1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * SPDX-License-Identifier: GPL-2.0 7 * 8 * Authors: Adrian Hunter 9 * Artem Bityutskiy (Битюцкий Артём) 10 */ 11 12 /* 13 * This file implements garbage collection. The procedure for garbage collection 14 * is different depending on whether a LEB as an index LEB (contains index 15 * nodes) or not. For non-index LEBs, garbage collection finds a LEB which 16 * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete 17 * nodes to the journal, at which point the garbage-collected LEB is free to be 18 * reused. For index LEBs, garbage collection marks the non-obsolete index nodes 19 * dirty in the TNC, and after the next commit, the garbage-collected LEB is 20 * to be reused. Garbage collection will cause the number of dirty index nodes 21 * to grow, however sufficient space is reserved for the index to ensure the 22 * commit will never run out of space. 23 * 24 * Notes about dead watermark. At current UBIFS implementation we assume that 25 * LEBs which have less than @c->dead_wm bytes of free + dirty space are full 26 * and not worth garbage-collecting. The dead watermark is one min. I/O unit 27 * size, or min. UBIFS node size, depending on what is greater. Indeed, UBIFS 28 * Garbage Collector has to synchronize the GC head's write buffer before 29 * returning, so this is about wasting one min. I/O unit. However, UBIFS GC can 30 * actually reclaim even very small pieces of dirty space by garbage collecting 31 * enough dirty LEBs, but we do not bother doing this at this implementation. 32 * 33 * Notes about dark watermark. The results of GC work depends on how big are 34 * the UBIFS nodes GC deals with. Large nodes make GC waste more space. Indeed, 35 * if GC move data from LEB A to LEB B and nodes in LEB A are large, GC would 36 * have to waste large pieces of free space at the end of LEB B, because nodes 37 * from LEB A would not fit. And the worst situation is when all nodes are of 38 * maximum size. So dark watermark is the amount of free + dirty space in LEB 39 * which are guaranteed to be reclaimable. If LEB has less space, the GC might 40 * be unable to reclaim it. So, LEBs with free + dirty greater than dark 41 * watermark are "good" LEBs from GC's point of few. The other LEBs are not so 42 * good, and GC takes extra care when moving them. 43 */ 44 #ifndef __UBOOT__ 45 #include <linux/slab.h> 46 #include <linux/pagemap.h> 47 #include <linux/list_sort.h> 48 #endif 49 #include "ubifs.h" 50 51 #ifndef __UBOOT__ 52 /* 53 * GC may need to move more than one LEB to make progress. The below constants 54 * define "soft" and "hard" limits on the number of LEBs the garbage collector 55 * may move. 56 */ 57 #define SOFT_LEBS_LIMIT 4 58 #define HARD_LEBS_LIMIT 32 59 60 /** 61 * switch_gc_head - switch the garbage collection journal head. 62 * @c: UBIFS file-system description object 63 * @buf: buffer to write 64 * @len: length of the buffer to write 65 * @lnum: LEB number written is returned here 66 * @offs: offset written is returned here 67 * 68 * This function switch the GC head to the next LEB which is reserved in 69 * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required, 70 * and other negative error code in case of failures. 71 */ 72 static int switch_gc_head(struct ubifs_info *c) 73 { 74 int err, gc_lnum = c->gc_lnum; 75 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; 76 77 ubifs_assert(gc_lnum != -1); 78 dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)", 79 wbuf->lnum, wbuf->offs + wbuf->used, gc_lnum, 80 c->leb_size - wbuf->offs - wbuf->used); 81 82 err = ubifs_wbuf_sync_nolock(wbuf); 83 if (err) 84 return err; 85 86 /* 87 * The GC write-buffer was synchronized, we may safely unmap 88 * 'c->gc_lnum'. 