xref: /openbmc/u-boot/fs/ubifs/debug.c (revision baefb63a)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * SPDX-License-Identifier:	GPL-2.0+
7  *
8  * Authors: Artem Bityutskiy (Битюцкий Артём)
9  *          Adrian Hunter
10  */
11 
12 /*
13  * This file implements most of the debugging stuff which is compiled in only
14  * when it is enabled. But some debugging check functions are implemented in
15  * corresponding subsystem, just because they are closely related and utilize
16  * various local functions of those subsystems.
17  */
18 
19 #ifndef __UBOOT__
20 #include <linux/module.h>
21 #include <linux/debugfs.h>
22 #include <linux/math64.h>
23 #include <linux/uaccess.h>
24 #include <linux/random.h>
25 #else
26 #include <linux/compat.h>
27 #include <linux/err.h>
28 #endif
29 #include "ubifs.h"
30 
31 #ifndef __UBOOT__
32 static DEFINE_SPINLOCK(dbg_lock);
33 #endif
34 
35 static const char *get_key_fmt(int fmt)
36 {
37 	switch (fmt) {
38 	case UBIFS_SIMPLE_KEY_FMT:
39 		return "simple";
40 	default:
41 		return "unknown/invalid format";
42 	}
43 }
44 
45 static const char *get_key_hash(int hash)
46 {
47 	switch (hash) {
48 	case UBIFS_KEY_HASH_R5:
49 		return "R5";
50 	case UBIFS_KEY_HASH_TEST:
51 		return "test";
52 	default:
53 		return "unknown/invalid name hash";
54 	}
55 }
56 
57 static const char *get_key_type(int type)
58 {
59 	switch (type) {
60 	case UBIFS_INO_KEY:
61 		return "inode";
62 	case UBIFS_DENT_KEY:
63 		return "direntry";
64 	case UBIFS_XENT_KEY:
65 		return "xentry";
66 	case UBIFS_DATA_KEY:
67 		return "data";
68 	case UBIFS_TRUN_KEY:
69 		return "truncate";
70 	default:
71 		return "unknown/invalid key";
72 	}
73 }
74 
75 #ifndef __UBOOT__
76 static const char *get_dent_type(int type)
77 {
78 	switch (type) {
79 	case UBIFS_ITYPE_REG:
80 		return "file";
81 	case UBIFS_ITYPE_DIR:
82 		return "dir";
83 	case UBIFS_ITYPE_LNK:
84 		return "symlink";
85 	case UBIFS_ITYPE_BLK:
86 		return "blkdev";
87 	case UBIFS_ITYPE_CHR:
88 		return "char dev";
89 	case UBIFS_ITYPE_FIFO:
90 		return "fifo";
91 	case UBIFS_ITYPE_SOCK:
92 		return "socket";
93 	default:
94 		return "unknown/invalid type";
95 	}
96 }
97 #endif
98 
99 const char *dbg_snprintf_key(const struct ubifs_info *c,
100 			     const union ubifs_key *key, char *buffer, int len)
101 {
102 	char *p = buffer;
103 	int type = key_type(c, key);
104 
105 	if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
106 		switch (type) {
107 		case UBIFS_INO_KEY:
108 			len -= snprintf(p, len, "(%lu, %s)",
109 					(unsigned long)key_inum(c, key),
110 					get_key_type(type));
111 			break;
112 		case UBIFS_DENT_KEY:
113 		case UBIFS_XENT_KEY:
114 			len -= snprintf(p, len, "(%lu, %s, %#08x)",
115 					(unsigned long)key_inum(c, key),
116 					get_key_type(type), key_hash(c, key));
117 			break;
118 		case UBIFS_DATA_KEY:
119 			len -= snprintf(p, len, "(%lu, %s, %u)",
120 					(unsigned long)key_inum(c, key),
121 					get_key_type(type), key_block(c, key));
122 			break;
123 		case UBIFS_TRUN_KEY:
124 			len -= snprintf(p, len, "(%lu, %s)",
125 					(unsigned long)key_inum(c, key),
126 					get_key_type(type));
127 			break;
128 		default:
129 			len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
130 					key->u32[0], key->u32[1]);
131 		}
132 	} else
133 		len -= snprintf(p, len, "bad key format %d", c->key_fmt);
134 	ubifs_assert(len > 0);
135 	return p;
136 }
137 
138 const char *dbg_ntype(int type)
139 {
140 	switch (type) {
141 	case UBIFS_PAD_NODE:
142 		return "padding node";
143 	case UBIFS_SB_NODE:
144 		return "superblock node";
145 	case UBIFS_MST_NODE:
146 		return "master node";
147 	case UBIFS_REF_NODE:
148 		return "reference node";
149 	case UBIFS_INO_NODE:
150 		return "inode node";
151 	case UBIFS_DENT_NODE:
152 		return "direntry node";
153 	case UBIFS_XENT_NODE:
154 		return "xentry node";
155 	case UBIFS_DATA_NODE:
156 		return "data node";
157 	case UBIFS_TRUN_NODE:
158 		return "truncate node";
159 	case UBIFS_IDX_NODE:
160 		return "indexing node";
161 	case UBIFS_CS_NODE:
162 		return "commit start node";
163 	case UBIFS_ORPH_NODE:
164 		return "orphan node";
165 	default:
166 		return "unknown node";
167 	}
168 }
169 
170 static const char *dbg_gtype(int type)
171 {
172 	switch (type) {
173 	case UBIFS_NO_NODE_GROUP:
174 		return "no node group";
175 	case UBIFS_IN_NODE_GROUP:
176 		return "in node group";
177 	case UBIFS_LAST_OF_NODE_GROUP:
178 		return "last of node group";
179 	default:
180 		return "unknown";
181 	}
182 }
183 
184 const char *dbg_cstate(int cmt_state)
185 {
186 	switch (cmt_state) {
187 	case COMMIT_RESTING:
188 		return "commit resting";
189 	case COMMIT_BACKGROUND:
190 		return "background commit requested";
191 	case COMMIT_REQUIRED:
192 		return "commit required";
193 	case COMMIT_RUNNING_BACKGROUND:
194 		return "BACKGROUND commit running";
195 	case COMMIT_RUNNING_REQUIRED:
196 		return "commit running and required";
197 	case COMMIT_BROKEN:
198 		return "broken commit";
199 	default:
200 		return "unknown commit state";
201 	}
202 }
203 
204 const char *dbg_jhead(int jhead)
205 {
206 	switch (jhead) {
207 	case GCHD:
208 		return "0 (GC)";
209 	case BASEHD:
210 		return "1 (base)";
211 	case DATAHD:
212 		return "2 (data)";
213 	default:
214 		return "unknown journal head";
215 	}
216 }
217 
218 static void dump_ch(const struct ubifs_ch *ch)
219 {
220 	pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
221 	pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
222 	pr_err("\tnode_type      %d (%s)\n", ch->node_type,
223 	       dbg_ntype(ch->node_type));
224 	pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
225 	       dbg_gtype(ch->group_type));
226 	pr_err("\tsqnum          %llu\n",
227 	       (unsigned long long)le64_to_cpu(ch->sqnum));
228 	pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
229 }
230 
231 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
232 {
233 #ifndef __UBOOT__
234 	const struct ubifs_inode *ui = ubifs_inode(inode);
235 	struct qstr nm = { .name = NULL };
236 	union ubifs_key key;
237 	struct ubifs_dent_node *dent, *pdent = NULL;
238 	int count = 2;
239 
240 	pr_err("Dump in-memory inode:");
241 	pr_err("\tinode          %lu\n", inode->i_ino);
242 	pr_err("\tsize           %llu\n",
243 	       (unsigned long long)i_size_read(inode));
244 	pr_err("\tnlink          %u\n", inode->i_nlink);
245 	pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode));
246 	pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode));
247 	pr_err("\tatime          %u.%u\n",
248 	       (unsigned int)inode->i_atime.tv_sec,
249 	       (unsigned int)inode->i_atime.tv_nsec);
250 	pr_err("\tmtime          %u.%u\n",
251 	       (unsigned int)inode->i_mtime.tv_sec,
252 	       (unsigned int)inode->i_mtime.tv_nsec);
253 	pr_err("\tctime          %u.%u\n",
254 	       (unsigned int)inode->i_ctime.tv_sec,
255 	       (unsigned int)inode->i_ctime.tv_nsec);
256 	pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
257 	pr_err("\txattr_size     %u\n", ui->xattr_size);
258 	pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
259 	pr_err("\txattr_names    %u\n", ui->xattr_names);
260 	pr_err("\tdirty          %u\n", ui->dirty);
261 	pr_err("\txattr          %u\n", ui->xattr);
262 	pr_err("\tbulk_read      %u\n", ui->xattr);
263 	pr_err("\tsynced_i_size  %llu\n",
264 	       (unsigned long long)ui->synced_i_size);
265 	pr_err("\tui_size        %llu\n",
266 	       (unsigned long long)ui->ui_size);
267 	pr_err("\tflags          %d\n", ui->flags);
268 	pr_err("\tcompr_type     %d\n", ui->compr_type);
269 	pr_err("\tlast_page_read %lu\n", ui->last_page_read);
270 	pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
271 	pr_err("\tdata_len       %d\n", ui->data_len);
272 
273 	if (!S_ISDIR(inode->i_mode))
274 		return;
275 
276 	pr_err("List of directory entries:\n");
277 	ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
278 
279 	lowest_dent_key(c, &key, inode->i_ino);
280 	while (1) {
281 		dent = ubifs_tnc_next_ent(c, &key, &nm);
282 		if (IS_ERR(dent)) {
283 			if (PTR_ERR(dent) != -ENOENT)
284 				pr_err("error %ld\n", PTR_ERR(dent));
285 			break;
286 		}
287 
288 		pr_err("\t%d: %s (%s)\n",
289 		       count++, dent->name, get_dent_type(dent->type));
290 
291 		nm.name = dent->name;
292 		nm.len = le16_to_cpu(dent->nlen);
293 		kfree(pdent);
294 		pdent = dent;
295 		key_read(c, &dent->key, &key);
296 	}
297 	kfree(pdent);
298 #endif
299 }
300 
301 void ubifs_dump_node(const struct ubifs_info *c, const void *node)
302 {
303 	int i, n;
304 	union ubifs_key key;
305 	const struct ubifs_ch *ch = node;
306 	char key_buf[DBG_KEY_BUF_LEN];
307 
308 	/* If the magic is incorrect, just hexdump the first bytes */
309 	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
310 		pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
311 		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
312 			       (void *)node, UBIFS_CH_SZ, 1);
313 		return;
314 	}
315 
316 	spin_lock(&dbg_lock);
317 	dump_ch(node);
318 
319 	switch (ch->node_type) {
320 	case UBIFS_PAD_NODE:
321 	{
322 		const struct ubifs_pad_node *pad = node;
323 
324 		pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
325 		break;
326 	}
327 	case UBIFS_SB_NODE:
328 	{
329 		const struct ubifs_sb_node *sup = node;
330 		unsigned int sup_flags = le32_to_cpu(sup->flags);
331 
332 		pr_err("\tkey_hash       %d (%s)\n",
333 		       (int)sup->key_hash, get_key_hash(sup->key_hash));
334 		pr_err("\tkey_fmt        %d (%s)\n",
335 		       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
336 		pr_err("\tflags          %#x\n", sup_flags);
337 		pr_err("\tbig_lpt        %u\n",
338 		       !!(sup_flags & UBIFS_FLG_BIGLPT));
339 		pr_err("\tspace_fixup    %u\n",
340 		       !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
341 		pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
342 		pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
343 		pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
344 		pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
345 		pr_err("\tmax_bud_bytes  %llu\n",
346 		       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
347 		pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
348 		pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
349 		pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
350 		pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
351 		pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
352 		pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
353 		pr_err("\tdefault_compr  %u\n",
354 		       (int)le16_to_cpu(sup->default_compr));
355 		pr_err("\trp_size        %llu\n",
356 		       (unsigned long long)le64_to_cpu(sup->rp_size));
357 		pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
358 		pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
359 		pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
360 		pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
361 		pr_err("\tUUID           %pUB\n", sup->uuid);
362 		break;
363 	}
364 	case UBIFS_MST_NODE:
365 	{
366 		const struct ubifs_mst_node *mst = node;
367 
368 		pr_err("\thighest_inum   %llu\n",
369 		       (unsigned long long)le64_to_cpu(mst->highest_inum));
370 		pr_err("\tcommit number  %llu\n",
371 		       (unsigned long long)le64_to_cpu(mst->cmt_no));
372 		pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
373 		pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
374 		pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
375 		pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
376 		pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
377 		pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
378 		pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
379 		pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
380 		pr_err("\tindex_size     %llu\n",
381 		       (unsigned long long)le64_to_cpu(mst->index_size));
382 		pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
383 		pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
384 		pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
385 		pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
