1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * This file is part of UBIFS. 4 * 5 * Copyright (C) 2006-2008 Nokia Corporation 6 * 7 * Authors: Artem Bityutskiy (Битюцкий Артём) 8 * Adrian Hunter 9 */ 10 11 /* 12 * This file implements most of the debugging stuff which is compiled in only 13 * when it is enabled. But some debugging check functions are implemented in 14 * corresponding subsystem, just because they are closely related and utilize 15 * various local functions of those subsystems. 16 */ 17 18 #include <hexdump.h> 19 20 #ifndef __UBOOT__ 21 #include <linux/module.h> 22 #include <linux/debugfs.h> 23 #include <linux/math64.h> 24 #include <linux/uaccess.h> 25 #include <linux/random.h> 26 #else 27 #include <linux/compat.h> 28 #include <linux/err.h> 29 #endif 30 #include "ubifs.h" 31 32 #ifndef __UBOOT__ 33 static DEFINE_SPINLOCK(dbg_lock); 34 #endif 35 36 static const char *get_key_fmt(int fmt) 37 { 38 switch (fmt) { 39 case UBIFS_SIMPLE_KEY_FMT: 40 return "simple"; 41 default: 42 return "unknown/invalid format"; 43 } 44 } 45 46 static const char *get_key_hash(int hash) 47 { 48 switch (hash) { 49 case UBIFS_KEY_HASH_R5: 50 return "R5"; 51 case UBIFS_KEY_HASH_TEST: 52 return "test"; 53 default: 54 return "unknown/invalid name hash"; 55 } 56 } 57 58 static const char *get_key_type(int type) 59 { 60 switch (type) { 61 case UBIFS_INO_KEY: 62 return "inode"; 63 case UBIFS_DENT_KEY: 64 return "direntry"; 65 case UBIFS_XENT_KEY: 66 return "xentry"; 67 case UBIFS_DATA_KEY: 68 return "data"; 69 case UBIFS_TRUN_KEY: 70 return "truncate"; 71 default: 72 return "unknown/invalid key"; 73 } 74 } 75 76 #ifndef __UBOOT__ 77 static const char *get_dent_type(int type) 78 { 79 switch (type) { 80 case UBIFS_ITYPE_REG: 81 return "file"; 82 case UBIFS_ITYPE_DIR: 83 return "dir"; 84 case UBIFS_ITYPE_LNK: 85 return "symlink"; 86 case UBIFS_ITYPE_BLK: 87 return "blkdev"; 88 case UBIFS_ITYPE_CHR: 89 return "char dev"; 90 case UBIFS_ITYPE_FIFO: 91 return "fifo"; 92 case UBIFS_ITYPE_SOCK: 93 return "socket"; 94 default: 95 return "unknown/invalid type"; 96 } 97 } 98 #endif 99 100 const char *dbg_snprintf_key(const struct ubifs_info *c, 101 const union ubifs_key *key, char *buffer, int len) 102 { 103 char *p = buffer; 104 int type = key_type(c, key); 105 106 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) { 107 switch (type) { 108 case UBIFS_INO_KEY: 109 len -= snprintf(p, len, "(%lu, %s)", 110 (unsigned long)key_inum(c, key), 111 get_key_type(type)); 112 break; 113 case UBIFS_DENT_KEY: 114 case UBIFS_XENT_KEY: 115 len -= snprintf(p, len, "(%lu, %s, %#08x)", 116 (unsigned long)key_inum(c, key), 117 get_key_type(type), key_hash(c, key)); 118 break; 119 case UBIFS_DATA_KEY: 120 len -= snprintf(p, len, "(%lu, %s, %u)", 121 (unsigned long)key_inum(c, key), 122 get_key_type(type), key_block(c, key)); 123 break; 124 case UBIFS_TRUN_KEY: 125 len -= snprintf(p, len, "(%lu, %s)", 126 (unsigned long)key_inum(c, key), 127 get_key_type(type)); 128 break; 129 default: 130 len -= snprintf(p, len, "(bad key type: %#08x, %#08x)", 131 key->u32[0], key->u32[1]); 132 } 133 } else 134 len -= snprintf(p, len, "bad key format %d", c->key_fmt); 135 ubifs_assert(len > 0); 136 return p; 137 } 138 139 const char *dbg_ntype(int type) 140 { 141 switch (type) { 142 case UBIFS_PAD_NODE: 143 return "padding node"; 144 case UBIFS_SB_NODE: 145 return "superblock node"; 146 case UBIFS_MST_NODE: 147 return "master node"; 148 case UBIFS_REF_NODE: 149 return "reference node"; 150 case