89 */ 90 err = ubifs_leb_unmap(c, gc_lnum); 91 if (err) 92 return err; 93 94 err = ubifs_wbuf_sync_nolock(wbuf); 95 if (err) 96 return err; 97 98 err = ubifs_add_bud_to_log(c, GCHD, gc_lnum, 0); 99 if (err) 100 return err; 101 102 c->gc_lnum = -1; 103 err = ubifs_wbuf_seek_nolock(wbuf, gc_lnum, 0); 104 return err; 105 } 106 107 /** 108 * data_nodes_cmp - compare 2 data nodes. 109 * @priv: UBIFS file-system description object 110 * @a: first data node 111 * @a: second data node 112 * 113 * This function compares data nodes @a and @b. Returns %1 if @a has greater 114 * inode or block number, and %-1 otherwise. 115 */ 116 static int data_nodes_cmp(void *priv, struct list_head *a, struct list_head *b) 117 { 118 ino_t inuma, inumb; 119 struct ubifs_info *c = priv; 120 struct ubifs_scan_node *sa, *sb; 121 122 cond_resched(); 123 if (a == b) 124 return 0; 125 126 sa = list_entry(a, struct ubifs_scan_node, list); 127 sb = list_entry(b, struct ubifs_scan_node, list); 128 129 ubifs_assert(key_type(c, &sa->key) == UBIFS_DATA_KEY); 130 ubifs_assert(key_type(c, &sb->key) == UBIFS_DATA_KEY); 131 ubifs_assert(sa->type == UBIFS_DATA_NODE); 132 ubifs_assert(sb->type == UBIFS_DATA_NODE); 133 134 inuma = key_inum(c, &sa->key); 135 inumb = key_inum(c, &sb->key); 136 137 if (inuma == inumb) { 138 unsigned int blka = key_block(c, &sa->key); 139 unsigned int blkb = key_block(c, &sb->key); 140 141 if (blka <= blkb) 142 return -1; 143 } else if (inuma <= inumb) 144 return -1; 145 146 return 1; 147 } 148 149 /* 150 * nondata_nodes_cmp - compare 2 non-data nodes. 151 * @priv: UBIFS file-system description object 152 * @a: first node 153 * @a: second node 154 * 155 * This function compares nodes @a and @b. It makes sure that inode nodes go 156 * first and sorted by length in descending order. Directory entry nodes go 157 * after inode nodes and are sorted in ascending hash valuer order. 158 */ 159 static int nondata_nodes_cmp(void *priv, struct list_head *a, 160 struct list_head *b) 161 { 162 ino_t inuma, inumb; 163 struct ubifs_info *c = priv; 164 struct ubifs_scan_node *sa, *sb; 165 166 cond_resched(); 167 if (a == b) 168 return 0; 169 170 sa = list_entry(a, struct ubifs_scan_node, list); 171 sb = list_entry(b, struct ubifs_scan_node, list); 172 173 ubifs_assert(key_type(c, &sa->key) != UBIFS_DATA_KEY && 174 key_type(c, &sb->key) != UBIFS_DATA_KEY); 175 ubifs_assert(sa->type != UBIFS_DATA_NODE && 176 sb->type != UBIFS_DATA_NODE); 177 178 /* Inodes go before directory entries */ 179 if (sa->type == UBIFS_INO_NODE) { 180 if (sb->type == UBIFS_INO_NODE) 181 return sb->len - sa->len; 182 return -1; 183 } 184 if (sb->type == UBIFS_INO_NODE) 185 return 1; 186 187 ubifs_assert(key_type(c, &sa->key) == UBIFS_DENT_KEY || 188 key_type(c, &sa->key) == UBIFS_XENT_KEY); 189 ubifs_assert(key_type(c, &sb->key) == UBIFS_DENT_KEY || 190 key_type(c, &sb->key) == UBIFS_XENT_KEY); 191 ubifs_assert(sa->type == UBIFS_DENT_NODE || 192 sa->type == UBIFS_XENT_NODE); 193 ubifs_assert(sb->type == UBIFS_DENT_NODE || 194 sb->type == UBIFS_XENT_NODE); 195 196 inuma = key_inum(c, &sa->key); 197 inumb = key_inum(c, &sb->key); 198 199 if (inuma == inumb) { 200 uint32_t hasha = key_hash(c, &sa->key); 201 uint32_t hashb = key_hash(c, &sb->key); 202 203 if (hasha <= hashb) 204 return -1; 205 } else if (inuma <= inumb) 206 return -1; 207 208 return 1; 209 } 210 211 /** 212 * sort_nodes - sort nodes for GC. 213 * @c: UBIFS file-system description object 214 * @sleb: describes nodes to sort and contains the result on exit 215 * @nondata: contains non-data nodes on exit 216 * @min: minimum node size is returned here 217 * 218 * This function sorts the list of inodes to garbage collect. First of all, it 219 * kills obsolete nodes and separates data and non-data nodes to the 220 * @sleb->nodes and @nondata lists correspondingly. 