386 		pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
387 		pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
388 		pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
389 		pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
390 		pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
391 		pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
392 		pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
393 		pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
394 		pr_err("\ttotal_free     %llu\n",
395 		       (unsigned long long)le64_to_cpu(mst->total_free));
396 		pr_err("\ttotal_dirty    %llu\n",
397 		       (unsigned long long)le64_to_cpu(mst->total_dirty));
398 		pr_err("\ttotal_used     %llu\n",
399 		       (unsigned long long)le64_to_cpu(mst->total_used));
400 		pr_err("\ttotal_dead     %llu\n",
401 		       (unsigned long long)le64_to_cpu(mst->total_dead));
402 		pr_err("\ttotal_dark     %llu\n",
403 		       (unsigned long long)le64_to_cpu(mst->total_dark));
404 		break;
405 	}
406 	case UBIFS_REF_NODE:
407 	{
408 		const struct ubifs_ref_node *ref = node;
409 
410 		pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
411 		pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
412 		pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
413 		break;
414 	}
415 	case UBIFS_INO_NODE:
416 	{
417 		const struct ubifs_ino_node *ino = node;
418 
419 		key_read(c, &ino->key, &key);
420 		pr_err("\tkey            %s\n",
421 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
422 		pr_err("\tcreat_sqnum    %llu\n",
423 		       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
424 		pr_err("\tsize           %llu\n",
425 		       (unsigned long long)le64_to_cpu(ino->size));
426 		pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
427 		pr_err("\tatime          %lld.%u\n",
428 		       (long long)le64_to_cpu(ino->atime_sec),
429 		       le32_to_cpu(ino->atime_nsec));
430 		pr_err("\tmtime          %lld.%u\n",
431 		       (long long)le64_to_cpu(ino->mtime_sec),
432 		       le32_to_cpu(ino->mtime_nsec));
433 		pr_err("\tctime          %lld.%u\n",
434 		       (long long)le64_to_cpu(ino->ctime_sec),
435 		       le32_to_cpu(ino->ctime_nsec));
436 		pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
437 		pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
438 		pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
439 		pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
440 		pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
441 		pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
442 		pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
443 		pr_err("\tcompr_type     %#x\n",
444 		       (int)le16_to_cpu(ino->compr_type));
445 		pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
446 		break;
447 	}
448 	case UBIFS_DENT_NODE:
449 	case UBIFS_XENT_NODE:
450 	{
451 		const struct ubifs_dent_node *dent = node;
452 		int nlen = le16_to_cpu(dent->nlen);
453 
454 		key_read(c, &dent->key, &key);
455 		pr_err("\tkey            %s\n",
456 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
457 		pr_err("\tinum           %llu\n",
458 		       (unsigned long long)le64_to_cpu(dent->inum));
459 		pr_err("\ttype           %d\n", (int)dent->type);
460 		pr_err("\tnlen           %d\n", nlen);
461 		pr_err("\tname           ");
462 
463 		if (nlen > UBIFS_MAX_NLEN)
464 			pr_err("(bad name length, not printing, bad or corrupted node)");
465 		else {
466 			for (i = 0; i < nlen && dent->name[i]; i++)
467 				pr_cont("%c", dent->name[i]);
468 		}
469 		pr_cont("\n");
470 
471 		break;
472 	}
473 	case UBIFS_DATA_NODE:
474 	{
475 		const struct ubifs_data_node *dn = node;
476 		int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
477 
478 		key_read(c, &dn->key, &key);
479 		pr_err("\tkey            %s\n",
480 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
481 		pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
482 		pr_err("\tcompr_typ      %d\n",
483 		       (int)le16_to_cpu(dn->compr_type));
484 		pr_err("\tdata size      %d\n", dlen);
485 		pr_err("\tdata:\n");
486 		print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
487 			       (void *)&dn->data, dlen, 0);
488 		break;
489 	}
490 	case UBIFS_TRUN_NODE:
491 	{
492 		const struct ubifs_trun_node *trun = node;
493 
494 		pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
495 		pr_err("\told_size       %llu\n",
496 		       (unsigned long long)le64_to_cpu(trun->old_size));
497 		pr_err("\tnew_size       %llu\n",
498 		       (unsigned long long)le64_to_cpu(trun->new_size));
499 		break;
500 	}
501 	case UBIFS_IDX_NODE:
502 	{
503 		const struct ubifs_idx_node *idx = node;
504 
505 		n = le16_to_cpu(idx->child_cnt);
506 		pr_err("\tchild_cnt      %d\n", n);
507 		pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
508 		pr_err("\tBranches:\n");
509 
510 		for (i = 0; i < n && i < c->fanout - 1; i++) {
511 			const struct ubifs_branch *br;
512 
513 			br = ubifs_idx_branch(c, idx, i);
514 			key_read(c, &br->key, &key);
515 			pr_err("\t%d: LEB %d:%d len %d key %s\n",
516 			       i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
517 			       le32_to_cpu(br->len),
518 			       dbg_snprintf_key(c, &key, key_buf,
519 						DBG_KEY_BUF_LEN));
520 		}
521 		break;
522 	}
523 	case UBIFS_CS_NODE:
524 		break;
525 	case UBIFS_ORPH_NODE:
526 	{
527 		const struct ubifs_orph_node *orph = node;
528 
529 		pr_err("\tcommit number  %llu\n",
530 		       (unsigned long long)
531 				le64_to_cpu(orph->cmt_no) & LLONG_MAX);
532 		pr_err("\tlast node flag %llu\n",
533 		       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
534 		n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
535 		pr_err("\t%d orphan inode numbers:\n", n);
536 		for (i = 0; i < n; i++)
537 			pr_err("\t  ino %llu\n",
538 			       (unsigned long long)le64_to_cpu(orph->inos[i]));
539 		break;
540 	}
541 	default:
542 		pr_err("node type %d was not recognized\n",
543 		       (int)ch->node_type);
544 	}
545 	spin_unlock(&dbg_lock);
546 }
547 
548 void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
549 {
550 	spin_lock(&dbg_lock);
551 	pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
552 	       req->new_ino, req->dirtied_ino);
553 	pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
554 	       req->new_ino_d, req->dirtied_ino_d);
555 	pr_err("\tnew_page    %d, dirtied_page %d\n",
556 	       req->new_page, req->dirtied_page);
557 	pr_err("\tnew_dent    %d, mod_dent     %d\n",
558 	       req->new_dent, req->mod_dent);
559 	pr_err("\tidx_growth  %d\n", req->idx_growth);
560 	pr_err("\tdata_growth %d dd_growth     %d\n",
561 	       req->data_growth, req->dd_growth);
562 	spin_unlock(&dbg_lock);
563 }
564 
565 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
566 {
567 	spin_lock(&dbg_lock);
568 	pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
569 	       current->pid, lst->empty_lebs, lst->idx_lebs);
570 	pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
571 	       lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
572 	pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
573 	       lst->total_used, lst->total_dark, lst->total_dead);
574 	spin_unlock(&dbg_lock);
575 }
576 
577 #ifndef __UBOOT__
578 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
579 {
580 	int i;
581 	struct rb_node *rb;
582 	struct ubifs_bud *bud;
583 	struct ubifs_gced_idx_leb *idx_gc;
584 	long long available, outstanding, free;
585 
586 	spin_lock(&c->space_lock);
587 	spin_lock(&dbg_lock);
588 	pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
589 	       current->pid, bi->data_growth + bi->dd_growth,
590 	       bi->data_growth + bi->dd_growth + bi->idx_growth);
591 	pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
592 	       bi->data_growth, bi->dd_growth, bi->idx_growth);
593 	pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
594 	       bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
595 	pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
596 	       bi->page_budget, bi->inode_budget, bi->dent_budget);
597 	pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
598 	pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
599 	       c->dark_wm, c->dead_wm, c->max_idx_node_sz);
600 
601 	if (bi != &c->bi)
602 		/*
603 		 * If we are dumping saved budgeting data, do not print
604 		 * additional information which is about the current state, not
605 		 * the old one which corresponded to the saved budgeting data.
606 		 */
607 		goto out_unlock;
608 
609 	pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
610 	       c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
611 	pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
612 	       atomic_long_read(&c->dirty_pg_cnt),
613 	       atomic_long_read(&c->dirty_zn_cnt),
614 	       atomic_long_read(&c->clean_zn_cnt));
615 	pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
616 
617 	/* If we are in R/O mode, journal heads do not exist */
618 	if (c->jheads)
619 		for (i = 0; i < c->jhead_cnt; i++)
620 			pr_err("\tjhead %s\t LEB %d\n",
621 			       dbg_jhead(c->jheads[i].wbuf.jhead),
622 			       c->jheads[i].wbuf.lnum);
623 	for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
624 		bud = rb_entry(rb, struct ubifs_bud, rb);
625 		pr_err("\tbud LEB %d\n", bud->lnum);
626 	}
627 	list_for_each_entry(bud, &c->old_buds, list)
628 		pr_err("\told bud LEB %d\n", bud->lnum);
629 	list_for_each_entry(idx_gc, &c->idx_gc, list)
630 		pr_err("\tGC'ed idx LEB %d unmap %d\n",
631 		       idx_gc->lnum, idx_gc->unmap);
632 	pr_err("\tcommit state %d\n", c->cmt_state);
633 
634 	/* Print budgeting predictions */
635 	available = ubifs_calc_available(c, c->bi.min_idx_lebs);
636 	outstanding = c->bi.data_growth + c->bi.dd_growth;
637 	free = ubifs_get_free_space_nolock(c);
638 	pr_err("Budgeting predictions:\n");
639 	pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
640 	       available, outstanding, free);
641 out_unlock:
642 	spin_unlock(&dbg_lock);
643 	spin_unlock(&c->space_lock);
644 }
645 #else
646 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
647 {
648 }
649 #endif
650 
651 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
652 {
653 	int i, spc, dark = 0, dead = 0;
654 	struct rb_node *rb;
655 	struct ubifs_bud *bud;
656 
657 	spc = lp->free + lp->dirty;
658 	if (spc < c->dead_wm)
659 		dead = spc;
660 	else
661 		dark = ubifs_calc_dark(c, spc);
662 
663 	if (lp->flags & LPROPS_INDEX)
664 		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
665 		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
666 		       lp->flags);
667 	else
668 		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
669 		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
670 		       dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
671 
672 	if (lp->flags & LPROPS_TAKEN) {
673 		if (lp->flags & LPROPS_INDEX)
674 			pr_cont("index, taken");
675 		else
676 			pr_cont("taken");
677 	} else {
678 		const char *s;
679 
680 		if (lp->flags & LPROPS_INDEX) {
681 			switch (lp->flags & LPROPS_CAT_MASK) {
682 			case LPROPS_DIRTY_IDX:
683 				s = "dirty index";
684 				break;
685 			case LPROPS_FRDI_IDX:
686 				s = "freeable index";
687 				break;
688 			default:
689 				s = "index";
690 			}
691 		} else {
692 			switch (lp->flags & LPROPS_CAT_MASK) {
693 			case LPROPS_UNCAT:
694 				s = "not categorized";
695 				break;
696 			case LPROPS_DIRTY:
697 				s = "dirty";
698 				break;
699 			case LPROPS_FREE:
700 				s = "free";
701 				break;
702 			case LPROPS_EMPTY:
703 				s = "empty";
704 				break;
705 			case LPROPS_FREEABLE:
706 				s = "freeable";
707 				break;
708 			default:
709 				s = NULL;
710 				break;
711 			}
712 		}
713 		pr_cont("%s", s);
714 	}
715 
716 	for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
717 		bud = rb_entry(rb, struct ubifs_bud, rb);
718 		if (bud->lnum == lp->lnum) {
719 			int head = 0;
720 			for (i = 0; i < c->jhead_cnt; i++) {
721 				/*
722 				 * Note, if we are in R/O mode or in the middle
723 				 * of mounting/re-mounting, the write-buffers do
724 				 * not exist.
