1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This file is part of UBIFS. 4 * 5 * Copyright (C) 2006-2008 Nokia Corporation. 6 * 7 * Authors: Adrian Hunter 8 * Artem Bityutskiy (Битюцкий Артём) 9 */ 10 11 /* 12 * This file implements garbage collection. The procedure for garbage collection 13 * is different depending on whether a LEB as an index LEB (contains index 14 * nodes) or not. For non-index LEBs, garbage collection finds a LEB which 15 * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete 16 * nodes to the journal, at which point the garbage-collected LEB is free to be 17 * reused. For index LEBs, garbage collection marks the non-obsolete index nodes 18 * dirty in the TNC, and after the next commit, the garbage-collected LEB is 19 * to be reused. Garbage collection will cause the number of dirty index nodes 20 * to grow, however sufficient space is reserved for the index to ensure the 21 * commit will never run out of space. 22 * 23 * Notes about dead watermark. At current UBIFS implementation we assume that 24 * LEBs which have less than @c->dead_wm bytes of free + dirty space are full 25 * and not worth garbage-collecting. The dead watermark is one min. I/O unit 26 * size, or min. UBIFS node size, depending on what is greater. Indeed, UBIFS 27 * Garbage Collector has to synchronize the GC head's write buffer before 28 * returning, so this is about wasting one min. I/O unit. However, UBIFS GC can 29 * actually reclaim even very small pieces of dirty space by garbage collecting 30 * enough dirty LEBs, but we do not bother doing this at this implementation. 31 * 32 * Notes about dark watermark. The results of GC work depends on how big are 33 * the UBIFS nodes GC deals with. Large nodes make GC waste more space. Indeed, 34 * if GC move data from LEB A to LEB B and nodes in LEB A are large, GC would 35 * have to waste large pieces of free space at the end of LEB B, because nodes 36 * from LEB A would not fit. And the worst situation is when all nodes are of 37 * maximum size. So dark watermark is the amount of free + dirty space in LEB 38 * which are guaranteed to be reclaimable. If LEB has less space, the GC might 39 * be unable to reclaim it. So, LEBs with free + dirty greater than dark 40 * watermark are "good" LEBs from GC's point of few. The other LEBs are not so 41 * good, and GC takes extra care when moving them. 42 */ 43 #ifndef __UBOOT__ 44 #include <linux/slab.h> 45 #include <linux/pagemap.h> 46 #include <linux/list_sort.h> 47 #endif 48 #include "ubifs.h" 49 50 #ifndef __UBOOT__ 51 /* 52 * GC may need to move more than one LEB to make progress. The below constants 53 * define "soft" and "hard" limits on the number of LEBs the garbage collector 54 * may move. 55 */ 56 #define SOFT_LEBS_LIMIT 4 57 #define HARD_LEBS_LIMIT 32 58 59 /** 60 * switch_gc_head - switch the garbage collection journal head. 61 * @c: UBIFS file-system description object 62 * @buf: buffer to write 63 * @len: length of the buffer to write 64 * @lnum: LEB number written is returned here 65 * @offs: offset written is returned here 66 * 67 * This function switch the GC head to the next LEB which is reserved in 68 * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required, 69 * and other negative error code in case of failures. 70 */ 71 static int switch_gc_head(struct ubifs_info *c) 72 { 73 int err, gc_lnum = c->gc_lnum; 74 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; 75 76 ubifs_assert(gc_lnum != -1); 77 dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)", 78 wbuf->lnum, wbuf->offs + wbuf->used, gc_lnum, 79 c->leb_size - wbuf->offs - wbuf->used); 80 81 err = ubifs_wbuf_sync_nolock(wbuf); 82 if (err) 83 return err; 84 85 /* 86 * The GC write-buffer was synchronized, we may safely unmap 87 * 'c->gc_lnum'. 