221 * 222 * Data nodes are then sorted in block number order - this is important for 223 * bulk-read; data nodes with lower inode number go before data nodes with 224 * higher inode number, and data nodes with lower block number go before data 225 * nodes with higher block number; 226 * 227 * Non-data nodes are sorted as follows. 228 * o First go inode nodes - they are sorted in descending length order. 229 * o Then go directory entry nodes - they are sorted in hash order, which 230 * should supposedly optimize 'readdir()'. Direntry nodes with lower parent 231 * inode number go before direntry nodes with higher parent inode number, 232 * and direntry nodes with lower name hash values go before direntry nodes 233 * with higher name hash values. 234 * 235 * This function returns zero in case of success and a negative error code in 236 * case of failure. 237 */ 238 static int sort_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb, 239 struct list_head *nondata, int *min) 240 { 241 int err; 242 struct ubifs_scan_node *snod, *tmp; 243 244 *min = INT_MAX; 245 246 /* Separate data nodes and non-data nodes */ 247 list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) { 248 ubifs_assert(snod->type == UBIFS_INO_NODE || 249 snod->type == UBIFS_DATA_NODE || 250 snod->type == UBIFS_DENT_NODE || 251 snod->type == UBIFS_XENT_NODE || 252 snod->type == UBIFS_TRUN_NODE); 253 254 if (snod->type != UBIFS_INO_NODE && 255 snod->type != UBIFS_DATA_NODE && 256 snod->type != UBIFS_DENT_NODE && 257 snod->type != UBIFS_XENT_NODE) { 258 /* Probably truncation node, zap it */ 259 list_del(&snod->list); 260 kfree(snod); 261 continue; 262 } 263 264 ubifs_assert(key_type(c, &snod->key) == UBIFS_DATA_KEY || 265 key_type(c, &snod->key) == UBIFS_INO_KEY || 266 key_type(c, &snod->key) == UBIFS_DENT_KEY || 267 key_type(c, &snod->key) == UBIFS_XENT_KEY); 268 269 err = ubifs_tnc_has_node(c, &snod->key, 0, sleb->lnum, 270 snod->offs, 0); 271 if (err < 0) 272 return err; 273 274 if (!err) { 275 /* The node is obsolete, remove it from the list */ 276 list_del(&snod->list); 277 kfree(snod); 278 continue; 279 } 280 281 if (snod->len < *min) 282 *min = snod->len; 283 284 if (key_type(c, &snod->key) != UBIFS_DATA_KEY) 285 list_move_tail(&snod->list, nondata); 286 } 287 288 /* Sort data and non-data nodes */ 289 list_sort(c, &sleb->nodes, &data_nodes_cmp); 290 list_sort(c, nondata, &nondata_nodes_cmp); 291 292 err = dbg_check_data_nodes_order(c, &sleb->nodes); 293 if (err) 294 return err; 295 err = dbg_check_nondata_nodes_order(c, nondata); 296 if (err) 297 return err; 298 return 0; 299 } 300 301 /** 302 * move_node - move a node. 303 * @c: UBIFS file-system description object 304 * @sleb: describes the LEB to move nodes from 305 * @snod: the mode to move 306 * @wbuf: write-buffer to move node to 307 * 308 * This function moves node @snod to @wbuf, changes TNC correspondingly, and 309 * destroys @snod. Returns zero in case of success and a negative error code in 310 * case of failure. 311 */ 312 static int move_node(struct ubifs_info *c, struct ubifs_scan_leb *sleb, 313 struct ubifs_scan_node *snod, struct ubifs_wbuf *wbuf) 314 { 315 int err, new_lnum = wbuf->lnum, new_offs = wbuf->offs + wbuf->used; 316 317 cond_resched(); 318 err = ubifs_wbuf_write_nolock(wbuf, snod->node, snod->len); 319 if (err) 320 return err; 321 322 err = ubifs_tnc_replace(c, &snod->key, sleb->lnum, 323 snod->offs, new_lnum, new_offs, 324 snod->len); 325 list_del(&snod->list); 326 kfree(snod); 327 return err; 328 } 329 330 /** 331 * move_nodes - move nodes. 