725 				 */
726 				if (c->jheads &&
727 				    lp->lnum == c->jheads[i].wbuf.lnum) {
728 					pr_cont(", jhead %s", dbg_jhead(i));
729 					head = 1;
730 				}
731 			}
732 			if (!head)
733 				pr_cont(", bud of jhead %s",
734 				       dbg_jhead(bud->jhead));
735 		}
736 	}
737 	if (lp->lnum == c->gc_lnum)
738 		pr_cont(", GC LEB");
739 	pr_cont(")\n");
740 }
741 
742 void ubifs_dump_lprops(struct ubifs_info *c)
743 {
744 	int lnum, err;
745 	struct ubifs_lprops lp;
746 	struct ubifs_lp_stats lst;
747 
748 	pr_err("(pid %d) start dumping LEB properties\n", current->pid);
749 	ubifs_get_lp_stats(c, &lst);
750 	ubifs_dump_lstats(&lst);
751 
752 	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
753 		err = ubifs_read_one_lp(c, lnum, &lp);
754 		if (err) {
755 			ubifs_err(c, "cannot read lprops for LEB %d", lnum);
756 			continue;
757 		}
758 
759 		ubifs_dump_lprop(c, &lp);
760 	}
761 	pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
762 }
763 
764 void ubifs_dump_lpt_info(struct ubifs_info *c)
765 {
766 	int i;
767 
768 	spin_lock(&dbg_lock);
769 	pr_err("(pid %d) dumping LPT information\n", current->pid);
770 	pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
771 	pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
772 	pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
773 	pr_err("\tltab_sz:       %d\n", c->ltab_sz);
774 	pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
775 	pr_err("\tbig_lpt:       %d\n", c->big_lpt);
776 	pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
777 	pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
778 	pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
779 	pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
780 	pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
781 	pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
782 	pr_err("\tspace_bits:    %d\n", c->space_bits);
783 	pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
784 	pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
785 	pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
786 	pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
787 	pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
788 	pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
789 	pr_err("\tLPT head is at %d:%d\n",
790 	       c->nhead_lnum, c->nhead_offs);
791 	pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
792 	if (c->big_lpt)
793 		pr_err("\tLPT lsave is at %d:%d\n",
794 		       c->lsave_lnum, c->lsave_offs);
795 	for (i = 0; i < c->lpt_lebs; i++)
796 		pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
797 		       i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
798 		       c->ltab[i].tgc, c->ltab[i].cmt);
799 	spin_unlock(&dbg_lock);
800 }
801 
802 void ubifs_dump_sleb(const struct ubifs_info *c,
803 		     const struct ubifs_scan_leb *sleb, int offs)
804 {
805 	struct ubifs_scan_node *snod;
806 
807 	pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
808 	       current->pid, sleb->lnum, offs);
809 
810 	list_for_each_entry(snod, &sleb->nodes, list) {
811 		cond_resched();
812 		pr_err("Dumping node at LEB %d:%d len %d\n",
813 		       sleb->lnum, snod->offs, snod->len);
814 		ubifs_dump_node(c, snod->node);
815 	}
816 }
817 
818 void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
819 {
820 	struct ubifs_scan_leb *sleb;
821 	struct ubifs_scan_node *snod;
822 	void *buf;
823 
824 	pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
825 
826 	buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
827 	if (!buf) {
828 		ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
829 		return;
830 	}
831 
832 	sleb = ubifs_scan(c, lnum, 0, buf, 0);
833 	if (IS_ERR(sleb)) {
834 		ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
835 		goto out;
836 	}
837 
838 	pr_err("LEB %d has %d nodes ending at %d\n", lnum,
839 	       sleb->nodes_cnt, sleb->endpt);
840 
841 	list_for_each_entry(snod, &sleb->nodes, list) {
842 		cond_resched();
843 		pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
844 		       snod->offs, snod->len);
845 		ubifs_dump_node(c, snod->node);
846 	}
847 
848 	pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
849 	ubifs_scan_destroy(sleb);
850 
851 out:
852 	vfree(buf);
853 	return;
854 }
855 
856 void ubifs_dump_znode(const struct ubifs_info *c,
857 		      const struct ubifs_znode *znode)
858 {
859 	int n;
860 	const struct ubifs_zbranch *zbr;
861 	char key_buf[DBG_KEY_BUF_LEN];
862 
863 	spin_lock(&dbg_lock);
864 	if (znode->parent)
865 		zbr = &znode->parent->zbranch[znode->iip];
866 	else
867 		zbr = &c->zroot;
868 
869 	pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
870 	       znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
871 	       znode->level, znode->child_cnt, znode->flags);
872 
873 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
874 		spin_unlock(&dbg_lock);
875 		return;
876 	}
877 
878 	pr_err("zbranches:\n");
879 	for (n = 0; n < znode->child_cnt; n++) {
880 		zbr = &znode->zbranch[n];
881 		if (znode->level > 0)
882 			pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
883 			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
884 			       dbg_snprintf_key(c, &zbr->key, key_buf,
885 						DBG_KEY_BUF_LEN));
886 		else
887 			pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
888 			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
889 			       dbg_snprintf_key(c, &zbr->key, key_buf,
890 						DBG_KEY_BUF_LEN));
891 	}
892 	spin_unlock(&dbg_lock);
893 }
894 
895 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
896 {
897 	int i;
898 
899 	pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
900 	       current->pid, cat, heap->cnt);
901 	for (i = 0; i < heap->cnt; i++) {
902 		struct ubifs_lprops *lprops = heap->arr[i];
903 
904 		pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
905 		       i, lprops->lnum, lprops->hpos, lprops->free,
906 		       lprops->dirty, lprops->flags);
907 	}
908 	pr_err("(pid %d) finish dumping heap\n", current->pid);
909 }
910 
911 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
912 		      struct ubifs_nnode *parent, int iip)
913 {
914 	int i;
915 
916 	pr_err("(pid %d) dumping pnode:\n", current->pid);
917 	pr_err("\taddress %zx parent %zx cnext %zx\n",
918 	       (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
919 	pr_err("\tflags %lu iip %d level %d num %d\n",
920 	       pnode->flags, iip, pnode->level, pnode->num);
921 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
922 		struct ubifs_lprops *lp = &pnode->lprops[i];
923 
924 		pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
925 		       i, lp->free, lp->dirty, lp->flags, lp->lnum);
926 	}
927 }
928 
929 void ubifs_dump_tnc(struct ubifs_info *c)
930 {
931 	struct ubifs_znode *znode;
932 	int level;
933 
934 	pr_err("\n");
935 	pr_err("(pid %d) start dumping TNC tree\n", current->pid);
936 	znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
937 	level = znode->level;
938 	pr_err("== Level %d ==\n", level);
939 	while (znode) {
940 		if (level != znode->level) {
941 			level = znode->level;
942 			pr_err("== Level %d ==\n", level);
943 		}
944 		ubifs_dump_znode(c, znode);
945 		znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
946 	}
947 	pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
948 }
949 
950 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
951 		      void *priv)
952 {
953 	ubifs_dump_znode(c, znode);
954 	return 0;
955 }
956 
957 /**
958  * ubifs_dump_index - dump the on-flash index.
959  * @c: UBIFS file-system description object
960  *
961  * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
962  * which dumps only in-memory znodes and does not read znodes which from flash.
963  */
964 void ubifs_dump_index(struct ubifs_info *c)
965 {
966 	dbg_walk_index(c, NULL, dump_znode, NULL);
967 }
968 
969 #ifndef __UBOOT__
970 /**
971  * dbg_save_space_info - save information about flash space.
972  * @c: UBIFS file-system description object
973  *
974  * This function saves information about UBIFS free space, dirty space, etc, in
975  * order to check it later.
976  */
977 void dbg_save_space_info(struct ubifs_info *c)
978 {
979 	struct ubifs_debug_info *d = c->dbg;
980 	int freeable_cnt;
981 
982 	spin_lock(&c->space_lock);
983 	memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
984 	memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
985 	d->saved_idx_gc_cnt = c->idx_gc_cnt;
986 
987 	/*
988 	 * We use a dirty hack here and zero out @c->freeable_cnt, because it
989 	 * affects the free space calculations, and UBIFS might not know about
990 	 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
991 	 * only when we read their lprops, and we do this only lazily, upon the
992 	 * need. So at any given point of time @c->freeable_cnt might be not
993 	 * exactly accurate.
994 	 *
995 	 * Just one example about the issue we hit when we did not zero
996 	 * @c->freeable_cnt.
997 	 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
998 	 *    amount of free space in @d->saved_free
999 	 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1000 	 *    information from flash, where we cache LEBs from various
1001 	 *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1002 	 *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1003 	 *    -> 'ubifs_get_pnode()' -> 'update_cats()'
1004 	 *    -> 'ubifs_add_to_cat()').
1005 	 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1006 	 *    becomes %1.
1007 	 * 4. We calculate the amount of free space when the re-mount is
1008 	 *    finished in 'dbg_check_space_info()' and it does not match
1009 	 *    @d->saved_free.
1010 	 */
1011 	freeable_cnt = c->freeable_cnt;
1012 	c->freeable_cnt = 0;
1013 	d->saved_free = ubifs_get_free_space_nolock(c);
1014 	c->freeable_cnt = freeable_cnt;
1015 	spin_unlock(&c->space_lock);
1016 }
1017 
1018 /**
1019  * dbg_check_space_info - check flash space information.
1020  * @c: UBIFS file-system description object
1021  *
1022  * This function compares current flash space information with the information
1023  * which was saved when the 'dbg_save_space_info()' function was called.
1024  * Returns zero if the information has not changed, and %-EINVAL it it has
1025  * changed.
1026  */
1027 int dbg_check_space_info(struct ubifs_info *c)
1028 {
1029 	struct ubifs_debug_info *d = c->dbg;
1030 	struct ubifs_lp_stats lst;
1031 	long long free;
1032 	int freeable_cnt;
1033 
1034 	spin_lock(&c->space_lock);
1035 	freeable_cnt = c->freeable_cnt;
1036 	c->freeable_cnt = 0;
1037 	free = ubifs_get_free_space_nolock(c);
1038 	c->freeable_cnt = freeable_cnt;
1039 	spin_unlock(&c->space_lock);
1040 
1041 	if (free != d->saved_free) {
1042 		ubifs_err(c, "free space changed from %lld to %lld",
1043 			  d->saved_free, free);
1044 		goto out;
1045 	}
1046 
1047 	return 0;
1048 
1049 out:
1050 	ubifs_msg(c, "saved lprops statistics dump");
1051 	ubifs_dump_lstats(&d->saved_lst);
1052 	ubifs_msg(c, "saved budgeting info dump");
1053 	ubifs_dump_budg(c, &d->saved_bi);
1054 	ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1055 	ubifs_msg(c, "current lprops statistics dump");
1056 	ubifs_get_lp_stats(c, &lst);
1057 	ubifs_dump_lstats(&lst);
1058 	ubifs_msg(c, "current budgeting info dump");
1059 	ubifs_dump_budg(c, &c->bi);
1060 	dump_stack();
1061 	return -EINVAL;
1062 }
1063 
1064 /**
1065  * dbg_check_synced_i_size - check synchronized inode size.
1066  * @c: UBIFS file-system description object
1067  * @inode: inode to check
1068  *
1069  * If inode is clean, synchronized inode size has to be equivalent to current
1070  * inode size. This function has to be called only for locked inodes (@i_mutex
1071  * has to be locked). Returns %0 if synchronized inode size if correct, and
1072  * %-EINVAL if not.
1073  */
1074 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1075 {
1076 	int err = 0;
1077 	struct ubifs_inode *ui = ubifs_inode(inode);
1078 
1079 	if (!dbg_is_chk_gen(c))
1080 		return 0;
1081 	if (!S_ISREG(inode->i_mode))
1082 		return 0;
1083 
1084 	mutex_lock(&ui->ui_mutex);
1085 	spin_lock(&ui->ui_lock);
1086 	if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1087 		ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1088 			  ui->ui_size, ui->synced_i_size);
1089 		ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1090 			  inode->i_mode, i_size_read(inode));
1091 		dump_stack();
1092 		err = -EINVAL;
1093 	}
1094 	spin_unlock(&ui->ui_lock);
1095 	mutex_unlock(&ui->ui_mutex);
1096 	return err;
1097 }
1098 
1099 /*
1100  * dbg_check_dir - check directory inode size and link count.
1101  * @c: UBIFS file-system description object
1102  * @dir: the directory to calculate size for
1103  * @size: the result is returned here
1104  *
1105  * This function makes sure that directory size and link count are correct.
1106  * Returns zero in case of success and a negative error code in case of
1107  * failure.
1108  *
1109  * Note, it is good idea to make sure the @dir->i_mutex is locked before
1110  * calling this function.
1111  */
1112 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1113 {
1114 	unsigned int nlink = 2;
1115 	union ubifs_key key;
1116 	struct ubifs_dent_node *dent, *pdent = NULL;
1117 	struct qstr nm = { .name = NULL };
1118 	loff_t size = UBIFS_INO_NODE_SZ;
1119 
1120 	if (!dbg_is_chk_gen(c))
1121 		return 0;
1122 
1123 	if (!S_ISDIR(dir->i_mode))
1124 		return 0;
1125 
1126 	lowest_dent_key(c, &key, dir->i_ino);
1127 	while (1) {
1128 		int err;
1129 
1130 		dent = ubifs_tnc_next_ent(c, &key, &nm);
1131 		if (IS_ERR(dent)) {
1132 			err = PTR_ERR(dent);
1133 			if (err == -ENOENT)
1134 				break;
1135 			return err;
1136 		}
1137 
1138 		nm.name = dent->name;
1139 		nm.len = le16_to_cpu(dent->nlen);
1140 		size += CALC_DENT_SIZE(nm.len);
1141 		if (dent->type == UBIFS_ITYPE_DIR)
1142 			nlink += 1;
1143 		kfree(pdent);
1144 		pdent = dent;
1145 		key_read(c, &dent->key, &key);
1146 	}
1147 	kfree(pdent);
1148 
1149 	if (i_size_read(dir) != size) {
1150 		ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1151 			  dir->i_ino, (unsigned long long)i_size_read(dir),
1152 			  (unsigned long long)size);
1153 		ubifs_dump_inode(c, dir);
1154 		dump_stack();
1155 		return -EINVAL;
1156 	}
1157 	if (dir->i_nlink != nlink) {
1158 		ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1159 			  dir->i_ino, dir->i_nlink, nlink);
1160 		ubifs_dump_inode(c, dir);
1161 		dump_stack();
1162 		return -EINVAL;
1163 	}
1164 
1165 	return 0;
1166 }
1167 
1168 /**
1169  * dbg_check_key_order - make sure that colliding keys are properly ordered.
1170  * @c: UBIFS file-system description object
1171  * @zbr1: first zbranch
1172  * @zbr2: following zbranch
1173  *
1174  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1175  * names of the direntries/xentries which are referred by the keys. This
1176  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1177  * sure the name of direntry/xentry referred by @zbr1 is less than
1178  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1179  * and a negative error code in case of failure.