88 */ 89 err = ubifs_leb_unmap(c, gc_lnum); 90 if (err) 91 return err; 92 93 err = ubifs_wbuf_sync_nolock(wbuf); 94 if (err) 95 return err; 96 97 err = ubifs_add_bud_to_log(c, GCHD, gc_lnum, 0); 98 if (err) 99 return err; 100 101 c->gc_lnum = -1; 102 err = ubifs_wbuf_seek_nolock(wbuf, gc_lnum, 0); 103 return err; 104 } 105 106 /** 107 * data_nodes_cmp - compare 2 data nodes. 108 * @priv: UBIFS file-system description object 109 * @a: first data node 110 * @a: second data node 111 * 112 * This function compares data nodes @a and @b. Returns %1 if @a has greater 113 * inode or block number, and %-1 otherwise. 114 */ 115 static int data_nodes_cmp(void *priv, struct list_head *a, struct list_head *b) 116 { 117 ino_t inuma, inumb; 118 struct ubifs_info *c = priv; 119 struct ubifs_scan_node *sa, *sb; 120 121 cond_resched(); 122 if (a == b) 123 return 0; 124 125 sa = list_entry(a, struct ubifs_scan_node, list); 126 sb = list_entry(b, struct ubifs_scan_node, list); 127 128 ubifs_assert(key_type(c, &sa->key) == UBIFS_DATA_KEY); 129 ubifs_assert(key_type(c, &sb->key) == UBIFS_DATA_KEY); 130 ubifs_assert(sa->type == UBIFS_DATA_NODE); 131 ubifs_assert(sb->type == UBIFS_DATA_NODE); 132 133 inuma = key_inum(c, &sa->key); 134 inumb = key_inum(c, &sb->key); 135 136 if (inuma == inumb) { 137 unsigned int blka = key_block(c, &sa->key); 138 unsigned int blkb = key_block(c, &sb->key); 139 140 if (blka <= blkb) 141 return -1; 142 } else if (inuma <= inumb) 143 return -1; 144 145 return 1; 146 } 147 148 /* 149 * nondata_nodes_cmp - compare 2 non-data nodes. 150 * @priv: UBIFS file-system description object 151 * @a: first node 152 * @a: second node 153 * 154 * This function compares nodes @a and @b. It makes sure that inode nodes go 155 * first and sorted by length in descending order. Directory entry nodes go 156 * after inode nodes and are sorted in ascending hash valuer order. 157 */ 158 static int nondata_nodes_cmp(void *priv, struct list_head *a, 159 struct list_head *b) 160 { 161 ino_t inuma, inumb; 162 struct ubifs_info *c = priv; 163 struct ubifs_scan_node *sa, *sb; 164 165 cond_resched(); 166 if (a == b) 167 return 0; 168 169 sa = list_entry(a, struct ubifs_scan_node, list); 170 sb = list_entry(b, struct ubifs_scan_node, list); 171 172 ubifs_assert(key_type(c, &sa->key) != UBIFS_DATA_KEY && 173 key_type(c, &sb->key) != UBIFS_DATA_KEY); 174 ubifs_assert(sa->type != UBIFS_DATA_NODE && 175 sb->type != UBIFS_DATA_NODE); 176 177 /* Inodes go before directory entries */ 178 if (sa->type == UBIFS_INO_NODE) { 179 if (sb->type == UBIFS_INO_NODE) 180 return sb->len - sa->len; 181 return -1; 182 } 183 if (sb->type == UBIFS_INO_NODE) 184 return 1; 185 186 ubifs_assert(key_type(c, &sa->key) == UBIFS_DENT_KEY || 187 key_type(c, &sa->key) == UBIFS_XENT_KEY); 188 ubifs_assert(key_type(c, &sb->key) == UBIFS_DENT_KEY || 189 key_type(c, &sb->key) == UBIFS_XENT_KEY); 190 ubifs_assert(sa->type == UBIFS_DENT_NODE || 191 sa->type == UBIFS_XENT_NODE); 192 ubifs_assert(sb->type == UBIFS_DENT_NODE || 193 sb->type == UBIFS_XENT_NODE); 194 195 inuma = key_inum(c, &sa->key); 196 inumb = key_inum(c, &sb->key); 197 198 if (inuma == inumb) { 199 uint32_t hasha = key_hash(c, &sa->key); 200 uint32_t hashb = key_hash(c, &sb->key); 201 202 if (hasha <= hashb) 203 return -1; 204 } else if (inuma <= inumb) 205 return -1; 206 207 return 1; 208 } 209 210 /** 211 * sort_nodes - sort nodes for GC. 212 * @c: UBIFS file-system description object 213 * @sleb: describes nodes to sort and contains the result on exit 214 * @nondata: contains non-data nodes on exit 215 * @min: minimum node size is returned here 216 * 217 * This function sorts the list of inodes to garbage collect. First of all, it 218 * kills obsolete nodes and separates data and non-data nodes to the 219 * @sleb->nodes and @nondata lists correspondingly. 