UBIFS_INO_NODE: 151 return "inode node"; 152 case UBIFS_DENT_NODE: 153 return "direntry node"; 154 case UBIFS_XENT_NODE: 155 return "xentry node"; 156 case UBIFS_DATA_NODE: 157 return "data node"; 158 case UBIFS_TRUN_NODE: 159 return "truncate node"; 160 case UBIFS_IDX_NODE: 161 return "indexing node"; 162 case UBIFS_CS_NODE: 163 return "commit start node"; 164 case UBIFS_ORPH_NODE: 165 return "orphan node"; 166 default: 167 return "unknown node"; 168 } 169 } 170 171 static const char *dbg_gtype(int type) 172 { 173 switch (type) { 174 case UBIFS_NO_NODE_GROUP: 175 return "no node group"; 176 case UBIFS_IN_NODE_GROUP: 177 return "in node group"; 178 case UBIFS_LAST_OF_NODE_GROUP: 179 return "last of node group"; 180 default: 181 return "unknown"; 182 } 183 } 184 185 const char *dbg_cstate(int cmt_state) 186 { 187 switch (cmt_state) { 188 case COMMIT_RESTING: 189 return "commit resting"; 190 case COMMIT_BACKGROUND: 191 return "background commit requested"; 192 case COMMIT_REQUIRED: 193 return "commit required"; 194 case COMMIT_RUNNING_BACKGROUND: 195 return "BACKGROUND commit running"; 196 case COMMIT_RUNNING_REQUIRED: 197 return "commit running and required"; 198 case COMMIT_BROKEN: 199 return "broken commit"; 200 default: 201 return "unknown commit state"; 202 } 203 } 204 205 const char *dbg_jhead(int jhead) 206 { 207 switch (jhead) { 208 case GCHD: 209 return "0 (GC)"; 210 case BASEHD: 211 return "1 (base)"; 212 case DATAHD: 213 return "2 (data)"; 214 default: 215 return "unknown journal head"; 216 } 217 } 218 219 static void dump_ch(const struct ubifs_ch *ch) 220 { 221 pr_err("\tmagic %#x\n", le32_to_cpu(ch->magic)); 222 pr_err("\tcrc %#x\n", le32_to_cpu(ch->crc)); 223 pr_err("\tnode_type %d (%s)\n", ch->node_type, 224 dbg_ntype(ch->node_type)); 225 pr_err("\tgroup_type %d (%s)\n", ch->group_type, 226 dbg_gtype(ch->group_type)); 227 pr_err("\tsqnum %llu\n", 228 (unsigned long long)le64_to_cpu(ch->sqnum)); 229 pr_err("\tlen %u\n", le32_to_cpu(ch->len)); 230 } 231 232 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode) 233 { 234 #ifndef __UBOOT__ 235 const struct ubifs_inode *ui = ubifs_inode(inode); 236 struct qstr nm = { .name = NULL }; 237 union ubifs_key key; 238 struct ubifs_dent_node *dent, *pdent = NULL; 239 int count = 2; 240 241 pr_err("Dump in-memory inode:"); 242 pr_err("\tinode %lu\n", inode->i_ino); 243 pr_err("\tsize %llu\n", 244 (unsigned long long)i_size_read(inode)); 245 pr_err("\tnlink %u\n", inode->i_nlink); 246 pr_err("\tuid %u\n", (unsigned int)i_uid_read(inode)); 247 pr_err("\tgid %u\n", (unsigned int)i_gid_read(inode)); 248 pr_err("\tatime %u.%u\n", 249 (unsigned int)inode->i_atime.tv_sec, 250 (unsigned int)inode->i_atime.tv_nsec); 251 pr_err("\tmtime %u.%u\n", 252 (unsigned int)inode->i_mtime.tv_sec, 253 (unsigned int)inode->i_mtime.tv_nsec); 254 pr_err("\tctime %u.%u\n", 255 (unsigned int)inode->i_ctime.tv_sec, 256 (unsigned int)inode->i_ctime.tv_nsec); 257 pr_err("\tcreat_sqnum %llu\n", ui->creat_sqnum); 258 pr_err("\txattr_size %u\n", ui->xattr_size); 259 pr_err("\txattr_cnt %u\n", ui->xattr_cnt); 260 pr_err("\txattr_names %u\n", ui->xattr_names); 261 pr_err("\tdirty %u\n", ui->dirty); 262 pr_err("\txattr %u\n", ui->xattr); 263 pr_err("\tbulk_read %u\n", ui->xattr); 264 pr_err("\tsynced_i_size %llu\n", 265 (unsigned long long)ui->synced_i_size); 266 pr_err("\tui_size %llu\n", 267 (unsigned long long)ui->ui_size); 268 pr_err("\tflags %d\n", ui->flags); 269 pr_err("\tcompr_type %d\n", ui->compr_type); 270 pr_err("\tlast_page_read %lu\n", ui->last_page_read); 271 pr_err("\tread_in_a_row %lu\n", ui->read_in_a_row); 272 pr_err("\tdata_len %d\n", ui->data_len); 273 274 if (!S_ISDIR(inode->i_mode)) 275 return; 276 277 pr_err("List of directory entries:\n"); 278 ubifs_assert(!mutex_is_locked(&c->tnc_mutex)); 279 280 lowest_dent_key(c, &key, inode->i_ino); 281 while (1) { 282 dent = ubifs_tnc_next_ent(c, &key, &nm); 283 if (IS_ERR(dent)) { 284 if (PTR_ERR(dent) != -ENOENT) 285 pr_err("error %ld\n", PTR_ERR(dent)); 286 break; 287 } 288 289 pr_err("\t%d: %s (%s)\n", 290 count++, dent->name, get_dent_type(dent->type)); 291 292 nm.name = dent->name; 293 nm.len = le16_to_cpu(dent->nlen); 294 kfree(pdent); 295 pdent = dent; 296 key_read(c, &dent->key, &key); 297 } 298 kfree(pdent); 299 #endif 300 } 301 302 void ubifs_dump_node(const struct ubifs_info *c, const void *node) 303 { 304 int i, n; 305 union ubifs_key key; 306 const struct ubifs_ch *ch = node; 307 char key_buf[DBG_KEY_BUF_LEN]; 308 309 /* If the magic is incorrect, just hexdump the first bytes */ 310 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) { 311 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ); 312 print_hex_dump("", DUMP_PREFIX_OFFSET, 32, 1, 313 (void *)node, UBIFS_CH_SZ, 1); 314 return; 315 } 316 317 spin_lock(&dbg_lock); 318 dump_ch(node); 319 320 switch (ch->node_type) { 321 case UBIFS_PAD_NODE: 322 { 323 const struct ubifs_pad_node *pad = node; 324 325 pr_err("\tpad_len %u\n", le32_to_cpu(pad->pad_len)); 326 break; 327 } 328 case UBIFS_SB_NODE: 329 { 330 const struct ubifs_sb_node *sup = node; 331 unsigned int sup_flags = le32_to_cpu(sup->flags); 332 333 pr_err("\tkey_hash %d (%s)\n", 334 (int)sup->key_hash, get_key_hash(sup->key_hash)); 335 pr_err("\tkey_fmt %d (%s)\n", 336 (int)sup->key_fmt, get_key_fmt(sup->key_fmt)); 337 pr_err("\tflags %#x\n", sup_flags); 338 pr_err("\tbig_lpt %u\n", 339 !!(sup_flags & UBIFS_FLG_BIGLPT)); 340 pr_err("\tspace_fixup %u\n", 341 !!(sup_flags & UBIFS_FLG_SPACE_FIXUP)); 342 pr_err("\tmin_io_size %u\n", le32_to_cpu(sup->min_io_size)); 343 pr_err("\tleb_size %u\n", le32_to_cpu(sup->leb_size)); 344 pr_err("\tleb_cnt %u\n", le32_to_cpu(sup->leb_cnt)); 345 pr_err("\tmax_leb_cnt %u\n", le32_to_cpu(sup->max_leb_cnt)); 346 pr_err("\tmax_bud_bytes %llu\n", 347 (unsigned long long)le64_to_cpu(sup->max_bud_bytes)); 348 pr_err("\tlog_lebs %u\n", le32_to_cpu(sup->log_lebs)); 349 pr_err("\tlpt_lebs %u\n", le32_to_cpu(sup->lpt_lebs)); 350 pr_err("\torph_lebs %u\n", le32_to_cpu(sup->orph_lebs)); 351 pr_err("\tjhead_cnt %u\n", le32_to_cpu(sup->jhead_cnt)); 352 pr_err("\tfanout %u\n", le32_to_cpu(sup->fanout)); 353 pr_err("\tlsave_cnt %u\n", le32_to_cpu(sup->lsave_cnt)); 354 pr_err("\tdefault_compr %u\n", 355 (int)le16_to_cpu(sup->default_compr)); 356 pr_err("\trp_size %llu\n", 357 (unsigned long long)le64_to_cpu(sup->rp_size)); 358 pr_err("\trp_uid %u\n", le32_to_cpu(sup->rp_uid)); 359 pr_err("\trp_gid %u\n", le32_to_cpu(sup->rp_gid)); 360 pr_err("\tfmt_version %u\n", le32_to_cpu(sup->fmt_version)); 361 pr_err("\ttime_gran %u\n", le32_to_cpu(sup->time_gran)); 362 pr_err("\tUUID %pUB\n", sup->uuid); 363 break; 364 } 365 case UBIFS_MST_NODE: 366 { 367 const struct ubifs_mst_node *mst = node; 368 369 pr_err("\thighest_inum %llu\n", 370 (unsigned long long)le64_to_cpu(mst->highest_inum)); 371 pr_err("\tcommit number %llu\n", 372 (unsigned long long)le64_to_cpu(mst->cmt_no)); 373 pr_err("\tflags %#x\n", le32_to_cpu(mst->flags)); 374 pr_err("\tlog_lnum %u\n", le32_to_cpu(mst->log_lnum)); 