1180  */
1181 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1182 			       struct ubifs_zbranch *zbr2)
1183 {
1184 	int err, nlen1, nlen2, cmp;
1185 	struct ubifs_dent_node *dent1, *dent2;
1186 	union ubifs_key key;
1187 	char key_buf[DBG_KEY_BUF_LEN];
1188 
1189 	ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1190 	dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1191 	if (!dent1)
1192 		return -ENOMEM;
1193 	dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1194 	if (!dent2) {
1195 		err = -ENOMEM;
1196 		goto out_free;
1197 	}
1198 
1199 	err = ubifs_tnc_read_node(c, zbr1, dent1);
1200 	if (err)
1201 		goto out_free;
1202 	err = ubifs_validate_entry(c, dent1);
1203 	if (err)
1204 		goto out_free;
1205 
1206 	err = ubifs_tnc_read_node(c, zbr2, dent2);
1207 	if (err)
1208 		goto out_free;
1209 	err = ubifs_validate_entry(c, dent2);
1210 	if (err)
1211 		goto out_free;
1212 
1213 	/* Make sure node keys are the same as in zbranch */
1214 	err = 1;
1215 	key_read(c, &dent1->key, &key);
1216 	if (keys_cmp(c, &zbr1->key, &key)) {
1217 		ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1218 			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1219 						       DBG_KEY_BUF_LEN));
1220 		ubifs_err(c, "but it should have key %s according to tnc",
1221 			  dbg_snprintf_key(c, &zbr1->key, key_buf,
1222 					   DBG_KEY_BUF_LEN));
1223 		ubifs_dump_node(c, dent1);
1224 		goto out_free;
1225 	}
1226 
1227 	key_read(c, &dent2->key, &key);
1228 	if (keys_cmp(c, &zbr2->key, &key)) {
1229 		ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1230 			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1231 						       DBG_KEY_BUF_LEN));
1232 		ubifs_err(c, "but it should have key %s according to tnc",
1233 			  dbg_snprintf_key(c, &zbr2->key, key_buf,
1234 					   DBG_KEY_BUF_LEN));
1235 		ubifs_dump_node(c, dent2);
1236 		goto out_free;
1237 	}
1238 
1239 	nlen1 = le16_to_cpu(dent1->nlen);
1240 	nlen2 = le16_to_cpu(dent2->nlen);
1241 
1242 	cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1243 	if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1244 		err = 0;
1245 		goto out_free;
1246 	}
1247 	if (cmp == 0 && nlen1 == nlen2)
1248 		ubifs_err(c, "2 xent/dent nodes with the same name");
1249 	else
1250 		ubifs_err(c, "bad order of colliding key %s",
1251 			  dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1252 
1253 	ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1254 	ubifs_dump_node(c, dent1);
1255 	ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1256 	ubifs_dump_node(c, dent2);
1257 
1258 out_free:
1259 	kfree(dent2);
1260 	kfree(dent1);
1261 	return err;
1262 }
1263 
1264 /**
1265  * dbg_check_znode - check if znode is all right.
1266  * @c: UBIFS file-system description object
1267  * @zbr: zbranch which points to this znode
1268  *
1269  * This function makes sure that znode referred to by @zbr is all right.
1270  * Returns zero if it is, and %-EINVAL if it is not.
1271  */
1272 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1273 {
1274 	struct ubifs_znode *znode = zbr->znode;
1275 	struct ubifs_znode *zp = znode->parent;
1276 	int n, err, cmp;
1277 
1278 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1279 		err = 1;
1280 		goto out;
1281 	}
1282 	if (znode->level < 0) {
1283 		err = 2;
1284 		goto out;
1285 	}
1286 	if (znode->iip < 0 || znode->iip >= c->fanout) {
1287 		err = 3;
1288 		goto out;
1289 	}
1290 
1291 	if (zbr->len == 0)
1292 		/* Only dirty zbranch may have no on-flash nodes */
1293 		if (!ubifs_zn_dirty(znode)) {
1294 			err = 4;
1295 			goto out;
1296 		}
1297 
1298 	if (ubifs_zn_dirty(znode)) {
1299 		/*
1300 		 * If znode is dirty, its parent has to be dirty as well. The
1301 		 * order of the operation is important, so we have to have
1302 		 * memory barriers.
1303 		 */
1304 		smp_mb();
1305 		if (zp && !ubifs_zn_dirty(zp)) {
1306 			/*
1307 			 * The dirty flag is atomic and is cleared outside the
1308 			 * TNC mutex, so znode's dirty flag may now have
1309 			 * been cleared. The child is always cleared before the
1310 			 * parent, so we just need to check again.
1311 			 */
1312 			smp_mb();
1313 			if (ubifs_zn_dirty(znode)) {
1314 				err = 5;
1315 				goto out;
1316 			}
1317 		}
1318 	}
1319 
1320 	if (zp) {
1321 		const union ubifs_key *min, *max;
1322 
1323 		if (znode->level != zp->level - 1) {
1324 			err = 6;
1325 			goto out;
1326 		}
1327 
1328 		/* Make sure the 'parent' pointer in our znode is correct */
1329 		err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1330 		if (!err) {
1331 			/* This zbranch does not exist in the parent */
1332 			err = 7;
1333 			goto out;
1334 		}
1335 
1336 		if (znode->iip >= zp->child_cnt) {
1337 			err = 8;
1338 			goto out;
1339 		}
1340 
1341 		if (znode->iip != n) {
1342 			/* This may happen only in case of collisions */
1343 			if (keys_cmp(c, &zp->zbranch[n].key,
1344 				     &zp->zbranch[znode->iip].key)) {
1345 				err = 9;
1346 				goto out;
1347 			}
1348 			n = znode->iip;
1349 		}
1350 
1351 		/*
1352 		 * Make sure that the first key in our znode is greater than or
1353 		 * equal to the key in the pointing zbranch.
1354 		 */
1355 		min = &zbr->key;
1356 		cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1357 		if (cmp == 1) {
1358 			err = 10;
1359 			goto out;
1360 		}
1361 
1362 		if (n + 1 < zp->child_cnt) {
1363 			max = &zp->zbranch[n + 1].key;
1364 
1365 			/*
1366 			 * Make sure the last key in our znode is less or
1367 			 * equivalent than the key in the zbranch which goes
1368 			 * after our pointing zbranch.
1369 			 */
1370 			cmp = keys_cmp(c, max,
1371 				&znode->zbranch[znode->child_cnt - 1].key);
1372 			if (cmp == -1) {
1373 				err = 11;
1374 				goto out;
1375 			}
1376 		}
1377 	} else {
1378 		/* This may only be root znode */
1379 		if (zbr != &c->zroot) {
1380 			err = 12;
1381 			goto out;
1382 		}
1383 	}
1384 
1385 	/*
1386 	 * Make sure that next key is greater or equivalent then the previous
1387 	 * one.
1388 	 */
1389 	for (n = 1; n < znode->child_cnt; n++) {
1390 		cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1391 			       &znode->zbranch[n].key);
1392 		if (cmp > 0) {
1393 			err = 13;
1394 			goto out;
1395 		}
1396 		if (cmp == 0) {
1397 			/* This can only be keys with colliding hash */
1398 			if (!is_hash_key(c, &znode->zbranch[n].key)) {
1399 				err = 14;
1400 				goto out;
1401 			}
1402 
1403 			if (znode->level != 0 || c->replaying)
1404 				continue;
1405 
1406 			/*
1407 			 * Colliding keys should follow binary order of
1408 			 * corresponding xentry/dentry names.
1409 			 */
1410 			err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1411 						  &znode->zbranch[n]);
1412 			if (err < 0)
1413 				return err;
1414 			if (err) {
1415 				err = 15;
1416 				goto out;
1417 			}
1418 		}
1419 	}
1420 
1421 	for (n = 0; n < znode->child_cnt; n++) {
1422 		if (!znode->zbranch[n].znode &&
1423 		    (znode->zbranch[n].lnum == 0 ||
1424 		     znode->zbranch[n].len == 0)) {
1425 			err = 16;
1426 			goto out;
1427 		}
1428 
1429 		if (znode->zbranch[n].lnum != 0 &&
1430 		    znode->zbranch[n].len == 0) {
1431 			err = 17;
1432 			goto out;
1433 		}
1434 
1435 		if (znode->zbranch[n].lnum == 0 &&
1436 		    znode->zbranch[n].len != 0) {
1437 			err = 18;
1438 			goto out;
1439 		}
1440 
1441 		if (znode->zbranch[n].lnum == 0 &&
1442 		    znode->zbranch[n].offs != 0) {
1443 			err = 19;
1444 			goto out;
1445 		}
1446 
1447 		if (znode->level != 0 && znode->zbranch[n].znode)
1448 			if (znode->zbranch[n].znode->parent != znode) {
1449 				err = 20;
1450 				goto out;
1451 			}
1452 	}
1453 
1454 	return 0;
1455 
1456 out:
1457 	ubifs_err(c, "failed, error %d", err);
1458 	ubifs_msg(c, "dump of the znode");
1459 	ubifs_dump_znode(c, znode);
1460 	if (zp) {
1461 		ubifs_msg(c, "dump of the parent znode");
1462 		ubifs_dump_znode(c, zp);
1463 	}
1464 	dump_stack();
1465 	return -EINVAL;
1466 }
1467 #else
1468 
1469 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1470 {
1471 	return 0;
1472 }
1473 
1474 void dbg_debugfs_exit_fs(struct ubifs_info *c)
1475 {
1476 	return;
1477 }
1478 
1479 int ubifs_debugging_init(struct ubifs_info *c)
1480 {
1481 	return 0;
1482 }
1483 void ubifs_debugging_exit(struct ubifs_info *c)
1484 {
1485 }
1486 int dbg_check_filesystem(struct ubifs_info *c)
1487 {
1488 	return 0;
1489 }
1490 int dbg_debugfs_init_fs(struct ubifs_info *c)
1491 {
1492 	return 0;
1493 }
1494 #endif
1495 
1496 #ifndef __UBOOT__
1497 /**
1498  * dbg_check_tnc - check TNC tree.
1499  * @c: UBIFS file-system description object
1500  * @extra: do extra checks that are possible at start commit
1501  *
1502  * This function traverses whole TNC tree and checks every znode. Returns zero
1503  * if everything is all right and %-EINVAL if something is wrong with TNC.
1504  */
1505 int dbg_check_tnc(struct ubifs_info *c, int extra)
1506 {
1507 	struct ubifs_znode *znode;
1508 	long clean_cnt = 0, dirty_cnt = 0;
1509 	int err, last;
1510 
1511 	if (!dbg_is_chk_index(c))
1512 		return 0;
1513 
1514 	ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1515 	if (!c->zroot.znode)
1516 		return 0;
1517 
1518 	znode = ubifs_tnc_postorder_first(c->zroot.znode);
1519 	while (1) {
1520 		struct ubifs_znode *prev;
1521 		struct ubifs_zbranch *zbr;
1522 
1523 		if (!znode->parent)
1524 			zbr = &c->zroot;
1525 		else
1526 			zbr = &znode->parent->zbranch[znode->iip];
1527 
1528 		err = dbg_check_znode(c, zbr);
1529 		if (err)
1530 			return err;
1531 
1532 		if (extra) {
1533 			if (ubifs_zn_dirty(znode))
1534 				dirty_cnt += 1;
1535 			else
1536 				clean_cnt += 1;
1537 		}
1538 
1539 		prev = znode;
1540 		znode = ubifs_tnc_postorder_next(znode);
1541 		if (!znode)
1542 			break;
1543 
1544 		/*
1545 		 * If the last key of this znode is equivalent to the first key
1546 		 * of the next znode (collision), then check order of the keys.
1547 		 */
1548 		last = prev->child_cnt - 1;
1549 		if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1550 		    !keys_cmp(c, &prev->zbranch[last].key,
1551 			      &znode->zbranch[0].key)) {
1552 			err = dbg_check_key_order(c, &prev->zbranch[last],
1553 						  &znode->zbranch[0]);
1554 			if (err < 0)
1555 				return err;
1556 			if (err) {
1557 				ubifs_msg(c, "first znode");
1558 				ubifs_dump_znode(c, prev);
1559 				ubifs_msg(c, "second znode");
1560 				ubifs_dump_znode(c, znode);
1561 				return -EINVAL;
1562 			}
1563 		}
1564 	}
1565 
1566 	if (extra) {
1567 		if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1568 			ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1569 				  atomic_long_read(&c->clean_zn_cnt),
1570 				  clean_cnt);
1571 			return -EINVAL;
1572 		}
1573 		if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1574 			ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1575 				  atomic_long_read(&c->dirty_zn_cnt),
1576 				  dirty_cnt);
1577 			return -EINVAL;
1578 		}
1579 	}
1580 
1581 	return 0;
1582 }
1583 #else
1584 int dbg_check_tnc(struct ubifs_info *c, int extra)
1585 {
1586 	return 0;
1587 }
1588 #endif
1589 
1590 /**
1591  * dbg_walk_index - walk the on-flash index.
