad_node->pad_len = cpu_to_le32(pad);
338 		crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8);
339 		ch->crc = cpu_to_le32(crc);
340 		memset(buf + UBIFS_PAD_NODE_SZ, 0, pad);
341 	} else if (pad > 0)
342 		/* Too little space, padding node won't fit */
343 		memset(buf, UBIFS_PADDING_BYTE, pad);
344 }
345 
346 /**
347  * next_sqnum - get next sequence number.
348  * @c: UBIFS file-system description object
349  */
350 static unsigned long long next_sqnum(struct ubifs_info *c)
351 {
352 	unsigned long long sqnum;
353 
354 	spin_lock(&c->cnt_lock);
355 	sqnum = ++c->max_sqnum;
356 	spin_unlock(&c->cnt_lock);
357 
358 	if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) {
359 		if (sqnum >= SQNUM_WATERMARK) {
360 			ubifs_err(c, "sequence number overflow %llu, end of life",
361 				  sqnum);
362 			ubifs_ro_mode(c, -EINVAL);
363 		}
364 		ubifs_warn(c, "running out of sequence numbers, end of life soon");
365 	}
366 
367 	return sqnum;
368 }
369 
370 /**
371  * ubifs_prepare_node - prepare node to be written to flash.
372  * @c: UBIFS file-system description object
373  * @node: the node to pad
374  * @len: node length
375  * @pad: if the buffer has to be padded
376  *
377  * This function prepares node at @node to be written to the media - it
378  * calculates node CRC, fills the common header, and adds proper padding up to
379  * the next minimum I/O unit if @pad is not zero.
380  */
381 void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad)
382 {
383 	uint32_t crc;
384 	struct ubifs_ch *ch = node;
385 	unsigned long long sqnum = next_sqnum(c);
386 
387 	ubifs_assert(len >= UBIFS_CH_SZ);
388 
389 	ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
390 	ch->len = cpu_to_le32(len);
391 	ch->group_type = UBIFS_NO_NODE_GROUP;
392 	ch->sqnum = cpu_to_le64(sqnum);
393 	ch->padding[0] = ch->padding[1] = 0;
394 	crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
395 	ch->crc = cpu_to_le32(crc);
396 
397 	if (pad) {
398 		len = ALIGN(len, 8);
399 		pad = ALIGN(len, c->min_io_size) - len;
400 		ubifs_pad(c, node + len, pad);
401 	}
402 }
403 
404 /**
405  * ubifs_prep_grp_node - prepare node of a group to be written to flash.
406  * @c: UBIFS file-system description object
407  * @node: the node to pad
408  * @len: node length
409  * @last: indicates the last node of the group
410  *
411  * This function prepares node at @node to be written to the media - it
412  * calculates node CRC and fills the common header.
413  */
414 void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last)
415 {
416 	uint32_t crc;
417 	struct ubifs_ch *ch = node;
418 	unsigned long long sqnum = next_sqnum(c);
419 
420 	ubifs_assert(len >= UBIFS_CH_SZ);
421 
422 	ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
423 	ch->len = cpu_to_le32(len);
424 	if (last)
425 		ch->group_type = UBIFS_LAST_OF_NODE_GROUP;
426 	else
427 		ch->group_type = UBIFS_IN_NODE_GROUP;
428 	ch->sqnum = cpu_to_le64(sqnum);
429 	ch->padding[0] = ch->padding[1] = 0;
430 	crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
431 	ch->crc = cpu_to_le32(crc);
432 }
433 
434 #ifndef __UBOOT__
435 /**
436  * wbuf_timer_callback - write-buffer timer callback function.
437  * @timer: timer data (write-buffer descriptor)
438  *
439  * This function is called when the write-buffer timer expires.
440  */
441 static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer)
442 {
443 	struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer);
444 
445 	dbg_io("jhead %s", dbg_jhead(wbuf->jhead));
446 	wbuf->need_sync = 1;
447 	wbuf->c->need_wbuf_sync = 1;
448 	ubifs_wake_up_bgt(wbuf->c);
449 	return HRTIMER_NORESTART;
450 }
451 
452 /**
453  * new_wbuf_timer - start new write-buffer timer.