220 * 221 * Data nodes are then sorted in block number order - this is important for 222 * bulk-read; data nodes with lower inode number go before data nodes with 223 * higher inode number, and data nodes with lower block number go before data 224 * nodes with higher block number; 225 * 226 * Non-data nodes are sorted as follows. 227 * o First go inode nodes - they are sorted in descending length order. 228 * o Then go directory entry nodes - they are sorted in hash order, which 229 * should supposedly optimize 'readdir()'. Direntry nodes with lower parent 230 * inode number go before direntry nodes with higher parent inode number, 231 * and direntry nodes with lower name hash values go before direntry nodes 232 * with higher name hash values. 233 * 234 * This function returns zero in case of success and a negative error code in 235 * case of failure. 236 */ 237 static int sort_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb, 238 struct list_head *nondata, int *min) 239 { 240 int err; 241 struct ubifs_scan_node *snod, *tmp; 242 243 *min = INT_MAX; 244 245 /* Separate data nodes and non-data nodes */ 246 list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) { 247 ubifs_assert(snod->type == UBIFS_INO_NODE || 248 snod->type == UBIFS_DATA_NODE || 249 snod->type == UBIFS_DENT_NODE || 250 snod->type == UBIFS_XENT_NODE || 251 snod->type == UBIFS_TRUN_NODE); 252 253 if (snod->type != UBIFS_INO_NODE && 254 snod->type != UBIFS_DATA_NODE && 255 snod->type != UBIFS_DENT_NODE && 256 snod->type != UBIFS_XENT_NODE) { 257 /* Probably truncation node, zap it */ 258 list_del(&snod->list); 259 kfree(snod); 260 continue; 261 } 262 263 ubifs_assert(key_type(c, &snod->key) == UBIFS_DATA_KEY || 264 key_type(c, &snod->key) == UBIFS_INO_KEY || 265 key_type(c, &snod->key) == UBIFS_DENT_KEY || 266 key_type(c, &snod->key) == UBIFS_XENT_KEY); 267 268 err = ubifs_tnc_has_node(c, &snod->key, 0, sleb->lnum, 269 snod->offs, 0); 270 if (err < 0) 271 return err; 272 273 if (!err) { 274 /* The node is obsolete, remove it from the list */ 275 list_del(&snod->list); 276 kfree(snod); 277 continue; 278 } 279 280 if (snod->len < *min) 281 *min = snod->len; 282 283 if (key_type(c, &snod->key) != UBIFS_DATA_KEY) 284 list_move_tail(&snod->list, nondata); 285 } 286 287 /* Sort data and non-data nodes */ 288 list_sort(c, &sleb->nodes, &data_nodes_cmp); 289 list_sort(c, nondata, &nondata_nodes_cmp); 290 291 err = dbg_check_data_nodes_order(c, &sleb->nodes); 292 if (err) 293 return err; 294 err = dbg_check_nondata_nodes_order(c, nondata); 295 if (err) 296 return err; 297 return 0; 298 } 299 300 /** 301 * move_node - move a node. 302 * @c: UBIFS file-system description object 303 * @sleb: describes the LEB to move nodes from 304 * @snod: the mode to move 305 * @wbuf: write-buffer to move node to 306 * 307 * This function moves node @snod to @wbuf, changes TNC correspondingly, and 308 * destroys @snod. Returns zero in case of success and a negative error code in 309 * case of failure. 310 */ 311 static int move_node(struct ubifs_info *c, struct ubifs_scan_leb *sleb, 312 struct ubifs_scan_node *snod, struct ubifs_wbuf *wbuf) 313 { 314 int err, new_lnum = wbuf->lnum, new_offs = wbuf->offs + wbuf->used; 315 316 cond_resched(); 317 err = ubifs_wbuf_write_nolock(wbuf, snod->node, snod->len); 318 if (err) 319 return err; 320 321 err = ubifs_tnc_replace(c, &snod->key, sleb->lnum, 322 snod->offs, new_lnum, new_offs, 323 snod->len); 324 list_del(&snod->list); 325 kfree(snod); 326 return err; 327 } 328 329 /** 330 * move_nodes - move nodes. 