332 * @c: UBIFS file-system description object 333 * @sleb: describes the LEB to move nodes from 334 * 335 * This function moves valid nodes from data LEB described by @sleb to the GC 336 * journal head. This function returns zero in case of success, %-EAGAIN if 337 * commit is required, and other negative error codes in case of other 338 * failures. 339 */ 340 static int move_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb) 341 { 342 int err, min; 343 LIST_HEAD(nondata); 344 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; 345 346 if (wbuf->lnum == -1) { 347 /* 348 * The GC journal head is not set, because it is the first GC 349 * invocation since mount. 350 */ 351 err = switch_gc_head(c); 352 if (err) 353 return err; 354 } 355 356 err = sort_nodes(c, sleb, &nondata, &min); 357 if (err) 358 goto out; 359 360 /* Write nodes to their new location. Use the first-fit strategy */ 361 while (1) { 362 int avail; 363 struct ubifs_scan_node *snod, *tmp; 364 365 /* Move data nodes */ 366 list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) { 367 avail = c->leb_size - wbuf->offs - wbuf->used; 368 if (snod->len > avail) 369 /* 370 * Do not skip data nodes in order to optimize 371 * bulk-read. 372 */ 373 break; 374 375 err = move_node(c, sleb, snod, wbuf); 376 if (err) 377 goto out; 378 } 379 380 /* Move non-data nodes */ 381 list_for_each_entry_safe(snod, tmp, &nondata, list) { 382 avail = c->leb_size - wbuf->offs - wbuf->used; 383 if (avail < min) 384 break; 385 386 if (snod->len > avail) { 387 /* 388 * Keep going only if this is an inode with 389 * some data. Otherwise stop and switch the GC 390 * head. IOW, we assume that data-less inode 391 * nodes and direntry nodes are roughly of the 392 * same size. 393 */ 394 if (key_type(c, &snod->key) == UBIFS_DENT_KEY || 395 snod->len == UBIFS_INO_NODE_SZ) 396 break; 397 continue; 398 } 399 400 err = move_node(c, sleb, snod, wbuf); 401 if (err) 402 goto out; 403 } 404 405 if (list_empty(&sleb->nodes) && list_empty(&nondata)) 406 break; 407 408 /* 409 * Waste the rest of the space in the LEB and switch to the 410 * next LEB. 411 */ 412 err = switch_gc_head(c); 413 if (err) 414 goto out; 415 } 416 417 return 0; 418 419 out: 420 list_splice_tail(&nondata, &sleb->nodes); 421 return err; 422 } 423 424 /** 425 * gc_sync_wbufs - sync write-buffers for GC. 426 * @c: UBIFS file-system description object 427 * 428 * We must guarantee that obsoleting nodes are on flash. Unfortunately they may 429 * be in a write-buffer instead. That is, a node could be written to a 430 * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is 431 * erased before the write-buffer is sync'd and then there is an unclean 432 * unmount, then an existing node is lost. To avoid this, we sync all 433 * write-buffers. 434 * 435 * This function returns %0 on success or a negative error code on failure. 436 */ 437 static int gc_sync_wbufs(struct ubifs_info *c) 438 { 439 int err, i; 440 441 for (i = 0; i < c->jhead_cnt; i++) { 442 if (i == GCHD) 443 continue; 444 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 445 if (err) 446 return err; 447 } 448 return 0; 449 } 450 451 /** 452 * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock. 453 * @c: UBIFS file-system description object 454 * @lp: describes the LEB to garbage collect 455 * 456 * This function garbage-collects an LEB and returns one of the @LEB_FREED, 457 * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is 458 * required, and other negative error codes in case of failures. 