454  * @wbuf: write-buffer descriptor
455  */
456 static void new_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
457 {
458 	ubifs_assert(!hrtimer_active(&wbuf->timer));
459 
460 	if (wbuf->no_timer)
461 		return;
462 	dbg_io("set timer for jhead %s, %llu-%llu millisecs",
463 	       dbg_jhead(wbuf->jhead),
464 	       div_u64(ktime_to_ns(wbuf->softlimit), USEC_PER_SEC),
465 	       div_u64(ktime_to_ns(wbuf->softlimit) + wbuf->delta,
466 		       USEC_PER_SEC));
467 	hrtimer_start_range_ns(&wbuf->timer, wbuf->softlimit, wbuf->delta,
468 			       HRTIMER_MODE_REL);
469 }
470 #endif
471 
472 /**
473  * cancel_wbuf_timer - cancel write-buffer timer.
474  * @wbuf: write-buffer descriptor
475  */
476 static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
477 {
478 	if (wbuf->no_timer)
479 		return;
480 	wbuf->need_sync = 0;
481 #ifndef __UBOOT__
482 	hrtimer_cancel(&wbuf->timer);
483 #endif
484 }
485 
486 /**
487  * ubifs_wbuf_sync_nolock - synchronize write-buffer.
488  * @wbuf: write-buffer to synchronize
489  *
490  * This function synchronizes write-buffer @buf and returns zero in case of
491  * success or a negative error code in case of failure.
492  *
493  * Note, although write-buffers are of @c->max_write_size, this function does
494  * not necessarily writes all @c->max_write_size bytes to the flash. Instead,
495  * if the write-buffer is only partially filled with data, only the used part
496  * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized.
497  * This way we waste less space.
498  */
499 int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
500 {
501 	struct ubifs_info *c = wbuf->c;
502 	int err, dirt, sync_len;
503 
504 	cancel_wbuf_timer_nolock(wbuf);
505 	if (!wbuf->used || wbuf->lnum == -1)
506 		/* Write-buffer is empty or not seeked */
507 		return 0;
508 
509 	dbg_io("LEB %d:%d, %d bytes, jhead %s",
510 	       wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead));
511 	ubifs_assert(!(wbuf->avail & 7));
512 	ubifs_assert(wbuf->offs + wbuf->size <= c->leb_size);
513 	ubifs_assert(wbuf->size >= c->min_io_size);
514 	ubifs_assert(wbuf->size <= c->max_write_size);
515 	ubifs_assert(wbuf->size % c->min_io_size == 0);
516 	ubifs_assert(!c->ro_media && !c->ro_mount);
517 	if (c->leb_size - wbuf->offs >= c->max_write_size)
518 		ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size));
519 
520 	if (c->ro_error)
521 		return -EROFS;
522 
523 	/*
524 	 * Do not write whole write buffer but write only the minimum necessary
525 	 * amount of min. I/O units.
526 	 */
527 	sync_len = ALIGN(wbuf->used, c->min_io_size);
528 	dirt = sync_len - wbuf->used;
529 	if (dirt)
530 		ubifs_pad(c, wbuf->buf + wbuf->used, dirt);
531 	err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len);
532 	if (err)
533 		return err;
534 
535 	spin_lock(&wbuf->lock);
536 	wbuf->offs += sync_len;
537 	/*
538 	 * Now @wbuf->offs is not necessarily aligned to @c->max_write_size.
539 	 * But our goal is to optimize writes and make sure we write in
540 	 * @c->max_write_size chunks and to @c->max_write_size-aligned offset.
541 	 * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make
542 	 * sure that @wbuf->offs + @wbuf->size is aligned to
543 	 * @c->max_write_size. This way we make sure that after next
544 	 * write-buffer flush we are again at the optimal offset (aligned to
545 	 * @c->max_write_size).