331 * @c: UBIFS file-system description object 332 * @sleb: describes the LEB to move nodes from 333 * 334 * This function moves valid nodes from data LEB described by @sleb to the GC 335 * journal head. This function returns zero in case of success, %-EAGAIN if 336 * commit is required, and other negative error codes in case of other 337 * failures. 338 */ 339 static int move_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb) 340 { 341 int err, min; 342 LIST_HEAD(nondata); 343 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; 344 345 if (wbuf->lnum == -1) { 346 /* 347 * The GC journal head is not set, because it is the first GC 348 * invocation since mount. 349 */ 350 err = switch_gc_head(c); 351 if (err) 352 return err; 353 } 354 355 err = sort_nodes(c, sleb, &nondata, &min); 356 if (err) 357 goto out; 358 359 /* Write nodes to their new location. Use the first-fit strategy */ 360 while (1) { 361 int avail; 362 struct ubifs_scan_node *snod, *tmp; 363 364 /* Move data nodes */ 365 list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) { 366 avail = c->leb_size - wbuf->offs - wbuf->used; 367 if (snod->len > avail) 368 /* 369 * Do not skip data nodes in order to optimize 370 * bulk-read. 371 */ 372 break; 373 374 err = move_node(c, sleb, snod, wbuf); 375 if (err) 376 goto out; 377 } 378 379 /* Move non-data nodes */ 380 list_for_each_entry_safe(snod, tmp, &nondata, list) { 381 avail = c->leb_size - wbuf->offs - wbuf->used; 382 if (avail < min) 383 break; 384 385 if (snod->len > avail) { 386 /* 387 * Keep going only if this is an inode with 388 * some data. Otherwise stop and switch the GC 389 * head. IOW, we assume that data-less inode 390 * nodes and direntry nodes are roughly of the 391 * same size. 392 */ 393 if (key_type(c, &snod->key) == UBIFS_DENT_KEY || 394 snod->len == UBIFS_INO_NODE_SZ) 395 break; 396 continue; 397 } 398 399 err = move_node(c, sleb, snod, wbuf); 400 if (err) 401 goto out; 402 } 403 404 if (list_empty(&sleb->nodes) && list_empty(&nondata)) 405 break; 406 407 /* 408 * Waste the rest of the space in the LEB and switch to the 409 * next LEB. 410 */ 411 err = switch_gc_head(c); 412 if (err) 413 goto out; 414 } 415 416 return 0; 417 418 out: 419 list_splice_tail(&nondata, &sleb->nodes); 420 return err; 421 } 422 423 /** 424 * gc_sync_wbufs - sync write-buffers for GC. 425 * @c: UBIFS file-system description object 426 * 427 * We must guarantee that obsoleting nodes are on flash. Unfortunately they may 428 * be in a write-buffer instead. That is, a node could be written to a 429 * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is 430 * erased before the write-buffer is sync'd and then there is an unclean 431 * unmount, then an existing node is lost. To avoid this, we sync all 432 * write-buffers. 433 * 434 * This function returns %0 on success or a negative error code on failure. 435 */ 436 static int gc_sync_wbufs(struct ubifs_info *c) 437 { 438 int err, i; 439 440 for (i = 0; i < c->jhead_cnt; i++) { 441 if (i == GCHD) 442 continue; 443 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 444 if (err) 445 return err; 446 } 447 return 0; 448 } 449 450 /** 451 * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock. 452 * @c: UBIFS file-system description object 453 * @lp: describes the LEB to garbage collect 454 * 455 * This function garbage-collects an LEB and returns one of the @LEB_FREED, 456 * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is 457 * required, and other negative error codes in case of failures. 