459 */ 460 int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp) 461 { 462 struct ubifs_scan_leb *sleb; 463 struct ubifs_scan_node *snod; 464 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; 465 int err = 0, lnum = lp->lnum; 466 467 ubifs_assert(c->gc_lnum != -1 || wbuf->offs + wbuf->used == 0 || 468 c->need_recovery); 469 ubifs_assert(c->gc_lnum != lnum); 470 ubifs_assert(wbuf->lnum != lnum); 471 472 if (lp->free + lp->dirty == c->leb_size) { 473 /* Special case - a free LEB */ 474 dbg_gc("LEB %d is free, return it", lp->lnum); 475 ubifs_assert(!(lp->flags & LPROPS_INDEX)); 476 477 if (lp->free != c->leb_size) { 478 /* 479 * Write buffers must be sync'd before unmapping 480 * freeable LEBs, because one of them may contain data 481 * which obsoletes something in 'lp->pnum'. 482 */ 483 err = gc_sync_wbufs(c); 484 if (err) 485 return err; 486 err = ubifs_change_one_lp(c, lp->lnum, c->leb_size, 487 0, 0, 0, 0); 488 if (err) 489 return err; 490 } 491 err = ubifs_leb_unmap(c, lp->lnum); 492 if (err) 493 return err; 494 495 if (c->gc_lnum == -1) { 496 c->gc_lnum = lnum; 497 return LEB_RETAINED; 498 } 499 500 return LEB_FREED; 501 } 502 503 /* 504 * We scan the entire LEB even though we only really need to scan up to 505 * (c->leb_size - lp->free). 506 */ 507 sleb = ubifs_scan(c, lnum, 0, c->sbuf, 0); 508 if (IS_ERR(sleb)) 509 return PTR_ERR(sleb); 510 511 ubifs_assert(!list_empty(&sleb->nodes)); 512 snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list); 513 514 if (snod->type == UBIFS_IDX_NODE) { 515 struct ubifs_gced_idx_leb *idx_gc; 516 517 dbg_gc("indexing LEB %d (free %d, dirty %d)", 518 lnum, lp->free, lp->dirty); 519 list_for_each_entry(snod, &sleb->nodes, list) { 520 struct ubifs_idx_node *idx = snod->node; 521 int level = le16_to_cpu(idx->level); 522 523 ubifs_assert(snod->type == UBIFS_IDX_NODE); 524 key_read(c, ubifs_idx_key(c, idx), &snod->key); 525 err = ubifs_dirty_idx_node(c, &snod->key, level, lnum, 526 snod->offs); 527 if (err) 528 goto out; 529 } 530 531 idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS); 532 if (!idx_gc) { 533 err = -ENOMEM; 534 goto out; 535 } 536 537 idx_gc->lnum = lnum; 538 idx_gc->unmap = 0; 539 list_add(&idx_gc->list, &c->idx_gc); 540 541 /* 542 * Don't release the LEB until after the next commit, because 543 * it may contain data which is needed for recovery. So 544 * although we freed this LEB, it will become usable only after 545 * the commit. 546 */ 547 err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 548 LPROPS_INDEX, 1); 549 if (err) 550 goto out; 551 err = LEB_FREED_IDX; 552 } else { 553 dbg_gc("data LEB %d (free %d, dirty %d)", 554 lnum, lp->free, lp->dirty); 555 556 err = move_nodes(c, sleb); 557 if (err) 558 goto out_inc_seq; 559 560 err = gc_sync_wbufs(c); 561 if (err) 562 goto out_inc_seq; 563 564 err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0); 565 if (err) 566 goto out_inc_seq; 567 568 /* Allow for races with TNC */ 569 c->gced_lnum = lnum; 570 smp_wmb(); 571 c->gc_seq += 1; 572 smp_wmb(); 573 574 if (c->gc_lnum == -1) { 575 c->gc_lnum = lnum; 576 err = LEB_RETAINED; 577 } else { 578 err = ubifs_wbuf_sync_nolock(wbuf); 579 if (err) 580 goto out; 581 582 err = ubifs_leb_unmap(c, lnum); 583 if (err) 584 goto out; 585 586 err = LEB_FREED; 587 } 588 } 589 590 out: 591 ubifs_scan_destroy(sleb); 592 return err; 593 594 out_inc_seq: 595 /* We may have moved at least some nodes so allow for races with TNC */ 596 c->gced_lnum = lnum; 597 smp_wmb(); 598 c->gc_seq += 1; 599 smp_wmb(); 600 goto out; 601 } 602 603 /** 604 * ubifs_garbage_collect - UBIFS garbage collector. 605 * @c: UBIFS file-system description object 606 * @anyway: do GC even if there are free LEBs 607 * 608 * This function does out-of-place garbage collection. The return codes are: 609 * o positive LEB number if the LEB has been freed and may be used; 610 * o %-EAGAIN if the caller has to run commit; 611 * o %-ENOSPC if GC failed to make any progress; 612 * o other negative error codes in case of other errors. 