1592  * @c: UBIFS file-system description object
1593  * @leaf_cb: called for each leaf node
1594  * @znode_cb: called for each indexing node
1595  * @priv: private data which is passed to callbacks
1596  *
1597  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1598  * node and @znode_cb for each indexing node. Returns zero in case of success
1599  * and a negative error code in case of failure.
1600  *
1601  * It would be better if this function removed every znode it pulled to into
1602  * the TNC, so that the behavior more closely matched the non-debugging
1603  * behavior.
1604  */
1605 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1606 		   dbg_znode_callback znode_cb, void *priv)
1607 {
1608 	int err;
1609 	struct ubifs_zbranch *zbr;
1610 	struct ubifs_znode *znode, *child;
1611 
1612 	mutex_lock(&c->tnc_mutex);
1613 	/* If the root indexing node is not in TNC - pull it */
1614 	if (!c->zroot.znode) {
1615 		c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1616 		if (IS_ERR(c->zroot.znode)) {
1617 			err = PTR_ERR(c->zroot.znode);
1618 			c->zroot.znode = NULL;
1619 			goto out_unlock;
1620 		}
1621 	}
1622 
1623 	/*
1624 	 * We are going to traverse the indexing tree in the postorder manner.
1625 	 * Go down and find the leftmost indexing node where we are going to
1626 	 * start from.
1627 	 */
1628 	znode = c->zroot.znode;
1629 	while (znode->level > 0) {
1630 		zbr = &znode->zbranch[0];
1631 		child = zbr->znode;
1632 		if (!child) {
1633 			child = ubifs_load_znode(c, zbr, znode, 0);
1634 			if (IS_ERR(child)) {
1635 				err = PTR_ERR(child);
1636 				goto out_unlock;
1637 			}
1638 			zbr->znode = child;
1639 		}
1640 
1641 		znode = child;
1642 	}
1643 
1644 	/* Iterate over all indexing nodes */
1645 	while (1) {
1646 		int idx;
1647 
1648 		cond_resched();
1649 
1650 		if (znode_cb) {
1651 			err = znode_cb(c, znode, priv);
1652 			if (err) {
1653 				ubifs_err(c, "znode checking function returned error %d",
1654 					  err);
1655 				ubifs_dump_znode(c, znode);
1656 				goto out_dump;
1657 			}
1658 		}
1659 		if (leaf_cb && znode->level == 0) {
1660 			for (idx = 0; idx < znode->child_cnt; idx++) {
1661 				zbr = &znode->zbranch[idx];
1662 				err = leaf_cb(c, zbr, priv);
1663 				if (err) {
1664 					ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1665 						  err, zbr->lnum, zbr->offs);
1666 					goto out_dump;
1667 				}
1668 			}
1669 		}
1670 
1671 		if (!znode->parent)
1672 			break;
1673 
1674 		idx = znode->iip + 1;
1675 		znode = znode->parent;
1676 		if (idx < znode->child_cnt) {
1677 			/* Switch to the next index in the parent */
1678 			zbr = &znode->zbranch[idx];
1679 			child = zbr->znode;
1680 			if (!child) {
1681 				child = ubifs_load_znode(c, zbr, znode, idx);
1682 				if (IS_ERR(child)) {
1683 					err = PTR_ERR(child);
1684 					goto out_unlock;
1685 				}
1686 				zbr->znode = child;
1687 			}
1688 			znode = child;
1689 		} else
1690 			/*
1691 			 * This is the last child, switch to the parent and
1692 			 * continue.
1693 			 */
1694 			continue;
1695 
1696 		/* Go to the lowest leftmost znode in the new sub-tree */
1697 		while (znode->level > 0) {
1698 			zbr = &znode->zbranch[0];
1699 			child = zbr->znode;
1700 			if (!child) {
1701 				child = ubifs_load_znode(c, zbr, znode, 0);
1702 				if (IS_ERR(child)) {
1703 					err = PTR_ERR(child);
1704 					goto out_unlock;
1705 				}
1706 				zbr->znode = child;
1707 			}
1708 			znode = child;
1709 		}
1710 	}
1711 
1712 	mutex_unlock(&c->tnc_mutex);
1713 	return 0;
1714 
1715 out_dump:
1716 	if (znode->parent)
1717 		zbr = &znode->parent->zbranch[znode->iip];
1718 	else
1719 		zbr = &c->zroot;
1720 	ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1721 	ubifs_dump_znode(c, znode);
1722 out_unlock:
1723 	mutex_unlock(&c->tnc_mutex);
1724 	return err;
1725 }
1726 
1727 /**
1728  * add_size - add znode size to partially calculated index size.
1729  * @c: UBIFS file-system description object
1730  * @znode: znode to add size for
1731  * @priv: partially calculated index size
1732  *
1733  * This is a helper function for 'dbg_check_idx_size()' which is called for
1734  * every indexing node and adds its size to the 'long long' variable pointed to
1735  * by @priv.
1736  */
1737 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1738 {
1739 	long long *idx_size = priv;
1740 	int add;
1741 
1742 	add = ubifs_idx_node_sz(c, znode->child_cnt);
1743 	add = ALIGN(add, 8);
1744 	*idx_size += add;
1745 	return 0;
1746 }
1747 
1748 /**
1749  * dbg_check_idx_size - check index size.
1750  * @c: UBIFS file-system description object
1751  * @idx_size: size to check
1752  *
1753  * This function walks the UBIFS index, calculates its size and checks that the
1754  * size is equivalent to @idx_size. Returns zero in case of success and a
1755  * negative error code in case of failure.
1756  */
1757 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1758 {
1759 	int err;
1760 	long long calc = 0;
1761 
1762 	if (!dbg_is_chk_index(c))
1763 		return 0;
1764 
1765 	err = dbg_walk_index(c, NULL, add_size, &calc);
1766 	if (err) {
1767 		ubifs_err(c, "error %d while walking the index", err);
1768 		return err;
1769 	}
1770 
1771 	if (calc != idx_size) {
1772 		ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1773 			  calc, idx_size);
1774 		dump_stack();
1775 		return -EINVAL;
1776 	}
1777 
1778 	return 0;
1779 }
1780 
1781 #ifndef __UBOOT__
1782 /**
1783  * struct fsck_inode - information about an inode used when checking the file-system.
1784  * @rb: link in the RB-tree of inodes
1785  * @inum: inode number
1786  * @mode: inode type, permissions, etc
1787  * @nlink: inode link count
1788  * @xattr_cnt: count of extended attributes
1789  * @references: how many directory/xattr entries refer this inode (calculated
1790  *              while walking the index)
1791  * @calc_cnt: for directory inode count of child directories
1792  * @size: inode size (read from on-flash inode)
1793  * @xattr_sz: summary size of all extended attributes (read from on-flash
1794  *            inode)
1795  * @calc_sz: for directories calculated directory size
1796  * @calc_xcnt: count of extended attributes
1797  * @calc_xsz: calculated summary size of all extended attributes
1798  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1799  *             inode (read from on-flash inode)
1800  * @calc_xnms: calculated sum of lengths of all extended attribute names
1801  */
1802 struct fsck_inode {
1803 	struct rb_node rb;
1804 	ino_t inum;
1805 	umode_t mode;
1806 	unsigned int nlink;
1807 	unsigned int xattr_cnt;
1808 	int references;
1809 	int calc_cnt;
1810 	long long size;
1811 	unsigned int xattr_sz;
1812 	long long calc_sz;
1813 	long long calc_xcnt;
1814 	long long calc_xsz;
1815 	unsigned int xattr_nms;
1816 	long long calc_xnms;
1817 };
1818 
1819 /**
1820  * struct fsck_data - private FS checking information.
1821  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1822  */
1823 struct fsck_data {
1824 	struct rb_root inodes;
1825 };
1826 
1827 /**
1828  * add_inode - add inode information to RB-tree of inodes.
1829  * @c: UBIFS file-system description object
1830  * @fsckd: FS checking information
1831  * @ino: raw UBIFS inode to add
1832  *
1833  * This is a helper function for 'check_leaf()' which adds information about
1834  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1835  * case of success and a negative error code in case of failure.
1836  */
1837 static struct fsck_inode *add_inode(struct ubifs_info *c,
1838 				    struct fsck_data *fsckd,
1839 				    struct ubifs_ino_node *ino)
1840 {
1841 	struct rb_node **p, *parent = NULL;
1842 	struct fsck_inode *fscki;
1843 	ino_t inum = key_inum_flash(c, &ino->key);
1844 	struct inode *inode;
1845 	struct ubifs_inode *ui;
1846 
1847 	p = &fsckd->inodes.rb_node;
1848 	while (*p) {
1849 		parent = *p;
1850 		fscki = rb_entry(parent, struct fsck_inode, rb);
1851 		if (inum < fscki->inum)
1852 			p = &(*p)->rb_left;
1853 		else if (inum > fscki->inum)
1854 			p = &(*p)->rb_right;
1855 		else
1856 			return fscki;
1857 	}
1858 
1859 	if (inum > c->highest_inum) {
1860 		ubifs_err(c, "too high inode number, max. is %lu",
1861 			  (unsigned long)c->highest_inum);
1862 		return ERR_PTR(-EINVAL);
1863 	}
1864 
1865 	fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1866 	if (!fscki)
1867 		return ERR_PTR(-ENOMEM);
1868 
1869 	inode = ilookup(c->vfs_sb, inum);
1870 
1871 	fscki->inum = inum;
1872 	/*
1873 	 * If the inode is present in the VFS inode cache, use it instead of
1874 	 * the on-flash inode which might be out-of-date. E.g., the size might
1875 	 * be out-of-date. If we do not do this, the following may happen, for
1876 	 * example:
1877 	 *   1. A power cut happens
1878 	 *   2. We mount the file-system R/O, the replay process fixes up the
1879 	 *      inode size in the VFS cache, but on on-flash.
1880 	 *   3. 'check_leaf()' fails because it hits a data node beyond inode
1881 	 *      size.
1882 	 */
1883 	if (!inode) {
1884 		fscki->nlink = le32_to_cpu(ino->nlink);
1885 		fscki->size = le64_to_cpu(ino->size);
1886 		fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1887 		fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1888 		fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1889 		fscki->mode = le32_to_cpu(ino->mode);
1890 	} else {
1891 		ui = ubifs_inode(inode);
1892 		fscki->nlink = inode->i_nlink;
1893 		fscki->size = inode->i_size;
1894 		fscki->xattr_cnt = ui->xattr_cnt;
1895 		fscki->xattr_sz = ui->xattr_size;
1896 		fscki->xattr_nms = ui->xattr_names;
1897 		fscki->mode = inode->i_mode;
1898 		iput(inode);
1899 	}
1900 
1901 	if (S_ISDIR(fscki->mode)) {
1902 		fscki->calc_sz = UBIFS_INO_NODE_SZ;
1903 		fscki->calc_cnt = 2;
1904 	}
1905 
1906 	rb_link_node(&fscki->rb, parent, p);
1907 	rb_insert_color(&fscki->rb, &fsckd->inodes);
1908 
1909 	return fscki;
1910 }
1911 
1912 /**
1913  * search_inode - search inode in the RB-tree of inodes.
1914  * @fsckd: FS checking information
1915  * @inum: inode number to search
1916  *
1917  * This is a helper function for 'check_leaf()' which searches inode @inum in
1918  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1919  * the inode was not found.
1920  */
1921 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1922 {
1923 	struct rb_node *p;
1924 	struct fsck_inode *fscki;
1925 
1926 	p = fsckd->inodes.rb_node;
1927 	while (p) {
1928 		fscki = rb_entry(p, struct fsck_inode, rb);
1929 		if (inum < fscki->inum)
1930 			p = p->rb_left;
1931 		else if (inum > fscki->inum)
1932 			p = p->rb_right;
1933 		else
1934 			return fscki;
1935 	}
1936 	return NULL;
1937 }
1938 
1939 /**
1940  * read_add_inode - read inode node and add it to RB-tree of inodes.
1941  * @c: UBIFS file-system description object
1942  * @fsckd: FS checking information
1943  * @inum: inode number to read
1944  *
1945  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1946  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1947  * information pointer in case of success and a negative error code in case of
1948  * failure.
1949  */
1950 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1951 					 struct fsck_data *fsckd, ino_t inum)
1952 {
1953 	int n, err;
1954 	union ubifs_key key;
1955 	struct ubifs_znode *znode;
1956 	struct ubifs_zbranch *zbr;
1957 	struct ubifs_ino_node *ino;
1958 	struct fsck_inode *fscki;
1959 
1960 	fscki = search_inode(fsckd, inum);
1961 	if (fscki)
1962 		return fscki;
1963 
1964 	ino_key_init(c, &key, inum);
1965 	err = ubifs_lookup_level0(c, &key, &znode, &n);
1966 	if (!err) {
1967 		ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1968 		return ERR_PTR(-ENOENT);
1969 	} else if (err < 0) {
1970 		ubifs_err(c, "error %d while looking up inode %lu",
1971 			  err, (unsigned long)inum);
1972 		return ERR_PTR(err);
1973 	}
1974 
1975 	zbr = &znode->zbranch[n];
1976 	if (zbr->len < UBIFS_INO_NODE_SZ) {
1977 		ubifs_err(c, "bad node %lu node length %d",
1978 			  (unsigned long)inum, zbr->len);
1979 		return ERR_PTR(-EINVAL);
1980 	}
1981 
1982 	ino = kmalloc(zbr->len, GFP_NOFS);
1983 	if (!ino)
1984 		return ERR_PTR(-ENOMEM);
1985 
1986 	err = ubifs_tnc_read_node(c, zbr, ino);
1987 	if (err) {
1988 		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1989 			  zbr->lnum, zbr->offs, err);
1990 		kfree(ino);
1991 		return ERR_PTR(err);
1992 	}
1993 
1994 	fscki = add_inode(c, fsckd, ino);
1995 	kfree(ino);
1996 	if (IS_ERR(fscki)) {
1997 		ubifs_err(c, "error %ld while adding inode %lu node",
1998 			  PTR_ERR(fscki), (unsigned long)inum);
1999 		return fscki;
2000 	}
2001 
2002 	return fscki;
2003 }
2004 
2005 /**
2006  * check_leaf - check leaf node.