458 */ 459 int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp) 460 { 461 struct ubifs_scan_leb *sleb; 462 struct ubifs_scan_node *snod; 463 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; 464 int err = 0, lnum = lp->lnum; 465 466 ubifs_assert(c->gc_lnum != -1 || wbuf->offs + wbuf->used == 0 || 467 c->need_recovery); 468 ubifs_assert(c->gc_lnum != lnum); 469 ubifs_assert(wbuf->lnum != lnum); 470 471 if (lp->free + lp->dirty == c->leb_size) { 472 /* Special case - a free LEB */ 473 dbg_gc("LEB %d is free, return it", lp->lnum); 474 ubifs_assert(!(lp->flags & LPROPS_INDEX)); 475 476 if (lp->free != c->leb_size) { 477 /* 478 * Write buffers must be sync'd before unmapping 479 * freeable LEBs, because one of them may contain data 480 * which obsoletes something in 'lp->pnum'. 481 */ 482 err = gc_sync_wbufs(c); 483 if (err) 484 return err; 485 err = ubifs_change_one_lp(c, lp->lnum, c->leb_size, 486 0, 0, 0, 0); 487 if (err) 488 return err; 489 } 490 err = ubifs_leb_unmap(c, lp->lnum); 491 if (err) 492 return err; 493 494 if (c->gc_lnum == -1) { 495 c->gc_lnum = lnum; 496 return LEB_RETAINED; 497 } 498 499 return LEB_FREED; 500 } 501 502 /* 503 * We scan the entire LEB even though we only really need to scan up to 504 * (c->leb_size - lp->free). 505 */ 506 sleb = ubifs_scan(c, lnum, 0, c->sbuf, 0); 507 if (IS_ERR(sleb)) 508 return PTR_ERR(sleb); 509 510 ubifs_assert(!list_empty(&sleb->nodes)); 511 snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list); 512 513 if (snod->type == UBIFS_IDX_NODE) { 514 struct ubifs_gced_idx_leb *idx_gc; 515 516 dbg_gc("indexing LEB %d (free %d, dirty %d)", 517 lnum, lp->free, lp->dirty); 518 list_for_each_entry(snod, &sleb->nodes, list) { 519 struct ubifs_idx_node *idx = snod->node; 520 int level = le16_to_cpu(idx->level); 521 522 ubifs_assert(snod->type == UBIFS_IDX_NODE); 523 key_read(c, ubifs_idx_key(c, idx), &snod->key); 524 err = ubifs_dirty_idx_node(c, &snod->key, level, lnum, 525 snod->offs); 526 if (err) 527 goto out; 528 } 529 530 idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS); 531 if (!idx_gc) { 532 err = -ENOMEM; 533 goto out; 534 } 535 536 idx_gc->lnum = lnum; 537 idx_gc->unmap = 0; 538 list_add(&idx_gc->list, &c->idx_gc); 539 540 /* 541 * Don't release the LEB until after the next commit, because 542 * it may contain data which is needed for recovery. So 543 * although we freed this LEB, it will become usable only after 544 * the commit. 545 */ 546 err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 547 LPROPS_INDEX, 1); 548 if (err) 549 goto out; 550 err = LEB_FREED_IDX; 551 } else { 552 dbg_gc("data LEB %d (free %d, dirty %d)", 553 lnum, lp->free, lp->dirty); 554 555 err = move_nodes(c, sleb); 556 if (err) 557 goto out_inc_seq; 558 559 err = gc_sync_wbufs(c); 560 if (err) 561 goto out_inc_seq; 562 563 err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0); 564 if (err) 565 goto out_inc_seq; 566 567 /* Allow for races with TNC */ 568 c->gced_lnum = lnum; 569 smp_wmb(); 570 c->gc_seq += 1; 571 smp_wmb(); 572 573 if (c->gc_lnum == -1) { 574 c->gc_lnum = lnum; 575 err = LEB_RETAINED; 576 } else { 577 err = ubifs_wbuf_sync_nolock(wbuf); 578 if (err) 579 goto out; 580 581 err = ubifs_leb_unmap(c, lnum); 582 if (err) 583 goto out; 584 585 err = LEB_FREED; 586 } 587 } 588 589 out: 590 ubifs_scan_destroy(sleb); 591 return err; 592 593 out_inc_seq: 594 /* We may have moved at least some nodes so allow for races with TNC */ 595 c->gced_lnum = lnum; 596 smp_wmb(); 597 c->gc_seq += 1; 598 smp_wmb(); 599 goto out; 600 } 601 602 /** 603 * ubifs_garbage_collect - UBIFS garbage collector. 604 * @c: UBIFS file-system description object 605 * @anyway: do GC even if there are free LEBs 606 * 607 * This function does out-of-place garbage collection. The return codes are: 608 * o positive LEB number if the LEB has been freed and may be used; 609 * o %-EAGAIN if the caller has to run commit; 610 * o %-ENOSPC if GC failed to make any progress; 611 * o other negative error codes in case of other errors. 