375 pr_err("\troot_lnum %u\n", le32_to_cpu(mst->root_lnum)); 376 pr_err("\troot_offs %u\n", le32_to_cpu(mst->root_offs)); 377 pr_err("\troot_len %u\n", le32_to_cpu(mst->root_len)); 378 pr_err("\tgc_lnum %u\n", le32_to_cpu(mst->gc_lnum)); 379 pr_err("\tihead_lnum %u\n", le32_to_cpu(mst->ihead_lnum)); 380 pr_err("\tihead_offs %u\n", le32_to_cpu(mst->ihead_offs)); 381 pr_err("\tindex_size %llu\n", 382 (unsigned long long)le64_to_cpu(mst->index_size)); 383 pr_err("\tlpt_lnum %u\n", le32_to_cpu(mst->lpt_lnum)); 384 pr_err("\tlpt_offs %u\n", le32_to_cpu(mst->lpt_offs)); 385 pr_err("\tnhead_lnum %u\n", le32_to_cpu(mst->nhead_lnum)); 386 pr_err("\tnhead_offs %u\n", le32_to_cpu(mst->nhead_offs)); 387 pr_err("\tltab_lnum %u\n", le32_to_cpu(mst->ltab_lnum)); 388 pr_err("\tltab_offs %u\n", le32_to_cpu(mst->ltab_offs)); 389 pr_err("\tlsave_lnum %u\n", le32_to_cpu(mst->lsave_lnum)); 390 pr_err("\tlsave_offs %u\n", le32_to_cpu(mst->lsave_offs)); 391 pr_err("\tlscan_lnum %u\n", le32_to_cpu(mst->lscan_lnum)); 392 pr_err("\tleb_cnt %u\n", le32_to_cpu(mst->leb_cnt)); 393 pr_err("\tempty_lebs %u\n", le32_to_cpu(mst->empty_lebs)); 394 pr_err("\tidx_lebs %u\n", le32_to_cpu(mst->idx_lebs)); 395 pr_err("\ttotal_free %llu\n", 396 (unsigned long long)le64_to_cpu(mst->total_free)); 397 pr_err("\ttotal_dirty %llu\n", 398 (unsigned long long)le64_to_cpu(mst->total_dirty)); 399 pr_err("\ttotal_used %llu\n", 400 (unsigned long long)le64_to_cpu(mst->total_used)); 401 pr_err("\ttotal_dead %llu\n", 402 (unsigned long long)le64_to_cpu(mst->total_dead)); 403 pr_err("\ttotal_dark %llu\n", 404 (unsigned long long)le64_to_cpu(mst->total_dark)); 405 break; 406 } 407 case UBIFS_REF_NODE: 408 { 409 const struct ubifs_ref_node *ref = node; 410 411 pr_err("\tlnum %u\n", le32_to_cpu(ref->lnum)); 412 pr_err("\toffs %u\n", le32_to_cpu(ref->offs)); 413 pr_err("\tjhead %u\n", le32_to_cpu(ref->jhead)); 414 break; 415 } 416 case UBIFS_INO_NODE: 417 { 418 const struct ubifs_ino_node *ino = node; 419 420 key_read(c, &ino->key, &key); 421 pr_err("\tkey %s\n", 422 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 423 pr_err("\tcreat_sqnum %llu\n", 424 (unsigned long long)le64_to_cpu(ino->creat_sqnum)); 425 pr_err("\tsize %llu\n", 426 (unsigned long long)le64_to_cpu(ino->size)); 427 pr_err("\tnlink %u\n", le32_to_cpu(ino->nlink)); 428 pr_err("\tatime %lld.%u\n", 429 (long long)le64_to_cpu(ino->atime_sec), 430 le32_to_cpu(ino->atime_nsec)); 431 pr_err("\tmtime %lld.%u\n", 432 (long long)le64_to_cpu(ino->mtime_sec), 433 le32_to_cpu(ino->mtime_nsec)); 434 pr_err("\tctime %lld.%u\n", 435 (long long)le64_to_cpu(ino->ctime_sec), 436 le32_to_cpu(ino->ctime_nsec)); 437 pr_err("\tuid %u\n", le32_to_cpu(ino->uid)); 438 pr_err("\tgid %u\n", le32_to_cpu(ino->gid)); 439 pr_err("\tmode %u\n", le32_to_cpu(ino->mode)); 440 pr_err("\tflags %#x\n", le32_to_cpu(ino->flags)); 441 pr_err("\txattr_cnt %u\n", le32_to_cpu(ino->xattr_cnt)); 442 pr_err("\txattr_size %u\n", le32_to_cpu(ino->xattr_size)); 443 pr_err("\txattr_names %u\n", le32_to_cpu(ino->xattr_names)); 444 pr_err("\tcompr_type %#x\n", 445 (int)le16_to_cpu(ino->compr_type)); 446 pr_err("\tdata len %u\n", le32_to_cpu(ino->data_len)); 447 break; 448 } 449 case UBIFS_DENT_NODE: 450 case UBIFS_XENT_NODE: 451 { 452 const struct ubifs_dent_node *dent = node; 453 int nlen = le16_to_cpu(dent->nlen); 454 455 key_read(c, &dent->key, &key); 456 pr_err("\tkey %s\n", 457 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 458 pr_err("\tinum %llu\n", 459 (unsigned long long)le64_to_cpu(dent->inum)); 460 pr_err("\ttype %d\n", (int)dent->type); 461 pr_err("\tnlen %d\n", nlen); 462 pr_err("\tname "); 463 464 if (nlen > UBIFS_MAX_NLEN) 465 pr_err("(bad name length, not printing, bad or corrupted node)"); 466 else { 467 for (i = 0; i < nlen && dent->name[i]; i++) 468 pr_cont("%c", dent->name[i]); 469 } 470 pr_cont("\n"); 471 472 break; 473 } 474 case UBIFS_DATA_NODE: 475 { 476 const struct ubifs_data_node *dn = node; 477 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ; 478 479 key_read(c, &dn->key, &key); 480 pr_err("\tkey %s\n", 481 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 482 pr_err("\tsize %u\n", le32_to_cpu(dn->size)); 483 pr_err("\tcompr_typ %d\n", 484 (int)le16_to_cpu(dn->compr_type)); 485 pr_err("\tdata size %d\n", dlen); 486 pr_err("\tdata:\n"); 487 print_hex_dump("\t", DUMP_PREFIX_OFFSET, 32, 1, 488 (void *)&dn->data, dlen, 0); 489 break; 490 } 491 case UBIFS_TRUN_NODE: 492 { 493 const struct ubifs_trun_node *trun = node; 494 495 pr_err("\tinum %u\n", le32_to_cpu(trun->inum)); 496 pr_err("\told_size %llu\n", 497 (unsigned long long)le64_to_cpu(trun->old_size)); 498 pr_err("\tnew_size %llu\n", 499 (unsigned long long)le64_to_cpu(trun->new_size)); 500 break; 501 } 502 case UBIFS_IDX_NODE: 503 { 504 const struct ubifs_idx_node *idx = node; 505 506 n = le16_to_cpu(idx->child_cnt); 507 pr_err("\tchild_cnt %d\n", n); 508 pr_err("\tlevel %d\n", (int)le16_to_cpu(idx->level)); 509 pr_err("\tBranches:\n"); 510 511 for (i = 0; i < n && i < c->fanout - 1; i++) { 512 const struct ubifs_branch *br; 513 514 br = ubifs_idx_branch(c, idx, i); 515 key_read(c, &br->key, &key); 516 pr_err("\t%d: LEB %d:%d len %d key %s\n", 517 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs), 518 le32_to_cpu(br->len), 519 dbg_snprintf_key(c, &key, key_buf, 520 DBG_KEY_BUF_LEN)); 521 } 522 break; 523 } 524 case UBIFS_CS_NODE: 525 break; 526 case UBIFS_ORPH_NODE: 527 { 528 const struct ubifs_orph_node *orph = node; 529 530 pr_err("\tcommit number %llu\n", 531 (unsigned long long) 532 le64_to_cpu(orph->cmt_no) & LLONG_MAX); 533 pr_err("\tlast node flag %llu\n", 534 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63); 535 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3; 536 pr_err("\t%d orphan inode numbers:\n", n); 537 for (i = 0; i < n; i++) 538 pr_err("\t ino %llu\n", 539 (unsigned long long)le64_to_cpu(orph->inos[i])); 540 break; 541 } 542 default: 543 pr_err("node type %d was not recognized\n", 544 (int)ch->node_type); 545 } 546 spin_unlock(&dbg_lock); 547 } 548 549 void ubifs_dump_budget_req(const struct ubifs_budget_req *req) 550 { 551 spin_lock(&dbg_lock); 552 pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n", 553 req->new_ino, req->dirtied_ino); 554 pr_err("\tnew_ino_d %d, dirtied_ino_d %d\n", 555 req->new_ino_d, req->dirtied_ino_d); 556 pr_err("\tnew_page %d, dirtied_page %d\n", 557 req->new_page, req->dirtied_page); 558 pr_err("\tnew_dent %d, mod_dent %d\n", 559 req->new_dent, req->mod_dent); 560 pr_err("\tidx_growth %d\n", req->idx_growth); 561 pr_err("\tdata_growth %d dd_growth %d\n", 562 req->data_growth, req->dd_growth); 563 spin_unlock(&dbg_lock); 564 } 565 566 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst) 567 { 568 spin_lock(&dbg_lock); 569 pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs %d\n", 570 current->pid, lst->empty_lebs, lst->idx_lebs); 571 pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n", 572 lst->taken_empty_lebs, lst->total_free, lst->total_dirty); 