2007  * @c: UBIFS file-system description object
2008  * @zbr: zbranch of the leaf node to check
2009  * @priv: FS checking information
2010  *
2011  * This is a helper function for 'dbg_check_filesystem()' which is called for
2012  * every single leaf node while walking the indexing tree. It checks that the
2013  * leaf node referred from the indexing tree exists, has correct CRC, and does
2014  * some other basic validation. This function is also responsible for building
2015  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2016  * calculates reference count, size, etc for each inode in order to later
2017  * compare them to the information stored inside the inodes and detect possible
2018  * inconsistencies. Returns zero in case of success and a negative error code
2019  * in case of failure.
2020  */
2021 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2022 		      void *priv)
2023 {
2024 	ino_t inum;
2025 	void *node;
2026 	struct ubifs_ch *ch;
2027 	int err, type = key_type(c, &zbr->key);
2028 	struct fsck_inode *fscki;
2029 
2030 	if (zbr->len < UBIFS_CH_SZ) {
2031 		ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
2032 			  zbr->len, zbr->lnum, zbr->offs);
2033 		return -EINVAL;
2034 	}
2035 
2036 	node = kmalloc(zbr->len, GFP_NOFS);
2037 	if (!node)
2038 		return -ENOMEM;
2039 
2040 	err = ubifs_tnc_read_node(c, zbr, node);
2041 	if (err) {
2042 		ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
2043 			  zbr->lnum, zbr->offs, err);
2044 		goto out_free;
2045 	}
2046 
2047 	/* If this is an inode node, add it to RB-tree of inodes */
2048 	if (type == UBIFS_INO_KEY) {
2049 		fscki = add_inode(c, priv, node);
2050 		if (IS_ERR(fscki)) {
2051 			err = PTR_ERR(fscki);
2052 			ubifs_err(c, "error %d while adding inode node", err);
2053 			goto out_dump;
2054 		}
2055 		goto out;
2056 	}
2057 
2058 	if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2059 	    type != UBIFS_DATA_KEY) {
2060 		ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2061 			  type, zbr->lnum, zbr->offs);
2062 		err = -EINVAL;
2063 		goto out_free;
2064 	}
2065 
2066 	ch = node;
2067 	if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2068 		ubifs_err(c, "too high sequence number, max. is %llu",
2069 			  c->max_sqnum);
2070 		err = -EINVAL;
2071 		goto out_dump;
2072 	}
2073 
2074 	if (type == UBIFS_DATA_KEY) {
2075 		long long blk_offs;
2076 		struct ubifs_data_node *dn = node;
2077 
2078 		ubifs_assert(zbr->len >= UBIFS_DATA_NODE_SZ);
2079 
2080 		/*
2081 		 * Search the inode node this data node belongs to and insert
2082 		 * it to the RB-tree of inodes.
2083 		 */
2084 		inum = key_inum_flash(c, &dn->key);
2085 		fscki = read_add_inode(c, priv, inum);
2086 		if (IS_ERR(fscki)) {
2087 			err = PTR_ERR(fscki);
2088 			ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2089 				  err, (unsigned long)inum);
2090 			goto out_dump;
2091 		}
2092 
2093 		/* Make sure the data node is within inode size */
2094 		blk_offs = key_block_flash(c, &dn->key);
2095 		blk_offs <<= UBIFS_BLOCK_SHIFT;
2096 		blk_offs += le32_to_cpu(dn->size);
2097 		if (blk_offs > fscki->size) {
2098 			ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2099 				  zbr->lnum, zbr->offs, fscki->size);
2100 			err = -EINVAL;
2101 			goto out_dump;
2102 		}
2103 	} else {
2104 		int nlen;
2105 		struct ubifs_dent_node *dent = node;
2106 		struct fsck_inode *fscki1;
2107 
2108 		ubifs_assert(zbr->len >= UBIFS_DENT_NODE_SZ);
2109 
2110 		err = ubifs_validate_entry(c, dent);
2111 		if (err)
2112 			goto out_dump;
2113 
2114 		/*
2115 		 * Search the inode node this entry refers to and the parent
2116 		 * inode node and insert them to the RB-tree of inodes.
2117 		 */
2118 		inum = le64_to_cpu(dent->inum);
2119 		fscki = read_add_inode(c, priv, inum);
2120 		if (IS_ERR(fscki)) {
2121 			err = PTR_ERR(fscki);
2122 			ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2123 				  err, (unsigned long)inum);
2124 			goto out_dump;
2125 		}
2126 
2127 		/* Count how many direntries or xentries refers this inode */
2128 		fscki->references += 1;
2129 
2130 		inum = key_inum_flash(c, &dent->key);
2131 		fscki1 = read_add_inode(c, priv, inum);
2132 		if (IS_ERR(fscki1)) {
2133 			err = PTR_ERR(fscki1);
2134 			ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2135 				  err, (unsigned long)inum);
2136 			goto out_dump;
2137 		}
2138 
2139 		nlen = le16_to_cpu(dent->nlen);
2140 		if (type == UBIFS_XENT_KEY) {
2141 			fscki1->calc_xcnt += 1;
2142 			fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2143 			fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2144 			fscki1->calc_xnms += nlen;
2145 		} else {
2146 			fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2147 			if (dent->type == UBIFS_ITYPE_DIR)
2148 				fscki1->calc_cnt += 1;
2149 		}
2150 	}
2151 
2152 out:
2153 	kfree(node);
2154 	return 0;
2155 
2156 out_dump:
2157 	ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2158 	ubifs_dump_node(c, node);
2159 out_free:
2160 	kfree(node);
2161 	return err;
2162 }
2163 
2164 /**
2165  * free_inodes - free RB-tree of inodes.
2166  * @fsckd: FS checking information
2167  */
2168 static void free_inodes(struct fsck_data *fsckd)
2169 {
2170 	struct fsck_inode *fscki, *n;
2171 
2172 	rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2173 		kfree(fscki);
2174 }
2175 
2176 /**
2177  * check_inodes - checks all inodes.
2178  * @c: UBIFS file-system description object
2179  * @fsckd: FS checking information
2180  *
2181  * This is a helper function for 'dbg_check_filesystem()' which walks the
2182  * RB-tree of inodes after the index scan has been finished, and checks that
2183  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2184  * %-EINVAL if not, and a negative error code in case of failure.
2185  */
2186 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2187 {
2188 	int n, err;
2189 	union ubifs_key key;
2190 	struct ubifs_znode *znode;
2191 	struct ubifs_zbranch *zbr;
2192 	struct ubifs_ino_node *ino;
2193 	struct fsck_inode *fscki;
2194 	struct rb_node *this = rb_first(&fsckd->inodes);
2195 
2196 	while (this) {
2197 		fscki = rb_entry(this, struct fsck_inode, rb);
2198 		this = rb_next(this);
2199 
2200 		if (S_ISDIR(fscki->mode)) {
2201 			/*
2202 			 * Directories have to have exactly one reference (they
2203 			 * cannot have hardlinks), although root inode is an
2204 			 * exception.
2205 			 */
2206 			if (fscki->inum != UBIFS_ROOT_INO &&
2207 			    fscki->references != 1) {
2208 				ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2209 					  (unsigned long)fscki->inum,
2210 					  fscki->references);
2211 				goto out_dump;
2212 			}
2213 			if (fscki->inum == UBIFS_ROOT_INO &&
2214 			    fscki->references != 0) {
2215 				ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2216 					  (unsigned long)fscki->inum,
2217 					  fscki->references);
2218 				goto out_dump;
2219 			}
2220 			if (fscki->calc_sz != fscki->size) {
2221 				ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2222 					  (unsigned long)fscki->inum,
2223 					  fscki->size, fscki->calc_sz);
2224 				goto out_dump;
2225 			}
2226 			if (fscki->calc_cnt != fscki->nlink) {
2227 				ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2228 					  (unsigned long)fscki->inum,
2229 					  fscki->nlink, fscki->calc_cnt);
2230 				goto out_dump;
2231 			}
2232 		} else {
2233 			if (fscki->references != fscki->nlink) {
2234 				ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2235 					  (unsigned long)fscki->inum,
2236 					  fscki->nlink, fscki->references);
2237 				goto out_dump;
2238 			}
2239 		}
2240 		if (fscki->xattr_sz != fscki->calc_xsz) {
2241 			ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2242 				  (unsigned long)fscki->inum, fscki->xattr_sz,
2243 				  fscki->calc_xsz);
2244 			goto out_dump;
2245 		}
2246 		if (fscki->xattr_cnt != fscki->calc_xcnt) {
2247 			ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2248 				  (unsigned long)fscki->inum,
2249 				  fscki->xattr_cnt, fscki->calc_xcnt);
2250 			goto out_dump;
2251 		}
2252 		if (fscki->xattr_nms != fscki->calc_xnms) {
2253 			ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2254 				  (unsigned long)fscki->inum, fscki->xattr_nms,
2255 				  fscki->calc_xnms);
2256 			goto out_dump;
2257 		}
2258 	}
2259 
2260 	return 0;
2261 
2262 out_dump:
2263 	/* Read the bad inode and dump it */
2264 	ino_key_init(c, &key, fscki->inum);
2265 	err = ubifs_lookup_level0(c, &key, &znode, &n);
2266 	if (!err) {
2267 		ubifs_err(c, "inode %lu not found in index",
2268 			  (unsigned long)fscki->inum);
2269 		return -ENOENT;
2270 	} else if (err < 0) {
2271 		ubifs_err(c, "error %d while looking up inode %lu",
2272 			  err, (unsigned long)fscki->inum);
2273 		return err;
2274 	}
2275 
2276 	zbr = &znode->zbranch[n];
2277 	ino = kmalloc(zbr->len, GFP_NOFS);
2278 	if (!ino)
2279 		return -ENOMEM;
2280 
2281 	err = ubifs_tnc_read_node(c, zbr, ino);
2282 	if (err) {
2283 		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2284 			  zbr->lnum, zbr->offs, err);
2285 		kfree(ino);
2286 		return err;
2287 	}
2288 
2289 	ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2290 		  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2291 	ubifs_dump_node(c, ino);
2292 	kfree(ino);
2293 	return -EINVAL;
2294 }
2295 
2296 /**
2297  * dbg_check_filesystem - check the file-system.
2298  * @c: UBIFS file-system description object
2299  *
2300  * This function checks the file system, namely:
2301  * o makes sure that all leaf nodes exist and their CRCs are correct;
2302  * o makes sure inode nlink, size, xattr size/count are correct (for all
2303  *   inodes).
2304  *
2305  * The function reads whole indexing tree and all nodes, so it is pretty
2306  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2307  * not, and a negative error code in case of failure.
2308  */
2309 int dbg_check_filesystem(struct ubifs_info *c)
2310 {
2311 	int err;
2312 	struct fsck_data fsckd;
2313 
2314 	if (!dbg_is_chk_fs(c))
2315 		return 0;
2316 
2317 	fsckd.inodes = RB_ROOT;
2318 	err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2319 	if (err)
2320 		goto out_free;
2321 
2322 	err = check_inodes(c, &fsckd);
2323 	if (err)
2324 		goto out_free;
2325 
2326 	free_inodes(&fsckd);
2327 	return 0;
2328 
2329 out_free:
2330 	ubifs_err(c, "file-system check failed with error %d", err);
2331 	dump_stack();
2332 	free_inodes(&fsckd);
2333 	return err;
2334 }
2335 
2336 /**
2337  * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2338  * @c: UBIFS file-system description object
2339  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2340  *
2341  * This function returns zero if the list of data nodes is sorted correctly,
2342  * and %-EINVAL if not.