613 * 614 * Garbage collector writes data to the journal when GC'ing data LEBs, and just 615 * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point 616 * commit may be required. But commit cannot be run from inside GC, because the 617 * caller might be holding the commit lock, so %-EAGAIN is returned instead; 618 * And this error code means that the caller has to run commit, and re-run GC 619 * if there is still no free space. 620 * 621 * There are many reasons why this function may return %-EAGAIN: 622 * o the log is full and there is no space to write an LEB reference for 623 * @c->gc_lnum; 624 * o the journal is too large and exceeds size limitations; 625 * o GC moved indexing LEBs, but they can be used only after the commit; 626 * o the shrinker fails to find clean znodes to free and requests the commit; 627 * o etc. 628 * 629 * Note, if the file-system is close to be full, this function may return 630 * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of 631 * the function. E.g., this happens if the limits on the journal size are too 632 * tough and GC writes too much to the journal before an LEB is freed. This 633 * might also mean that the journal is too large, and the TNC becomes to big, 634 * so that the shrinker is constantly called, finds not clean znodes to free, 635 * and requests commit. Well, this may also happen if the journal is all right, 636 * but another kernel process consumes too much memory. Anyway, infinite 637 * %-EAGAIN may happen, but in some extreme/misconfiguration cases. 638 */ 639 int ubifs_garbage_collect(struct ubifs_info *c, int anyway) 640 { 641 int i, err, ret, min_space = c->dead_wm; 642 struct ubifs_lprops lp; 643 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; 644 645 ubifs_assert_cmt_locked(c); 646 ubifs_assert(!c->ro_media && !c->ro_mount); 647 648 if (ubifs_gc_should_commit(c)) 649 return -EAGAIN; 650 651 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 652 653 if (c->ro_error) { 654 ret = -EROFS; 655 goto out_unlock; 656 } 657 658 /* We expect the write-buffer to be empty on entry */ 659 ubifs_assert(!wbuf->used); 660 661 for (i = 0; ; i++) { 662 int space_before, space_after; 663 664 cond_resched(); 665 666 /* Give the commit an opportunity to run */ 667 if (ubifs_gc_should_commit(c)) { 668 ret = -EAGAIN; 669 break; 670 } 671 672 if (i > SOFT_LEBS_LIMIT && !list_empty(&c->idx_gc)) { 673 /* 674 * We've done enough iterations. Indexing LEBs were 675 * moved and will be available after the commit. 676 */ 677 dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN"); 678 ubifs_commit_required(c); 679 ret = -EAGAIN; 680 break; 681 } 682 683 if (i > HARD_LEBS_LIMIT) { 684 /* 685 * We've moved too many LEBs and have not made 686 * progress, give up. 687 */ 688 dbg_gc("hard limit, -ENOSPC"); 689 ret = -ENOSPC; 690 break; 691 } 692 693 /* 694 * Empty and freeable LEBs can turn up while we waited for 695 * the wbuf lock, or while we have been running GC. In that 696 * case, we should just return one of those instead of 697 * continuing to GC dirty LEBs. Hence we request 698 * 'ubifs_find_dirty_leb()' to return an empty LEB if it can. 699 */ 700 ret = ubifs_find_dirty_leb(c, &lp, min_space, anyway ? 0 : 1); 701 if (ret) { 702 if (ret == -ENOSPC) 703 dbg_gc("no more dirty LEBs"); 704 break; 705 } 706 707 dbg_gc("found LEB %d: free %d, dirty %d, sum %d (min. space %d)", 708 lp.lnum, lp.free, lp.dirty, lp.free + lp.dirty, 709 min_space); 710 711 space_before = c->leb_size - wbuf->offs - wbuf->used; 712 if (wbuf->lnum == -1) 713 space_before = 0; 714 715 ret = ubifs_garbage_collect_leb(c, &lp); 716 if (ret < 0) { 717 if (ret == -EAGAIN) { 718 /* 719 * This is not error, so we have to return the 720 * LEB to lprops. But if 'ubifs_return_leb()' 721 * fails, its failure code is propagated to the 722 * caller instead of the original '-EAGAIN'. 