573 pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n", 574 lst->total_used, lst->total_dark, lst->total_dead); 575 spin_unlock(&dbg_lock); 576 } 577 578 #ifndef __UBOOT__ 579 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi) 580 { 581 int i; 582 struct rb_node *rb; 583 struct ubifs_bud *bud; 584 struct ubifs_gced_idx_leb *idx_gc; 585 long long available, outstanding, free; 586 587 spin_lock(&c->space_lock); 588 spin_lock(&dbg_lock); 589 pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n", 590 current->pid, bi->data_growth + bi->dd_growth, 591 bi->data_growth + bi->dd_growth + bi->idx_growth); 592 pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n", 593 bi->data_growth, bi->dd_growth, bi->idx_growth); 594 pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n", 595 bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx); 596 pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n", 597 bi->page_budget, bi->inode_budget, bi->dent_budget); 598 pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp); 599 pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n", 600 c->dark_wm, c->dead_wm, c->max_idx_node_sz); 601 602 if (bi != &c->bi) 603 /* 604 * If we are dumping saved budgeting data, do not print 605 * additional information which is about the current state, not 606 * the old one which corresponded to the saved budgeting data. 607 */ 608 goto out_unlock; 609 610 pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n", 611 c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt); 612 pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n", 613 atomic_long_read(&c->dirty_pg_cnt), 614 atomic_long_read(&c->dirty_zn_cnt), 615 atomic_long_read(&c->clean_zn_cnt)); 616 pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum); 617 618 /* If we are in R/O mode, journal heads do not exist */ 619 if (c->jheads) 620 for (i = 0; i < c->jhead_cnt; i++) 621 pr_err("\tjhead %s\t LEB %d\n", 622 dbg_jhead(c->jheads[i].wbuf.jhead), 623 c->jheads[i].wbuf.lnum); 624 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) { 625 bud = rb_entry(rb, struct ubifs_bud, rb); 626 pr_err("\tbud LEB %d\n", bud->lnum); 627 } 628 list_for_each_entry(bud, &c->old_buds, list) 629 pr_err("\told bud LEB %d\n", bud->lnum); 630 list_for_each_entry(idx_gc, &c->idx_gc, list) 631 pr_err("\tGC'ed idx LEB %d unmap %d\n", 632 idx_gc->lnum, idx_gc->unmap); 633 pr_err("\tcommit state %d\n", c->cmt_state); 634 635 /* Print budgeting predictions */ 636 available = ubifs_calc_available(c, c->bi.min_idx_lebs); 637 outstanding = c->bi.data_growth + c->bi.dd_growth; 638 free = ubifs_get_free_space_nolock(c); 639 pr_err("Budgeting predictions:\n"); 640 pr_err("\tavailable: %lld, outstanding %lld, free %lld\n", 641 available, outstanding, free); 642 out_unlock: 643 spin_unlock(&dbg_lock); 644 spin_unlock(&c->space_lock); 645 } 646 #else 647 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi) 648 { 649 } 650 #endif 651 652 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp) 653 { 654 int i, spc, dark = 0, dead = 0; 655 struct rb_node *rb; 656 struct ubifs_bud *bud; 657 658 spc = lp->free + lp->dirty; 659 if (spc < c->dead_wm) 660 dead = spc; 661 else 662 dark = ubifs_calc_dark(c, spc); 663 664 if (lp->flags & LPROPS_INDEX) 665 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (", 666 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc, 667 lp->flags); 668 else 669 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (", 670 