546 	 */
547 	if (c->leb_size - wbuf->offs < c->max_write_size)
548 		wbuf->size = c->leb_size - wbuf->offs;
549 	else if (wbuf->offs & (c->max_write_size - 1))
550 		wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
551 	else
552 		wbuf->size = c->max_write_size;
553 	wbuf->avail = wbuf->size;
554 	wbuf->used = 0;
555 	wbuf->next_ino = 0;
556 	spin_unlock(&wbuf->lock);
557 
558 	if (wbuf->sync_callback)
559 		err = wbuf->sync_callback(c, wbuf->lnum,
560 					  c->leb_size - wbuf->offs, dirt);
561 	return err;
562 }
563 
564 /**
565  * ubifs_wbuf_seek_nolock - seek write-buffer.
566  * @wbuf: write-buffer
567  * @lnum: logical eraseblock number to seek to
568  * @offs: logical eraseblock offset to seek to
569  *
570  * This function targets the write-buffer to logical eraseblock @lnum:@offs.
571  * The write-buffer has to be empty. Returns zero in case of success and a
572  * negative error code in case of failure.
573  */
574 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs)
575 {
576 	const struct ubifs_info *c = wbuf->c;
577 
578 	dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead));
579 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt);
580 	ubifs_assert(offs >= 0 && offs <= c->leb_size);
581 	ubifs_assert(offs % c->min_io_size == 0 && !(offs & 7));
582 	ubifs_assert(lnum != wbuf->lnum);
583 	ubifs_assert(wbuf->used == 0);
584 
585 	spin_lock(&wbuf->lock);
586 	wbuf->lnum = lnum;
587 	wbuf->offs = offs;
588 	if (c->leb_size - wbuf->offs < c->max_write_size)
589 		wbuf->size = c->leb_size - wbuf->offs;
590 	else if (wbuf->offs & (c->max_write_size - 1))
591 		wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
592 	else
593 		wbuf->size = c->max_write_size;
594 	wbuf->avail = wbuf->size;
595 	wbuf->used = 0;
596 	spin_unlock(&wbuf->lock);
597 
598 	return 0;
599 }
600 
601 #ifndef __UBOOT__
602 /**
603  * ubifs_bg_wbufs_sync - synchronize write-buffers.
604  * @c: UBIFS file-system description object
605  *
606  * This function is called by background thread to synchronize write-buffers.
607  * Returns zero in case of success and a negative error code in case of
608  * failure.
609  */
610 int ubifs_bg_wbufs_sync(struct ubifs_info *c)
611 {
612 	int err, i;
613 
614 	ubifs_assert(!c->ro_media && !c->ro_mount);
615 	if (!c->need_wbuf_sync)
616 		return 0;
617 	c->need_wbuf_sync = 0;
618 
619 	if (c->ro_error) {
620 		err = -EROFS;
621 		goto out_timers;
622 	}
623 
624 	dbg_io("synchronize");
625 	for (i = 0; i < c->jhead_cnt; i++) {
626 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
627 
628 		cond_resched();
629 
630 		/*
631 		 * If the mutex is locked then wbuf is being changed, so
632 		 * synchronization is not necessary.
633 		 */
634 		if (mutex_is_locked(&wbuf->io_mutex))
635 			continue;
636 
637 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
638 		if (!wbuf->need_sync) {
639 			mutex_unlock(&wbuf->io_mutex);
640 			continue;
641 		}
642 
643 		err = ubifs_wbuf_sync_nolock(wbuf);
644 		mutex_unlock(&wbuf->io_mutex);
645 		if (err) {
646 			ubifs_err(c, "cannot sync write-buffer, error %d", err);
647 			ubifs_ro_mode(c, err);
648 			goto out_timers;
649 		}
650 	}
651 
652 	return 0;
653 
654 out_timers:
655 	/* Cancel all timers to prevent repeated errors */
656 	for (i = 0; i < c->jhead_cnt; i++) {
657 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
658 
659 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
660 		cancel_wbuf_timer_nolock(wbuf);
661 		mutex_unlock(&wbuf->io_mutex);
662 	}
663 	return err;
664 }
665 
666 /**
667  * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
668  * @wbuf: write-buffer
669  * @buf: node to write
670  * @len: node length
671  *
672  * This function writes data to flash via write-buffer @wbuf. This means that
673  * the last piece of the node won't reach the flash media immediately if it
674  * does not take whole max. write unit (@c->max_write_size). Instead, the node
675  * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or
676  * because more data are appended to the write-buffer).