723 */ 724 err = ubifs_return_leb(c, lp.lnum); 725 if (err) 726 ret = err; 727 break; 728 } 729 goto out; 730 } 731 732 if (ret == LEB_FREED) { 733 /* An LEB has been freed and is ready for use */ 734 dbg_gc("LEB %d freed, return", lp.lnum); 735 ret = lp.lnum; 736 break; 737 } 738 739 if (ret == LEB_FREED_IDX) { 740 /* 741 * This was an indexing LEB and it cannot be 742 * immediately used. And instead of requesting the 743 * commit straight away, we try to garbage collect some 744 * more. 745 */ 746 dbg_gc("indexing LEB %d freed, continue", lp.lnum); 747 continue; 748 } 749 750 ubifs_assert(ret == LEB_RETAINED); 751 space_after = c->leb_size - wbuf->offs - wbuf->used; 752 dbg_gc("LEB %d retained, freed %d bytes", lp.lnum, 753 space_after - space_before); 754 755 if (space_after > space_before) { 756 /* GC makes progress, keep working */ 757 min_space >>= 1; 758 if (min_space < c->dead_wm) 759 min_space = c->dead_wm; 760 continue; 761 } 762 763 dbg_gc("did not make progress"); 764 765 /* 766 * GC moved an LEB bud have not done any progress. This means 767 * that the previous GC head LEB contained too few free space 768 * and the LEB which was GC'ed contained only large nodes which 769 * did not fit that space. 770 * 771 * We can do 2 things: 772 * 1. pick another LEB in a hope it'll contain a small node 773 * which will fit the space we have at the end of current GC 774 * head LEB, but there is no guarantee, so we try this out 775 * unless we have already been working for too long; 776 * 2. request an LEB with more dirty space, which will force 777 * 'ubifs_find_dirty_leb()' to start scanning the lprops 778 * table, instead of just picking one from the heap 779 * (previously it already picked the dirtiest LEB). 780 */ 781 if (i < SOFT_LEBS_LIMIT) { 782 dbg_gc("try again"); 783 continue; 784 } 785 786 min_space <<= 1; 787 if (min_space > c->dark_wm) 788 min_space = c->dark_wm; 789 dbg_gc("set min. space to %d", min_space); 790 } 791 792 if (ret == -ENOSPC && !list_empty(&c->idx_gc)) { 793 dbg_gc("no space, some index LEBs GC'ed, -EAGAIN"); 794 ubifs_commit_required(c); 795 ret = -EAGAIN; 796 } 797 798 err = ubifs_wbuf_sync_nolock(wbuf); 799 if (!err) 800 err = ubifs_leb_unmap(c, c->gc_lnum); 801 if (err) { 802 ret = err; 803 goto out; 804 } 805 out_unlock: 806 mutex_unlock(&wbuf->io_mutex); 807 return ret; 808 809 out: 810 ubifs_assert(ret < 0); 811 ubifs_assert(ret != -ENOSPC && ret != -EAGAIN); 812 ubifs_wbuf_sync_nolock(wbuf); 813 ubifs_ro_mode(c, ret); 814 mutex_unlock(&wbuf->io_mutex); 815 ubifs_return_leb(c, lp.lnum); 816 return ret; 817 } 818 819 /** 820 * ubifs_gc_start_commit - garbage collection at start of commit. 821 * @c: UBIFS file-system description object 822 * 823 * If a LEB has only dirty and free space, then we may safely unmap it and make 824 * it free. Note, we cannot do this with indexing LEBs because dirty space may 825 * correspond index nodes that are required for recovery. In that case, the 826 * LEB cannot be unmapped until after the next commit. 827 * 828 * This function returns %0 upon success and a negative error code upon failure. 829 */ 830 int ubifs_gc_start_commit(struct ubifs_info *c) 831 { 832 struct ubifs_gced_idx_leb *idx_gc; 833 const struct ubifs_lprops *lp; 834 int err = 0, flags; 835 836 ubifs_get_lprops(c); 837 838 /* 839 * Unmap (non-index) freeable LEBs. Note that recovery requires that all 840 * wbufs are sync'd before this, which is done in 'do_commit()'. 