2343  */
2344 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2345 {
2346 	struct list_head *cur;
2347 	struct ubifs_scan_node *sa, *sb;
2348 
2349 	if (!dbg_is_chk_gen(c))
2350 		return 0;
2351 
2352 	for (cur = head->next; cur->next != head; cur = cur->next) {
2353 		ino_t inuma, inumb;
2354 		uint32_t blka, blkb;
2355 
2356 		cond_resched();
2357 		sa = container_of(cur, struct ubifs_scan_node, list);
2358 		sb = container_of(cur->next, struct ubifs_scan_node, list);
2359 
2360 		if (sa->type != UBIFS_DATA_NODE) {
2361 			ubifs_err(c, "bad node type %d", sa->type);
2362 			ubifs_dump_node(c, sa->node);
2363 			return -EINVAL;
2364 		}
2365 		if (sb->type != UBIFS_DATA_NODE) {
2366 			ubifs_err(c, "bad node type %d", sb->type);
2367 			ubifs_dump_node(c, sb->node);
2368 			return -EINVAL;
2369 		}
2370 
2371 		inuma = key_inum(c, &sa->key);
2372 		inumb = key_inum(c, &sb->key);
2373 
2374 		if (inuma < inumb)
2375 			continue;
2376 		if (inuma > inumb) {
2377 			ubifs_err(c, "larger inum %lu goes before inum %lu",
2378 				  (unsigned long)inuma, (unsigned long)inumb);
2379 			goto error_dump;
2380 		}
2381 
2382 		blka = key_block(c, &sa->key);
2383 		blkb = key_block(c, &sb->key);
2384 
2385 		if (blka > blkb) {
2386 			ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2387 			goto error_dump;
2388 		}
2389 		if (blka == blkb) {
2390 			ubifs_err(c, "two data nodes for the same block");
2391 			goto error_dump;
2392 		}
2393 	}
2394 
2395 	return 0;
2396 
2397 error_dump:
2398 	ubifs_dump_node(c, sa->node);
2399 	ubifs_dump_node(c, sb->node);
2400 	return -EINVAL;
2401 }
2402 
2403 /**
2404  * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2405  * @c: UBIFS file-system description object
2406  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2407  *
2408  * This function returns zero if the list of non-data nodes is sorted correctly,
2409  * and %-EINVAL if not.
2410  */
2411 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2412 {
2413 	struct list_head *cur;
2414 	struct ubifs_scan_node *sa, *sb;
2415 
2416 	if (!dbg_is_chk_gen(c))
2417 		return 0;
2418 
2419 	for (cur = head->next; cur->next != head; cur = cur->next) {
2420 		ino_t inuma, inumb;
2421 		uint32_t hasha, hashb;
2422 
2423 		cond_resched();
2424 		sa = container_of(cur, struct ubifs_scan_node, list);
2425 		sb = container_of(cur->next, struct ubifs_scan_node, list);
2426 
2427 		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2428 		    sa->type != UBIFS_XENT_NODE) {
2429 			ubifs_err(c, "bad node type %d", sa->type);
2430 			ubifs_dump_node(c, sa->node);
2431 			return -EINVAL;
2432 		}
2433 		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2434 		    sa->type != UBIFS_XENT_NODE) {
2435 			ubifs_err(c, "bad node type %d", sb->type);
2436 			ubifs_dump_node(c, sb->node);
2437 			return -EINVAL;
2438 		}
2439 
2440 		if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2441 			ubifs_err(c, "non-inode node goes before inode node");
2442 			goto error_dump;
2443 		}
2444 
2445 		if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2446 			continue;
2447 
2448 		if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2449 			/* Inode nodes are sorted in descending size order */
2450 			if (sa->len < sb->len) {
2451 				ubifs_err(c, "smaller inode node goes first");
2452 				goto error_dump;
2453 			}
2454 			continue;
2455 		}
2456 
2457 		/*
2458 		 * This is either a dentry or xentry, which should be sorted in
2459 		 * ascending (parent ino, hash) order.
2460 		 */
2461 		inuma = key_inum(c, &sa->key);
2462 		inumb = key_inum(c, &sb->key);
2463 
2464 		if (inuma < inumb)
2465 			continue;
2466 		if (inuma > inumb) {
2467 			ubifs_err(c, "larger inum %lu goes before inum %lu",
2468 				  (unsigned long)inuma, (unsigned long)inumb);
2469 			goto error_dump;
2470 		}
2471 
2472 		hasha = key_block(c, &sa->key);
2473 		hashb = key_block(c, &sb->key);
2474 
2475 		if (hasha > hashb) {
2476 			ubifs_err(c, "larger hash %u goes before %u",
2477 				  hasha, hashb);
2478 			goto error_dump;
2479 		}
2480 	}
2481 
2482 	return 0;
2483 
2484 error_dump:
2485 	ubifs_msg(c, "dumping first node");
2486 	ubifs_dump_node(c, sa->node);
2487 	ubifs_msg(c, "dumping second node");
2488 	ubifs_dump_node(c, sb->node);
2489 	return -EINVAL;
2490 	return 0;
2491 }
2492 
2493 static inline int chance(unsigned int n, unsigned int out_of)
2494 {
2495 	return !!((prandom_u32() % out_of) + 1 <= n);
2496 
2497 }
2498 
2499 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2500 {
2501 	struct ubifs_debug_info *d = c->dbg;
2502 
2503 	ubifs_assert(dbg_is_tst_rcvry(c));
2504 
2505 	if (!d->pc_cnt) {
2506 		/* First call - decide delay to the power cut */
2507 		if (chance(1, 2)) {
2508 			unsigned long delay;
2509 
2510 			if (chance(1, 2)) {
2511 				d->pc_delay = 1;
2512 				/* Fail within 1 minute */
2513 				delay = prandom_u32() % 60000;
2514 				d->pc_timeout = jiffies;
2515 				d->pc_timeout += msecs_to_jiffies(delay);
2516 				ubifs_warn(c, "failing after %lums", delay);
2517 			} else {
2518 				d->pc_delay = 2;
2519 				delay = prandom_u32() % 10000;
2520 				/* Fail within 10000 operations */
2521 				d->pc_cnt_max = delay;
2522 				ubifs_warn(c, "failing after %lu calls", delay);
2523 			}
2524 		}
2525 
2526 		d->pc_cnt += 1;
2527 	}
2528 
2529 	/* Determine if failure delay has expired */
2530 	if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2531 			return 0;
2532 	if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2533 			return 0;
2534 
2535 	if (lnum == UBIFS_SB_LNUM) {
2536 		if (write && chance(1, 2))
2537 			return 0;
2538 		if (chance(19, 20))
2539 			return 0;
2540 		ubifs_warn(c, "failing in super block LEB %d", lnum);
2541 	} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2542 		if (chance(19, 20))
2543 			return 0;
2544 		ubifs_warn(c, "failing in master LEB %d", lnum);
2545 	} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2546 		if (write && chance(99, 100))
2547 			return 0;
2548 		if (chance(399, 400))
2549 			return 0;
2550 		ubifs_warn(c, "failing in log LEB %d", lnum);
2551 	} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2552 		if (write && chance(7, 8))
2553 			return 0;
2554 		if (chance(19, 20))
2555 			return 0;
2556 		ubifs_warn(c, "failing in LPT LEB %d", lnum);
2557 	} else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2558 		if (write && chance(1, 2))
2559 			return 0;
2560 		if (chance(9, 10))
2561 			return 0;
2562 		ubifs_warn(c, "failing in orphan LEB %d", lnum);
2563 	} else if (lnum == c->ihead_lnum) {
2564 		if (chance(99, 100))
2565 			return 0;
2566 		ubifs_warn(c, "failing in index head LEB %d", lnum);
2567 	} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2568 		if (chance(9, 10))
2569 			return 0;
2570 		ubifs_warn(c, "failing in GC head LEB %d", lnum);
2571 	} else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2572 		   !ubifs_search_bud(c, lnum)) {
2573 		if (chance(19, 20))
2574 			return 0;
2575 		ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2576 	} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2577 		   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2578 		if (chance(999, 1000))
2579 			return 0;
2580 		ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2581 	} else {
2582 		if (chance(9999, 10000))
2583 			return 0;
2584 		ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2585 	}
2586 
2587 	d->pc_happened = 1;
2588 	ubifs_warn(c, "========== Power cut emulated ==========");
2589 	dump_stack();
2590 	return 1;
2591 }
2592 
2593 static int corrupt_data(const struct ubifs_info *c, const void *buf,
2594 			unsigned int len)
2595 {
2596 	unsigned int from, to, ffs = chance(1, 2);
2597 	unsigned char *p = (void *)buf;
2598 
2599 	from = prandom_u32() % len;
2600 	/* Corruption span max to end of write unit */
2601 	to = min(len, ALIGN(from + 1, c->max_write_size));
2602 
2603 	ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2604 		   ffs ? "0xFFs" : "random data");
2605 
2606 	if (ffs)
2607 		memset(p + from, 0xFF, to - from);
2608 	else
2609 		prandom_bytes(p + from, to - from);
2610 
2611 	return to;
2612 }
2613 
2614 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2615 		  int offs, int len)
2616 {
2617 	int err, failing;
2618 
2619 	if (c->dbg->pc_happened)
2620 		return -EROFS;
2621 
2622 	failing = power_cut_emulated(c, lnum, 1);
2623 	if (failing) {
2624 		len = corrupt_data(c, buf, len);
2625 		ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2626 			   len, lnum, offs);
2627 	}
2628 	err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2629 	if (err)
2630 		return err;
2631 	if (failing)
2632 		return -EROFS;
2633 	return 0;
2634 }
2635 
2636 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2637 		   int len)
2638 {
2639 	int err;
2640 
2641 	if (c->dbg->pc_happened)
2642 		return -EROFS;
2643 	if (power_cut_emulated(c, lnum, 1))
2644 		return -EROFS;
2645 	err = ubi_leb_change(c->ubi, lnum, buf, len);
2646 	if (err)
2647 		return err;
2648 	if (power_cut_emulated(c, lnum, 1))
2649 		return -EROFS;
2650 	return 0;
2651 }
2652 
2653 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2654 {
2655 	int err;
2656 
2657 	if (c->dbg->pc_happened)
2658 		return -EROFS;
2659 	if (power_cut_emulated(c, lnum, 0))
2660 		return -EROFS;
2661 	err = ubi_leb_unmap(c->ubi, lnum);
2662 	if (err)
2663 		return err;
2664 	if (power_cut_emulated(c, lnum, 0))
2665 		return -EROFS;
2666 	return 0;
2667 }
2668 
2669 int dbg_leb_map(struct ubifs_info *c, int lnum)
2670 {
2671 	int err;
2672 
2673 	if (c->dbg->pc_happened)
2674 		return -EROFS;
2675 	if (power_cut_emulated(c, lnum, 0))
2676 		return -EROFS;
2677 	err = ubi_leb_map(c->ubi, lnum);
2678 	if (err)
2679 		return err;
2680 	if (power_cut_emulated(c, lnum, 0))
2681 		return -EROFS;
2682 	return 0;
2683 }
2684 
2685 /*
2686  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2687  * contain the stuff specific to particular file-system mounts.
2688  */
2689 static struct dentry *dfs_rootdir;
2690 
2691 static int dfs_file_open(struct inode *inode, struct file *file)
2692 {
2693 	file->private_data = inode->i_private;
2694 	return nonseekable_open(inode, file);
2695 }
2696 
2697 /**
2698  * provide_user_output - provide output to the user reading a debugfs file.
2699  * @val: boolean value for the answer
2700  * @u: the buffer to store the answer at
2701  * @count: size of the buffer
2702  * @ppos: position in the @u output buffer
2703  *
2704  * This is a simple helper function which stores @val boolean value in the user
2705  * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2706  * bytes written to @u in case of success and a negative error code in case of
2707  * failure.
2708  */
2709 static int provide_user_output(int val, char __user *u, size_t count,
2710 			       loff_t *ppos)
2711 {
2712 	char buf[3];
2713 
2714 	if (val)
2715 		buf[0] = '1';
2716 	else
2717 		buf[0] = '0';
2718 	buf[1] = '\n';
2719 	buf[2] = 0x00;
2720 
2721 	return simple_read_from_buffer(u, count, ppos, buf, 2);
2722 }
2723 
2724 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2725 			     loff_t *ppos)
2726 {
2727 	struct dentry *dent = file->f_path.dentry;
2728 	struct ubifs_info *c = file->private_data;
2729 	struct ubifs_debug_info *d = c->dbg;
2730 	int val;
2731 
2732 	if (dent == d->dfs_chk_gen)
2733 		val = d->chk_gen;
2734 	else if (dent == d->dfs_chk_index)
2735 		val = d->chk_index;
2736 	else if (dent == d->dfs_chk_orph)
2737 		val = d->chk_orph;
2738 	else if (dent == d->dfs_chk_lprops)
2739 		val = d->chk_lprops;
2740 	else if (dent == d->dfs_chk_fs)
2741 		val = d->chk_fs;
2742 	else if (dent == d->dfs_tst_rcvry)
2743 		val = d->tst_rcvry;
2744 	else if (dent == d->dfs_ro_error)
2745 		val = c->ro_error;
2746 	else
2747 		return -EINVAL;
2748 
2749 	return provide_user_output(val, u, count, ppos);
2750 }
2751 
2752 /**
2753  * interpret_user_input - interpret user debugfs file input.
2754  * @u: user-provided buffer with the input
2755  * @count: buffer size
2756  *
2757  * This is a helper function which interpret user input to a boolean UBIFS
2758  * debugfs file. Returns %0 or %1 in case of success and a negative error code
2759  * in case of failure.