677  *
678  * This function returns zero in case of success and a negative error code in
679  * case of failure. If the node cannot be written because there is no more
680  * space in this logical eraseblock, %-ENOSPC is returned.
681  */
682 int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
683 {
684 	struct ubifs_info *c = wbuf->c;
685 	int err, written, n, aligned_len = ALIGN(len, 8);
686 
687 	dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len,
688 	       dbg_ntype(((struct ubifs_ch *)buf)->node_type),
689 	       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used);
690 	ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt);
691 	ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0);
692 	ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size);
693 	ubifs_assert(wbuf->avail > 0 && wbuf->avail <= wbuf->size);
694 	ubifs_assert(wbuf->size >= c->min_io_size);
695 	ubifs_assert(wbuf->size <= c->max_write_size);
696 	ubifs_assert(wbuf->size % c->min_io_size == 0);
697 	ubifs_assert(mutex_is_locked(&wbuf->io_mutex));
698 	ubifs_assert(!c->ro_media && !c->ro_mount);
699 	ubifs_assert(!c->space_fixup);
700 	if (c->leb_size - wbuf->offs >= c->max_write_size)
701 		ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size));
702 
703 	if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) {
704 		err = -ENOSPC;
705 		goto out;
706 	}
707 
708 	cancel_wbuf_timer_nolock(wbuf);
709 
710 	if (c->ro_error)
711 		return -EROFS;
712 
713 	if (aligned_len <= wbuf->avail) {
714 		/*
715 		 * The node is not very large and fits entirely within
716 		 * write-buffer.
717 		 */
718 		memcpy(wbuf->buf + wbuf->used, buf, len);
719 
720 		if (aligned_len == wbuf->avail) {
721 			dbg_io("flush jhead %s wbuf to LEB %d:%d",
722 			       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
723 			err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf,
724 					      wbuf->offs, wbuf->size);
725 			if (err)
726 				goto out;
727 
728 			spin_lock(&wbuf->lock);
729 			wbuf->offs += wbuf->size;
730 			if (c->leb_size - wbuf->offs >= c->max_write_size)
731 				wbuf->size = c->max_write_size;
732 			else
733 				wbuf->size = c->leb_size - wbuf->offs;
734 			wbuf->avail = wbuf->size;
735 			wbuf->used = 0;
736 			wbuf->next_ino = 0;
737 			spin_unlock(&wbuf->lock);
738 		} else {
739 			spin_lock(&wbuf->lock);
740 			wbuf->avail -= aligned_len;
741 			wbuf->used += aligned_len;
742 			spin_unlock(&wbuf->lock);
743 		}
744 
745 		goto exit;
746 	}
747 
748 	written = 0;
749 
750 	if (wbuf->used) {
751 		/*
752 		 * The node is large enough and does not fit entirely within
753 		 * current available space. We have to fill and flush
754 		 * write-buffer and switch to the next max. write unit.
755 		 */
756 		dbg_io("flush jhead %s wbuf to LEB %d:%d",
757 		       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
758 		memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
759 		err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs,
760 				      wbuf->size);
761 		if (err)
762 			goto out;
763 
764 		wbuf->offs += wbuf->size;
765 		len -= wbuf->avail;
766 		aligned_len -= wbuf->avail;
767 		written += wbuf->avail;
768 	} else if (wbuf->offs & (c->max_write_size - 1)) {
769 		/*
770 		 * The write-buffer offset is not aligned to
771 		 * @c->max_write_size and @wbuf->size is less than
772 		 * @c->max_write_size. Write @wbuf->size bytes to make sure the
773 		 * following writes are done in optimal @c->max_write_size
774 		 * chunks.
775 		 */
776 		dbg_io("write %d bytes to LEB %d:%d",
777 		       wbuf->size, wbuf->lnum, wbuf->offs);
778 		err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs,
779 				      wbuf->size);
780 		if (err)
781 			goto out;
782 
783 		wbuf->offs += wbuf->size;
784 		len -= wbuf->size;
785 		aligned_len -= wbuf->size;
786 		written += wbuf->size;
787 	}
788 
789 	/*
790 	 * The remaining data may take more whole max. write units, so write the
791 	 * remains multiple to max. write unit size directly to the flash media.