841 */ 842 while (1) { 843 lp = ubifs_fast_find_freeable(c); 844 if (IS_ERR(lp)) { 845 err = PTR_ERR(lp); 846 goto out; 847 } 848 if (!lp) 849 break; 850 ubifs_assert(!(lp->flags & LPROPS_TAKEN)); 851 ubifs_assert(!(lp->flags & LPROPS_INDEX)); 852 err = ubifs_leb_unmap(c, lp->lnum); 853 if (err) 854 goto out; 855 lp = ubifs_change_lp(c, lp, c->leb_size, 0, lp->flags, 0); 856 if (IS_ERR(lp)) { 857 err = PTR_ERR(lp); 858 goto out; 859 } 860 ubifs_assert(!(lp->flags & LPROPS_TAKEN)); 861 ubifs_assert(!(lp->flags & LPROPS_INDEX)); 862 } 863 864 /* Mark GC'd index LEBs OK to unmap after this commit finishes */ 865 list_for_each_entry(idx_gc, &c->idx_gc, list) 866 idx_gc->unmap = 1; 867 868 /* Record index freeable LEBs for unmapping after commit */ 869 while (1) { 870 lp = ubifs_fast_find_frdi_idx(c); 871 if (IS_ERR(lp)) { 872 err = PTR_ERR(lp); 873 goto out; 874 } 875 if (!lp) 876 break; 877 idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS); 878 if (!idx_gc) { 879 err = -ENOMEM; 880 goto out; 881 } 882 ubifs_assert(!(lp->flags & LPROPS_TAKEN)); 883 ubifs_assert(lp->flags & LPROPS_INDEX); 884 /* Don't release the LEB until after the next commit */ 885 flags = (lp->flags | LPROPS_TAKEN) ^ LPROPS_INDEX; 886 lp = ubifs_change_lp(c, lp, c->leb_size, 0, flags, 1); 887 if (IS_ERR(lp)) { 888 err = PTR_ERR(lp); 889 kfree(idx_gc); 890 goto out; 891 } 892 ubifs_assert(lp->flags & LPROPS_TAKEN); 893 ubifs_assert(!(lp->flags & LPROPS_INDEX)); 894 idx_gc->lnum = lp->lnum; 895 idx_gc->unmap = 1; 896 list_add(&idx_gc->list, &c->idx_gc); 897 } 898 out: 899 ubifs_release_lprops(c); 900 return err; 901 } 902 903 /** 904 * ubifs_gc_end_commit - garbage collection at end of commit. 905 * @c: UBIFS file-system description object 906 * 907 * This function completes out-of-place garbage collection of index LEBs. 908 */ 909 int ubifs_gc_end_commit(struct ubifs_info *c) 910 { 911 struct ubifs_gced_idx_leb *idx_gc, *tmp; 912 struct ubifs_wbuf *wbuf; 913 int err = 0; 914 915 wbuf = &c->jheads[GCHD].wbuf; 916 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 917 list_for_each_entry_safe(idx_gc, tmp, &c->idx_gc, list) 918 if (idx_gc->unmap) { 919 dbg_gc("LEB %d", idx_gc->lnum); 920 err = ubifs_leb_unmap(c, idx_gc->lnum); 921 if (err) 922 goto out; 923 err = ubifs_change_one_lp(c, idx_gc->lnum, LPROPS_NC, 924 LPROPS_NC, 0, LPROPS_TAKEN, -1); 925 if (err) 926 goto out; 927 list_del(&idx_gc->list); 928 kfree(idx_gc); 929 } 930 out: 931 mutex_unlock(&wbuf->io_mutex); 932 return err; 933 } 934 #endif 935 /** 936 * ubifs_destroy_idx_gc - destroy idx_gc list. 937 * @c: UBIFS file-system description object 938 * 939 * This function destroys the @c->idx_gc list. It is called when unmounting 940 * so locks are not needed. Returns zero in case of success and a negative 941 * error code in case of failure. 942 */ 943 void ubifs_destroy_idx_gc(struct ubifs_info *c) 944 { 945 while (!list_empty(&c->idx_gc)) { 946 struct ubifs_gced_idx_leb *idx_gc; 947 948 idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, 949 list); 950 c->idx_gc_cnt -= 1; 951 list_del(&idx_gc->list); 952 kfree(idx_gc); 953 } 954 } 955 #ifndef __UBOOT__ 956 /** 957 * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list. 958 * @c: UBIFS file-system description object 959 * 960 * Called during start commit so locks are not needed. 961 */ 962 int ubifs_get_idx_gc_leb(struct ubifs_info *c) 963 { 964 struct ubifs_gced_idx_leb *idx_gc; 965 int lnum; 966 967 if (list_empty(&c->idx_gc)) 968 return -ENOSPC; 969 idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, list); 970 lnum = idx_gc->lnum; 971 /* c->idx_gc_cnt is updated by the caller when lprops are updated */ 972 list_del(&idx_gc->list); 973 kfree(idx_gc); 974 return lnum; 975 } 976 #endif 977