612 * 613 * Garbage collector writes data to the journal when GC'ing data LEBs, and just 614 * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point 615 * commit may be required. But commit cannot be run from inside GC, because the 616 * caller might be holding the commit lock, so %-EAGAIN is returned instead; 617 * And this error code means that the caller has to run commit, and re-run GC 618 * if there is still no free space. 619 * 620 * There are many reasons why this function may return %-EAGAIN: 621 * o the log is full and there is no space to write an LEB reference for 622 * @c->gc_lnum; 623 * o the journal is too large and exceeds size limitations; 624 * o GC moved indexing LEBs, but they can be used only after the commit; 625 * o the shrinker fails to find clean znodes to free and requests the commit; 626 * o etc. 627 * 628 * Note, if the file-system is close to be full, this function may return 629 * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of 630 * the function. E.g., this happens if the limits on the journal size are too 631 * tough and GC writes too much to the journal before an LEB is freed. This 632 * might also mean that the journal is too large, and the TNC becomes to big, 633 * so that the shrinker is constantly called, finds not clean znodes to free, 634 * and requests commit. Well, this may also happen if the journal is all right, 635 * but another kernel process consumes too much memory. Anyway, infinite 636 * %-EAGAIN may happen, but in some extreme/misconfiguration cases. 637 */ 638 int ubifs_garbage_collect(struct ubifs_info *c, int anyway) 639 { 640 int i, err, ret, min_space = c->dead_wm; 641 struct ubifs_lprops lp; 642 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; 643 644 ubifs_assert_cmt_locked(c); 645 ubifs_assert(!c->ro_media && !c->ro_mount); 646 647 if (ubifs_gc_should_commit(c)) 648 return -EAGAIN; 649 650 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 651 652 if (c->ro_error) { 653 ret = -EROFS; 654 goto out_unlock; 655 } 656 657 /* We expect the write-buffer to be empty on entry */ 658 ubifs_assert(!wbuf->used); 659 660 for (i = 0; ; i++) { 661 int space_before, space_after; 662 663 cond_resched(); 664 665 /* Give the commit an opportunity to run */ 666 if (ubifs_gc_should_commit(c)) { 667 ret = -EAGAIN; 668 break; 669 } 670 671 if (i > SOFT_LEBS_LIMIT && !list_empty(&c->idx_gc)) { 672 /* 673 * We've done enough iterations. Indexing LEBs were 674 * moved and will be available after the commit. 675 */ 676 dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN"); 677 ubifs_commit_required(c); 678 ret = -EAGAIN; 679 break; 680 } 681 682 if (i > HARD_LEBS_LIMIT) { 683 /* 684 * We've moved too many LEBs and have not made 685 * progress, give up. 686 */ 687 dbg_gc("hard limit, -ENOSPC"); 688 ret = -ENOSPC; 689 break; 690 } 691 692 /* 693 * Empty and freeable LEBs can turn up while we waited for 694 * the wbuf lock, or while we have been running GC. In that 695 * case, we should just return one of those instead of 696 * continuing to GC dirty LEBs. Hence we request 697 * 'ubifs_find_dirty_leb()' to return an empty LEB if it can. 698 */ 699 ret = ubifs_find_dirty_leb(c, &lp, min_space, anyway ? 0 : 1); 700 if (ret) { 701 if (ret == -ENOSPC) 702 dbg_gc("no more dirty LEBs"); 703 break; 704 } 705 706 dbg_gc("found LEB %d: free %d, dirty %d, sum %d (min. space %d)", 707 lp.lnum, lp.free, lp.dirty, lp.free + lp.dirty, 708 min_space); 709 710 space_before = c->leb_size - wbuf->offs - wbuf->used; 711 if (wbuf->lnum == -1) 712 space_before = 0; 713 714 ret = ubifs_garbage_collect_leb(c, &lp); 715 if (ret < 0) { 716 if (ret == -EAGAIN) { 717 /* 718 * This is not error, so we have to return the 719 * LEB to lprops. But if 'ubifs_return_leb()' 720 * fails, its failure code is propagated to the 721 * caller instead of the original '-EAGAIN'. 