2760  */
2761 static int interpret_user_input(const char __user *u, size_t count)
2762 {
2763 	size_t buf_size;
2764 	char buf[8];
2765 
2766 	buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2767 	if (copy_from_user(buf, u, buf_size))
2768 		return -EFAULT;
2769 
2770 	if (buf[0] == '1')
2771 		return 1;
2772 	else if (buf[0] == '0')
2773 		return 0;
2774 
2775 	return -EINVAL;
2776 }
2777 
2778 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2779 			      size_t count, loff_t *ppos)
2780 {
2781 	struct ubifs_info *c = file->private_data;
2782 	struct ubifs_debug_info *d = c->dbg;
2783 	struct dentry *dent = file->f_path.dentry;
2784 	int val;
2785 
2786 	/*
2787 	 * TODO: this is racy - the file-system might have already been
2788 	 * unmounted and we'd oops in this case. The plan is to fix it with
2789 	 * help of 'iterate_supers_type()' which we should have in v3.0: when
2790 	 * a debugfs opened, we rember FS's UUID in file->private_data. Then
2791 	 * whenever we access the FS via a debugfs file, we iterate all UBIFS
2792 	 * superblocks and fine the one with the same UUID, and take the
2793 	 * locking right.
2794 	 *
2795 	 * The other way to go suggested by Al Viro is to create a separate
2796 	 * 'ubifs-debug' file-system instead.
2797 	 */
2798 	if (file->f_path.dentry == d->dfs_dump_lprops) {
2799 		ubifs_dump_lprops(c);
2800 		return count;
2801 	}
2802 	if (file->f_path.dentry == d->dfs_dump_budg) {
2803 		ubifs_dump_budg(c, &c->bi);
2804 		return count;
2805 	}
2806 	if (file->f_path.dentry == d->dfs_dump_tnc) {
2807 		mutex_lock(&c->tnc_mutex);
2808 		ubifs_dump_tnc(c);
2809 		mutex_unlock(&c->tnc_mutex);
2810 		return count;
2811 	}
2812 
2813 	val = interpret_user_input(u, count);
2814 	if (val < 0)
2815 		return val;
2816 
2817 	if (dent == d->dfs_chk_gen)
2818 		d->chk_gen = val;
2819 	else if (dent == d->dfs_chk_index)
2820 		d->chk_index = val;
2821 	else if (dent == d->dfs_chk_orph)
2822 		d->chk_orph = val;
2823 	else if (dent == d->dfs_chk_lprops)
2824 		d->chk_lprops = val;
2825 	else if (dent == d->dfs_chk_fs)
2826 		d->chk_fs = val;
2827 	else if (dent == d->dfs_tst_rcvry)
2828 		d->tst_rcvry = val;
2829 	else if (dent == d->dfs_ro_error)
2830 		c->ro_error = !!val;
2831 	else
2832 		return -EINVAL;
2833 
2834 	return count;
2835 }
2836 
2837 static const struct file_operations dfs_fops = {
2838 	.open = dfs_file_open,
2839 	.read = dfs_file_read,
2840 	.write = dfs_file_write,
2841 	.owner = THIS_MODULE,
2842 	.llseek = no_llseek,
2843 };
2844 
2845 /**
2846  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2847  * @c: UBIFS file-system description object
2848  *
2849  * This function creates all debugfs files for this instance of UBIFS. Returns
2850  * zero in case of success and a negative error code in case of failure.
2851  *
2852  * Note, the only reason we have not merged this function with the
2853  * 'ubifs_debugging_init()' function is because it is better to initialize
2854  * debugfs interfaces at the very end of the mount process, and remove them at
2855  * the very beginning of the mount process.
2856  */
2857 int dbg_debugfs_init_fs(struct ubifs_info *c)
2858 {
2859 	int err, n;
2860 	const char *fname;
2861 	struct dentry *dent;
2862 	struct ubifs_debug_info *d = c->dbg;
2863 
2864 	if (!IS_ENABLED(CONFIG_DEBUG_FS))
2865 		return 0;
2866 
2867 	n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2868 		     c->vi.ubi_num, c->vi.vol_id);
2869 	if (n == UBIFS_DFS_DIR_LEN) {
2870 		/* The array size is too small */
2871 		fname = UBIFS_DFS_DIR_NAME;
2872 		dent = ERR_PTR(-EINVAL);
2873 		goto out;
2874 	}
2875 
2876 	fname = d->dfs_dir_name;
2877 	dent = debugfs_create_dir(fname, dfs_rootdir);
2878 	if (IS_ERR_OR_NULL(dent))
2879 		goto out;
2880 	d->dfs_dir = dent;
2881 
2882 	fname = "dump_lprops";
2883 	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2884 	if (IS_ERR_OR_NULL(dent))
2885 		goto out_remove;
2886 	d->dfs_dump_lprops = dent;
2887 
2888 	fname = "dump_budg";
2889 	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2890 	if (IS_ERR_OR_NULL(dent))
2891 		goto out_remove;
2892 	d->dfs_dump_budg = dent;
2893 
2894 	fname = "dump_tnc";
2895 	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2896 	if (IS_ERR_OR_NULL(dent))
2897 		goto out_remove;
2898 	d->dfs_dump_tnc = dent;
2899 
2900 	fname = "chk_general";
2901 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2902 				   &dfs_fops);
2903 	if (IS_ERR_OR_NULL(dent))
2904 		goto out_remove;
2905 	d->dfs_chk_gen = dent;
2906 
2907 	fname = "chk_index";
2908 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2909 				   &dfs_fops);
2910 	if (IS_ERR_OR_NULL(dent))
2911 		goto out_remove;
2912 	d->dfs_chk_index = dent;
2913 
2914 	fname = "chk_orphans";
2915 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2916 				   &dfs_fops);
2917 	if (IS_ERR_OR_NULL(dent))
2918 		goto out_remove;
2919 	d->dfs_chk_orph = dent;
2920 
2921 	fname = "chk_lprops";
2922 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2923 				   &dfs_fops);
2924 	if (IS_ERR_OR_NULL(dent))
2925 		goto out_remove;
2926 	d->dfs_chk_lprops = dent;
2927 
2928 	fname = "chk_fs";
2929 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2930 				   &dfs_fops);
2931 	if (IS_ERR_OR_NULL(dent))
2932 		goto out_remove;
2933 	d->dfs_chk_fs = dent;
2934 
2935 	fname = "tst_recovery";
2936 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2937 				   &dfs_fops);
2938 	if (IS_ERR_OR_NULL(dent))
2939 		goto out_remove;
2940 	d->dfs_tst_rcvry = dent;
2941 
2942 	fname = "ro_error";
2943 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2944 				   &dfs_fops);
2945 	if (IS_ERR_OR_NULL(dent))
2946 		goto out_remove;
2947 	d->dfs_ro_error = dent;
2948 
2949 	return 0;
2950 
2951 out_remove:
2952 	debugfs_remove_recursive(d->dfs_dir);
2953 out:
2954 	err = dent ? PTR_ERR(dent) : -ENODEV;
2955 	ubifs_err(c, "cannot create \"%s\" debugfs file or directory, error %d\n",
2956 		  fname, err);
2957 	return err;
2958 }
2959 
2960 /**
2961  * dbg_debugfs_exit_fs - remove all debugfs files.
2962  * @c: UBIFS file-system description object
2963  */
2964 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2965 {
2966 	if (IS_ENABLED(CONFIG_DEBUG_FS))
2967 		debugfs_remove_recursive(c->dbg->dfs_dir);
2968 }
2969 
2970 struct ubifs_global_debug_info ubifs_dbg;
2971 
2972 static struct dentry *dfs_chk_gen;
2973 static struct dentry *dfs_chk_index;
2974 static struct dentry *dfs_chk_orph;
2975 static struct dentry *dfs_chk_lprops;
2976 static struct dentry *dfs_chk_fs;
2977 static struct dentry *dfs_tst_rcvry;
2978 
2979 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2980 				    size_t count, loff_t *ppos)
2981 {
2982 	struct dentry *dent = file->f_path.dentry;
2983 	int val;
2984 
2985 	if (dent == dfs_chk_gen)
2986 		val = ubifs_dbg.chk_gen;
2987 	else if (dent == dfs_chk_index)
2988 		val = ubifs_dbg.chk_index;
2989 	else if (dent == dfs_chk_orph)
2990 		val = ubifs_dbg.chk_orph;
2991 	else if (dent == dfs_chk_lprops)
2992 		val = ubifs_dbg.chk_lprops;
2993 	else if (dent == dfs_chk_fs)
2994 		val = ubifs_dbg.chk_fs;
2995 	else if (dent == dfs_tst_rcvry)
2996 		val = ubifs_dbg.tst_rcvry;
2997 	else
2998 		return -EINVAL;
2999 
3000 	return provide_user_output(val, u, count, ppos);
3001 }
3002 
3003 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
3004 				     size_t count, loff_t *ppos)
3005 {
3006 	struct dentry *dent = file->f_path.dentry;
3007 	int val;
3008 
3009 	val = interpret_user_input(u, count);
3010 	if (val < 0)
3011 		return val;
3012 
3013 	if (dent == dfs_chk_gen)
3014 		ubifs_dbg.chk_gen = val;
3015 	else if (dent == dfs_chk_index)
3016 		ubifs_dbg.chk_index = val;
3017 	else if (dent == dfs_chk_orph)
3018 		ubifs_dbg.chk_orph = val;
3019 	else if (dent == dfs_chk_lprops)
3020 		ubifs_dbg.chk_lprops = val;
3021 	else if (dent == dfs_chk_fs)
3022 		ubifs_dbg.chk_fs = val;
3023 	else if (dent == dfs_tst_rcvry)
3024 		ubifs_dbg.tst_rcvry = val;
3025 	else
3026 		return -EINVAL;
3027 
3028 	return count;
3029 }
3030 
3031 static const struct file_operations dfs_global_fops = {
3032 	.read = dfs_global_file_read,
3033 	.write = dfs_global_file_write,
3034 	.owner = THIS_MODULE,
3035 	.llseek = no_llseek,
3036 };
3037 
3038 /**
3039  * dbg_debugfs_init - initialize debugfs file-system.
3040  *
3041  * UBIFS uses debugfs file-system to expose various debugging knobs to
3042  * user-space. This function creates "ubifs" directory in the debugfs
3043  * file-system. Returns zero in case of success and a negative error code in
3044  * case of failure.
3045  */
3046 int dbg_debugfs_init(void)
3047 {
3048 	int err;
3049 	const char *fname;
3050 	struct dentry *dent;
3051 
3052 	if (!IS_ENABLED(CONFIG_DEBUG_FS))
3053 		return 0;
3054 
3055 	fname = "ubifs";
3056 	dent = debugfs_create_dir(fname, NULL);
3057 	if (IS_ERR_OR_NULL(dent))
3058 		goto out;
3059 	dfs_rootdir = dent;
3060 
3061 	fname = "chk_general";
3062 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3063 				   &dfs_global_fops);
3064 	if (IS_ERR_OR_NULL(dent))
3065 		goto out_remove;
3066 	dfs_chk_gen = dent;
3067 
3068 	fname = "chk_index";
3069 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3070 				   &dfs_global_fops);
3071 	if (IS_ERR_OR_NULL(dent))
3072 		goto out_remove;
3073 	dfs_chk_index = dent;
3074 
3075 	fname = "chk_orphans";
3076 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3077 				   &dfs_global_fops);
3078 	if (IS_ERR_OR_NULL(dent))
3079 		goto out_remove;
3080 	dfs_chk_orph = dent;
3081 
3082 	fname = "chk_lprops";
3083 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3084 				   &dfs_global_fops);
3085 	if (IS_ERR_OR_NULL(dent))
3086 		goto out_remove;
3087 	dfs_chk_lprops = dent;
3088 
3089 	fname = "chk_fs";
3090 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3091 				   &dfs_global_fops);
3092 	if (IS_ERR_OR_NULL(dent))
3093 		goto out_remove;
3094 	dfs_chk_fs = dent;
3095 
3096 	fname = "tst_recovery";
3097 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3098 				   &dfs_global_fops);
3099 	if (IS_ERR_OR_NULL(dent))
3100 		goto out_remove;
3101 	dfs_tst_rcvry = dent;
3102 
3103 	return 0;
3104 
3105 out_remove:
3106 	debugfs_remove_recursive(dfs_rootdir);
3107 out:
3108 	err = dent ? PTR_ERR(dent) : -ENODEV;
3109 	pr_err("UBIFS error (pid %d): cannot create \"%s\" debugfs file or directory, error %d\n",
3110 	       current->pid, fname, err);
3111 	return err;
3112 }
3113 
3114 /**
3115  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3116  */
3117 void dbg_debugfs_exit(void)
3118 {
3119 	if (IS_ENABLED(CONFIG_DEBUG_FS))
3120 		debugfs_remove_recursive(dfs_rootdir);
3121 }
3122 
3123 /**
3124  * ubifs_debugging_init - initialize UBIFS debugging.
3125  * @c: UBIFS file-system description object
3126  *
3127  * This function initializes debugging-related data for the file system.
3128  * Returns zero in case of success and a negative error code in case of
3129  * failure.
3130  */
3131 int ubifs_debugging_init(struct ubifs_info *c)
3132 {
3133 	c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3134 	if (!c->dbg)
3135 		return -ENOMEM;
3136 
3137 	return 0;
3138 }
3139 
3140 /**
3141  * ubifs_debugging_exit - free debugging data.
3142  * @c: UBIFS file-system description object
3143  */
3144 void ubifs_debugging_exit(struct ubifs_info *c)
3145 {
3146 	kfree(c->dbg);
3147 }
3148 #endif
3149