792 	 * We align node length to 8-byte boundary because we anyway flash wbuf
793 	 * if the remaining space is less than 8 bytes.
794 	 */
795 	n = aligned_len >> c->max_write_shift;
796 	if (n) {
797 		n <<= c->max_write_shift;
798 		dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum,
799 		       wbuf->offs);
800 		err = ubifs_leb_write(c, wbuf->lnum, buf + written,
801 				      wbuf->offs, n);
802 		if (err)
803 			goto out;
804 		wbuf->offs += n;
805 		aligned_len -= n;
806 		len -= n;
807 		written += n;
808 	}
809 
810 	spin_lock(&wbuf->lock);
811 	if (aligned_len)
812 		/*
813 		 * And now we have what's left and what does not take whole
814 		 * max. write unit, so write it to the write-buffer and we are
815 		 * done.
816 		 */
817 		memcpy(wbuf->buf, buf + written, len);
818 
819 	if (c->leb_size - wbuf->offs >= c->max_write_size)
820 		wbuf->size = c->max_write_size;
821 	else
822 		wbuf->size = c->leb_size - wbuf->offs;
823 	wbuf->avail = wbuf->size - aligned_len;
824 	wbuf->used = aligned_len;
825 	wbuf->next_ino = 0;
826 	spin_unlock(&wbuf->lock);
827 
828 exit:
829 	if (wbuf->sync_callback) {
830 		int free = c->leb_size - wbuf->offs - wbuf->used;
831 
832 		err = wbuf->sync_callback(c, wbuf->lnum, free, 0);
833 		if (err)
834 			goto out;
835 	}
836 
837 	if (wbuf->used)
838 		new_wbuf_timer_nolock(wbuf);
839 
840 	return 0;
841 
842 out:
843 	ubifs_err(c, "cannot write %d bytes to LEB %d:%d, error %d",
844 		  len, wbuf->lnum, wbuf->offs, err);
845 	ubifs_dump_node(c, buf);
846 	dump_stack();
847 	ubifs_dump_leb(c, wbuf->lnum);
848 	return err;
849 }
850 
851 /**
852  * ubifs_write_node - write node to the media.
853  * @c: UBIFS file-system description object
854  * @buf: the node to write
855  * @len: node length
856  * @lnum: logical eraseblock number
857  * @offs: offset within the logical eraseblock
858  *
859  * This function automatically fills node magic number, assigns sequence
860  * number, and calculates node CRC checksum. The length of the @buf buffer has
861  * to be aligned to the minimal I/O unit size. This function automatically
862  * appends padding node and padding bytes if needed. Returns zero in case of
863  * success and a negative error code in case of failure.
864  */
865 int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum,
866 		     int offs)
867 {
868 	int err, buf_len = ALIGN(len, c->min_io_size);
869 
870 	dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
871 	       lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len,
872 	       buf_len);
873 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
874 	ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size);
875 	ubifs_assert(!c->ro_media && !c->ro_mount);
876 	ubifs_assert(!c->space_fixup);
877 
878 	if (c->ro_error)
879 		return -EROFS;
880 
881 	ubifs_prepare_node(c, buf, len, 1);
882 	err = ubifs_leb_write(c, lnum, buf, offs, buf_len);
883 	if (err)
884 		ubifs_dump_node(c, buf);
885 
886 	return err;
887 }
888 #endif
889 
890 /**
891  * ubifs_read_node_wbuf - read node from the media or write-buffer.
892  * @wbuf: wbuf to check for un-written data
893  * @buf: buffer to read to
894  * @type: node type
895  * @len: node length
896  * @lnum: logical eraseblock number
897  * @offs: offset within the logical eraseblock
898  *
899  * This function reads a node of known type and length, checks it and stores
900  * in @buf. If the node partially or fully sits in the write-buffer, this
901  * function takes data from the buffer, otherwise it reads the flash media.
902  * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
903  * error code in case of failure.