722 */ 723 err = ubifs_return_leb(c, lp.lnum); 724 if (err) 725 ret = err; 726 break; 727 } 728 goto out; 729 } 730 731 if (ret == LEB_FREED) { 732 /* An LEB has been freed and is ready for use */ 733 dbg_gc("LEB %d freed, return", lp.lnum); 734 ret = lp.lnum; 735 break; 736 } 737 738 if (ret == LEB_FREED_IDX) { 739 /* 740 * This was an indexing LEB and it cannot be 741 * immediately used. And instead of requesting the 742 * commit straight away, we try to garbage collect some 743 * more. 744 */ 745 dbg_gc("indexing LEB %d freed, continue", lp.lnum); 746 continue; 747 } 748 749 ubifs_assert(ret == LEB_RETAINED); 750 space_after = c->leb_size - wbuf->offs - wbuf->used; 751 dbg_gc("LEB %d retained, freed %d bytes", lp.lnum, 752 space_after - space_before); 753 754 if (space_after > space_before) { 755 /* GC makes progress, keep working */ 756 min_space >>= 1; 757 if (min_space < c->dead_wm) 758 min_space = c->dead_wm; 759 continue; 760 } 761 762 dbg_gc("did not make progress"); 763 764 /* 765 * GC moved an LEB bud have not done any progress. This means 766 * that the previous GC head LEB contained too few free space 767 * and the LEB which was GC'ed contained only large nodes which 768 * did not fit that space. 769 * 770 * We can do 2 things: 771 * 1. pick another LEB in a hope it'll contain a small node 772 * which will fit the space we have at the end of current GC 773 * head LEB, but there is no guarantee, so we try this out 774 * unless we have already been working for too long; 775 * 2. request an LEB with more dirty space, which will force 776 * 'ubifs_find_dirty_leb()' to start scanning the lprops 777 * table, instead of just picking one from the heap 778 * (previously it already picked the dirtiest LEB). 779 */ 780 if (i < SOFT_LEBS_LIMIT) { 781 dbg_gc("try again"); 782 continue; 783 } 784 785 min_space <<= 1; 786 if (min_space > c->dark_wm) 787 min_space = c->dark_wm; 788 dbg_gc("set min. space to %d", min_space); 789 } 790 791 if (ret == -ENOSPC && !list_empty(&c->idx_gc)) { 792 dbg_gc("no space, some index LEBs GC'ed, -EAGAIN"); 793 ubifs_commit_required(c); 794 ret = -EAGAIN; 795 } 796 797 err = ubifs_wbuf_sync_nolock(wbuf); 798 if (!err) 799 err = ubifs_leb_unmap(c, c->gc_lnum); 800 if (err) { 801 ret = err; 802 goto out; 803 } 804 out_unlock: 805 mutex_unlock(&wbuf->io_mutex); 806 return ret; 807 808 out: 809 ubifs_assert(ret < 0); 810 ubifs_assert(ret != -ENOSPC && ret != -EAGAIN); 811 ubifs_wbuf_sync_nolock(wbuf); 812 ubifs_ro_mode(c, ret); 813 mutex_unlock(&wbuf->io_mutex); 814 ubifs_return_leb(c, lp.lnum); 815 return ret; 816 } 817 818 /** 819 * ubifs_gc_start_commit - garbage collection at start of commit. 820 * @c: UBIFS file-system description object 821 * 822 * If a LEB has only dirty and free space, then we may safely unmap it and make 823 * it free. Note, we cannot do this with indexing LEBs because dirty space may 824 * correspond index nodes that are required for recovery. In that case, the 825 * LEB cannot be unmapped until after the next commit. 826 * 827 * This function returns %0 upon success and a negative error code upon failure. 828 */ 829 int ubifs_gc_start_commit(struct ubifs_info *c) 830 { 831 struct ubifs_gced_idx_leb *idx_gc; 832 const struct ubifs_lprops *lp; 833 int err = 0, flags; 834 835 ubifs_get_lprops(c); 836 837 /* 838 * Unmap (non-index) freeable LEBs. Note that recovery requires that all 839 * wbufs are sync'd before this, which is done in 'do_commit()'. 840 */ 841 while (1) { 842 lp = ubifs_fast_find_freeable(c); 843 if (IS_ERR(lp)) { 844 err = PTR_ERR(lp); 845 goto out; 846 } 847 if (!lp) 848 break; 849 ubifs_assert(!(lp->flags & LPROPS_TAKEN)); 850 ubifs_assert(!(lp->flags & LPROPS_INDEX)); 851 err = ubifs_leb_unmap(c, lp->lnum); 852 if (err) 853 goto out; 854 lp = ubifs_change_lp(c, lp, c->leb_size, 0, lp->flags, 0); 855 if (IS_ERR(lp)) { 856 err = PTR_ERR(lp); 857 goto out; 858 } 859 ubifs_assert(!(lp->flags & LPROPS_TAKEN)); 860 ubifs_assert(!(lp->flags & LPROPS_INDEX)); 861 } 862 863 /* Mark GC'd index LEBs OK to unmap after this commit finishes */ 864 list_for_each_entry(idx_gc, &c->idx_gc, list) 865 idx_gc->unmap = 1; 866 867 /* Record index freeable LEBs for unmapping after commit */ 868 while (1) { 869 lp = ubifs_fast_find_frdi_idx(c); 870 if (IS_ERR(lp)) { 871 err = PTR_ERR(lp); 872 goto out; 873 } 874 if (!lp) 875 break; 876 idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS); 877 if (!idx_gc) { 878 err = -ENOMEM; 879 goto out; 880 } 881 ubifs_assert(!(lp->flags & LPROPS_TAKEN)); 882 ubifs_assert(lp->flags & LPROPS_INDEX); 883 /* Don't release the LEB until after the next commit */ 884 flags = (lp->flags | LPROPS_TAKEN) ^ LPROPS_INDEX; 885 lp = ubifs_change_lp(c, lp, c->leb_size, 0, flags, 1); 886 if (IS_ERR(lp)) { 887 err = PTR_ERR(lp); 888 kfree(idx_gc); 889 goto out; 890 } 891 ubifs_assert(lp->flags & LPROPS_TAKEN); 892 ubifs_assert(!(lp->flags & LPROPS_INDEX)); 893 idx_gc->lnum = lp->lnum; 894 idx_gc->unmap = 1; 895 list_add(&idx_gc->list, &c->idx_gc); 896 } 897 out: 898 ubifs_release_lprops(c); 899 return err; 900 } 901 902 /** 903 * ubifs_gc_end_commit - garbage collection at end of commit. 904 * @c: UBIFS file-system description object 905 * 906 * This function completes out-of-place garbage collection of index LEBs. 907 */ 908 int ubifs_gc_end_commit(struct ubifs_info *c) 909 { 910 struct ubifs_gced_idx_leb *idx_gc, *tmp; 911 struct ubifs_wbuf *wbuf; 912 int err = 0; 913 914 wbuf = &c->jheads[GCHD].wbuf; 915 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 916 list_for_each_entry_safe(idx_gc, tmp, &c->idx_gc, list) 917 if (idx_gc->unmap) { 918 dbg_gc("LEB %d", idx_gc->lnum); 919 err = ubifs_leb_unmap(c, idx_gc->lnum); 920 if (err) 921 goto out; 922 err = ubifs_change_one_lp(c, idx_gc->lnum, LPROPS_NC, 923 LPROPS_NC, 0, LPROPS_TAKEN, -1); 924 if (err) 925 goto out; 926 list_del(&idx_gc->list); 927 kfree(idx_gc); 928 } 929 out: 930 mutex_unlock(&wbuf->io_mutex); 931 return err; 932 } 933 #endif 934 /** 935 * ubifs_destroy_idx_gc - destroy idx_gc list. 936 * @c: UBIFS file-system description object 937 * 938 * This function destroys the @c->idx_gc list. It is called when unmounting 939 * so locks are not needed. Returns zero in case of success and a negative 940 * error code in case of failure. 941 */ 942 void ubifs_destroy_idx_gc(struct ubifs_info *c) 943 { 944 while (!list_empty(&c->idx_gc)) { 945 struct ubifs_gced_idx_leb *idx_gc; 946 947 idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, 948 list); 949 c->idx_gc_cnt -= 1; 950 list_del(&idx_gc->list); 951 kfree(idx_gc); 952 } 953 } 954 #ifndef __UBOOT__ 955 /** 956 * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list. 957 * @c: UBIFS file-system description object 958 * 959 * Called during start commit so locks are not needed. 960 */ 961 int ubifs_get_idx_gc_leb(struct ubifs_info *c) 962 { 963 struct ubifs_gced_idx_leb *idx_gc; 964 int lnum; 965 966 if (list_empty(&c->idx_gc)) 967 return -ENOSPC; 968 idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, list); 969 lnum = idx_gc->lnum; 970 /* c->idx_gc_cnt is updated by the caller when lprops are updated */ 971 list_del(&idx_gc->list); 972 kfree(idx_gc); 973 return lnum; 974 } 975 #endif 976