904  */
905 int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
906 			 int lnum, int offs)
907 {
908 	const struct ubifs_info *c = wbuf->c;
909 	int err, rlen, overlap;
910 	struct ubifs_ch *ch = buf;
911 
912 	dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs,
913 	       dbg_ntype(type), len, dbg_jhead(wbuf->jhead));
914 	ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
915 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
916 	ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
917 
918 	spin_lock(&wbuf->lock);
919 	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
920 	if (!overlap) {
921 		/* We may safely unlock the write-buffer and read the data */
922 		spin_unlock(&wbuf->lock);
923 		return ubifs_read_node(c, buf, type, len, lnum, offs);
924 	}
925 
926 	/* Don't read under wbuf */
927 	rlen = wbuf->offs - offs;
928 	if (rlen < 0)
929 		rlen = 0;
930 
931 	/* Copy the rest from the write-buffer */
932 	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
933 	spin_unlock(&wbuf->lock);
934 
935 	if (rlen > 0) {
936 		/* Read everything that goes before write-buffer */
937 		err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
938 		if (err && err != -EBADMSG)
939 			return err;
940 	}
941 
942 	if (type != ch->node_type) {
943 		ubifs_err(c, "bad node type (%d but expected %d)",
944 			  ch->node_type, type);
945 		goto out;
946 	}
947 
948 	err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
949 	if (err) {
950 		ubifs_err(c, "expected node type %d", type);
951 		return err;
952 	}
953 
954 	rlen = le32_to_cpu(ch->len);
955 	if (rlen != len) {
956 		ubifs_err(c, "bad node length %d, expected %d", rlen, len);
957 		goto out;
958 	}
959 
960 	return 0;
961 
962 out:
963 	ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
964 	ubifs_dump_node(c, buf);
965 	dump_stack();
966 	return -EINVAL;
967 }
968 
969 /**
970  * ubifs_read_node - read node.
971  * @c: UBIFS file-system description object
972  * @buf: buffer to read to
973  * @type: node type
974  * @len: node length (not aligned)
975  * @lnum: logical eraseblock number
976  * @offs: offset within the logical eraseblock
977  *
978  * This function reads a node of known type and and length, checks it and
979  * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
980  * and a negative error code in case of failure.
981  */
982 int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
983 		    int lnum, int offs)
984 {
985 	int err, l;
986 	struct ubifs_ch *ch = buf;
987 
988 	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
989 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
990 	ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size);
991 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
992 	ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
993 
994 	err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
995 	if (err && err != -EBADMSG)
996 		return err;
997 
998 	if (type != ch->node_type) {
999 		ubifs_errc(c, "bad node type (%d but expected %d)",
1000 			   ch->node_type, type);
1001 		goto out;
1002 	}
1003 
1004 	err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
1005 	if (err) {
1006 		ubifs_errc(c, "expected node type %d", type);
1007 		return err;
1008 	}
1009 
1010 	l = le32_to_cpu(ch->len);
1011 	if (l != len) {
1012 		ubifs_errc(c, "bad node length %d, expected %d", l, len);
1013 		goto out;
1014 	}
1015 
1016 	return 0;
1017 
1018 out:
1019 	ubifs_errc(c, "bad node at LEB %d:%d, LEB mapping status %d", lnum,
1020 		   offs, ubi_is_mapped(c->ubi, lnum));
1021 	if (!c->probing) {
1022 		ubifs_dump_node(c, buf);
1023 		dump_stack();
1024 	}
1025 	return -EINVAL;
1026 }
1027 
1028 /**
1029  * ubifs_wbuf_init - initialize write-buffer.
1030  * @c: UBIFS file-system description object
1031  * @wbuf: write-buffer to initialize
1032  *
1033  * This function initializes write-buffer. Returns zero in case of success
1034  * %-ENOMEM in case of failure.
1035  */
1036 int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
1037 {
1038 	size_t size;
1039 
1040 	wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL);
1041 	if (!wbuf->buf)
1042 		return -ENOMEM;
1043 
1044 	size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
1045 	wbuf->inodes = kmalloc(size, GFP_KERNEL);
1046 	if (!wbuf->inodes) {
1047 		kfree(wbuf->buf);
1048 		wbuf->buf = NULL;
1049 		return -ENOMEM;
1050 	}
1051 
1052 	wbuf->used = 0;
1053 	wbuf->lnum = wbuf->offs = -1;
1054 	/*
1055 	 * If the LEB starts at the max. write size aligned address, then
1056 	 * write-buffer size has to be set to @c->max_write_size. Otherwise,
1057 	 * set it to something smaller so that it ends at the closest max.
1058 	 * write size boundary.
1059 	 */
1060 	size = c->max_write_size - (c->leb_start % c->max_write_size);
1061 	wbuf->avail = wbuf->size = size;
1062 	wbuf->sync_callback = NULL;
1063 	mutex_init(&wbuf->io_mutex);
1064 	spin_lock_init(&wbuf->lock);
1065 	wbuf->c = c;
1066 	wbuf->next_ino = 0;
1067 
1068 #ifndef __UBOOT__
1069 	hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1070 	wbuf->timer.function = wbuf_timer_callback_nolock;
1071 	wbuf->softlimit = ktime_set(WBUF_TIMEOUT_SOFTLIMIT, 0);
1072 	wbuf->delta = WBUF_TIMEOUT_HARDLIMIT - WBUF_TIMEOUT_SOFTLIMIT;
1073 	wbuf->delta *= 1000000000ULL;
1074 	ubifs_assert(wbuf->delta <= ULONG_MAX);
1075 #endif
1076 	return 0;
1077 }
1078 
1079 /**
1080  * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
1081  * @wbuf: the write-buffer where to add
1082  * @inum: the inode number
1083  *
1084  * This function adds an inode number to the inode array of the write-buffer.
1085  */
1086 void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum)
1087 {
1088 	if (!wbuf->buf)
1089 		/* NOR flash or something similar */
1090 		return;
1091 
1092 	spin_lock(&wbuf->lock);
1093 	if (wbuf->used)
1094 		wbuf->inodes[wbuf->next_ino++] = inum;
1095 	spin_unlock(&wbuf->lock);
1096 }
1097 
1098 /**
1099  * wbuf_has_ino - returns if the wbuf contains data from the inode.
1100  * @wbuf: the write-buffer
1101  * @inum: the inode number
1102  *
1103  * This function returns with %1 if the write-buffer contains some data from the
1104  * given inode otherwise it returns with %0.
1105  */
1106 static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum)
1107 {
1108 	int i, ret = 0;
1109 
1110 	spin_lock(&wbuf->lock);
1111 	for (i = 0; i < wbuf->next_ino; i++)
1112 		if (inum == wbuf->inodes[i]) {
1113 			ret = 1;
1114 			break;
1115 		}
1116 	spin_unlock(&wbuf->lock);
1117 
1118 	return ret;
1119 }
1120 
1121 /**
1122  * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
1123  * @c: UBIFS file-system description object
1124  * @inode: inode to synchronize
1125  *
1126  * This function synchronizes write-buffers which contain nodes belonging to
1127  * @inode. Returns zero in case of success and a negative error code in case of
1128  * failure.
1129  */
1130 int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode)
1131 {
1132 	int i, err = 0;
1133 
1134 	for (i = 0; i < c->jhead_cnt; i++) {
1135 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
1136 
1137 		if (i == GCHD)
1138 			/*
1139 			 * GC head is special, do not look at it. Even if the
1140 			 * head contains something related to this inode, it is
1141 			 * a _copy_ of corresponding on-flash node which sits
1142 			 * somewhere else.
1143 			 */
1144 			continue;
1145 
1146 		if (!wbuf_has_ino(wbuf, inode->i_ino))
1147 			continue;
1148 
1149 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1150 		if (wbuf_has_ino(wbuf, inode->i_ino))
1151 			err = ubifs_wbuf_sync_nolock(wbuf);
1152 		mutex_unlock(&wbuf->io_mutex);
1153 
1154 		if (err) {
1155 			ubifs_ro_mode(c, err);
1156 			return err;
1157 		}
1158 	}
1159 	return 0;
1160 }
1161