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc, 671 dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags); 672 673 if (lp->flags & LPROPS_TAKEN) { 674 if (lp->flags & LPROPS_INDEX) 675 pr_cont("index, taken"); 676 else 677 pr_cont("taken"); 678 } else { 679 const char *s; 680 681 if (lp->flags & LPROPS_INDEX) { 682 switch (lp->flags & LPROPS_CAT_MASK) { 683 case LPROPS_DIRTY_IDX: 684 s = "dirty index"; 685 break; 686 case LPROPS_FRDI_IDX: 687 s = "freeable index"; 688 break; 689 default: 690 s = "index"; 691 } 692 } else { 693 switch (lp->flags & LPROPS_CAT_MASK) { 694 case LPROPS_UNCAT: 695 s = "not categorized"; 696 break; 697 case LPROPS_DIRTY: 698 s = "dirty"; 699 break; 700 case LPROPS_FREE: 701 s = "free"; 702 break; 703 case LPROPS_EMPTY: 704 s = "empty"; 705 break; 706 case LPROPS_FREEABLE: 707 s = "freeable"; 708 break; 709 default: 710 s = NULL; 711 break; 712 } 713 } 714 pr_cont("%s", s); 715 } 716 717 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) { 718 bud = rb_entry(rb, struct ubifs_bud, rb); 719 if (bud->lnum == lp->lnum) { 720 int head = 0; 721 for (i = 0; i < c->jhead_cnt; i++) { 722 /* 723 * Note, if we are in R/O mode or in the middle 724 * of mounting/re-mounting, the write-buffers do 725 * not exist. 726 */ 727 if (c->jheads && 728 lp->lnum == c->jheads[i].wbuf.lnum) { 729 pr_cont(", jhead %s", dbg_jhead(i)); 730 head = 1; 731 } 732 } 733 if (!head) 734 pr_cont(", bud of jhead %s", 735 dbg_jhead(bud->jhead)); 736 } 737 } 738 if (lp->lnum == c->gc_lnum) 739 pr_cont(", GC LEB"); 740 pr_cont(")\n"); 741 } 742 743 void ubifs_dump_lprops(struct ubifs_info *c) 744 { 745 int lnum, err; 746 struct ubifs_lprops lp; 747 struct ubifs_lp_stats lst; 748 749 pr_err("(pid %d) start dumping LEB properties\n", current->pid); 750 ubifs_get_lp_stats(c, &lst); 751 ubifs_dump_lstats(&lst); 752 753 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) { 754 err = ubifs_read_one_lp(c, lnum, &lp); 755 if (err) { 756 ubifs_err(c, "cannot read lprops for LEB %d", lnum); 757 continue; 758 } 759 760 ubifs_dump_lprop(c, &lp); 761 } 762 pr_err("(pid %d) finish dumping LEB properties\n", current->pid); 763 } 764 765 void ubifs_dump_lpt_info(struct ubifs_info *c) 766 { 767 int i; 768 769 spin_lock(&dbg_lock); 770 pr_err("(pid %d) dumping LPT information\n", current->pid); 771 pr_err("\tlpt_sz: %lld\n", c->lpt_sz); 772 pr_err("\tpnode_sz: %d\n", c->pnode_sz); 773 pr_err("\tnnode_sz: %d\n", c->nnode_sz); 774 pr_err("\tltab_sz: %d\n", c->ltab_sz); 775 pr_err("\tlsave_sz: %d\n", c->lsave_sz); 776 pr_err("\tbig_lpt: %d\n", c->big_lpt); 777 pr_err("\tlpt_hght: %d\n", c->lpt_hght); 778 pr_err("\tpnode_cnt: %d\n", c->pnode_cnt); 779 pr_err("\tnnode_cnt: %d\n", c->nnode_cnt); 780 pr_err("\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt); 781 pr_err("\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt); 782 pr_err("\tlsave_cnt: %d\n", c->lsave_cnt); 783 pr_err("\tspace_bits: %d\n", c->space_bits); 784 pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits); 785 pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits); 786 pr_err("\tlpt_spc_bits: %d\n", c->lpt_spc_bits); 787 pr_err("\tpcnt_bits: %d\n", c->pcnt_bits); 788 pr_err("\tlnum_bits: %d\n", c->lnum_bits); 789 pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs); 790 pr_err("\tLPT head is at %d:%d\n", 791 c->nhead_lnum, c->nhead_offs); 792 pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs); 793 if (c->big_lpt) 794 pr_err("\tLPT lsave is at %d:%d\n", 795 c->lsave_lnum, c->lsave_offs); 796 for (i = 0; i < c->lpt_lebs; i++) 797 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n", 798 i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty, 799 c->ltab[i].tgc, c->ltab[i].cmt); 800 spin_unlock(&dbg_lock); 801 } 802 803 void ubifs_dump_sleb(const struct ubifs_info *c, 804 const struct ubifs_scan_leb *sleb, int offs) 805 { 806 struct ubifs_scan_node *snod; 807 808 pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n", 809 current->pid, sleb->lnum, offs); 810 811 list_for_each_entry(snod, &sleb->nodes, list) { 812 cond_resched(); 813 pr_err("Dumping node at LEB %d:%d len %d\n", 814 sleb->lnum, snod->offs, snod->len); 815 ubifs_dump_node(c, snod->node); 816 } 817 } 818 819 void ubifs_dump_leb(const struct ubifs_info *c, int lnum) 820 { 821 struct ubifs_scan_leb *sleb; 822 struct ubifs_scan_node *snod; 823 void *buf; 824 825 pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum); 826 827 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL); 828 if (!buf) { 829 ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum); 830 return; 831 } 832 833 sleb = ubifs_scan(c, lnum, 0, buf, 0); 834 if (IS_ERR(sleb)) { 835 ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb)); 836 goto out; 837 } 838 839 pr_err("LEB %d has %d nodes ending at %d\n", lnum, 840 sleb->nodes_cnt, sleb->endpt); 841 842 list_for_each_entry(snod, &sleb->nodes, list) { 843 cond_resched(); 844 pr_err("Dumping node at LEB %d:%d len %d\n", lnum, 845 snod->offs, snod->len); 846 ubifs_dump_node(c, snod->node); 847 } 848 849 pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum); 850 ubifs_scan_destroy(sleb); 851 852 out: 853 vfree(buf); 854 return; 855 } 856 857 void ubifs_dump_znode(const struct ubifs_info *c, 858 const struct ubifs_znode *znode) 859 { 860 int n; 861 const struct ubifs_zbranch *zbr; 862 char key_buf[DBG_KEY_BUF_LEN]; 863 864 spin_lock(&dbg_lock); 865 if (znode->parent) 866 zbr = &znode->parent->zbranch[znode->iip]; 867 else 868 zbr = &c->zroot; 869 870 pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n", 871 znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip, 872 znode->level, znode->child_cnt, znode->flags); 873 874 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 875 spin_unlock(&dbg_lock); 876 return; 877 } 878 879 pr_err("zbranches:\n"); 880 for (n = 0; n < znode->child_cnt; n++) { 881 zbr = &znode->zbranch[n]; 882 if (znode->level > 0) 883 pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n", 884 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len, 885 dbg_snprintf_key(c, &zbr->key, key_buf, 886 DBG_KEY_BUF_LEN)); 887 else 888 pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n", 889 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len, 890 dbg_snprintf_key(c, &zbr->key, key_buf, 891 DBG_KEY_BUF_LEN)); 892 } 893 spin_unlock(&dbg_lock); 894 } 895 896 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat) 897 { 898 int i; 899 900 pr_err("(pid %d) start dumping heap cat %d (%d elements)\n", 901 current->pid, cat, heap->cnt); 902 for (i = 0; i < heap->cnt; i++) { 903 struct ubifs_lprops *lprops = heap->arr[i]; 904 905 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n", 906 i, lprops->lnum, lprops->hpos, lprops->free, 907 lprops->dirty, lprops->flags); 908 } 909 pr_err("(pid %d) finish dumping heap\n", current->pid); 910 } 911 912 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode, 913 struct ubifs_nnode *parent, int iip) 914 { 915 int i; 916 917 pr_err("(pid %d) dumping pnode:\n", current->pid); 918 pr_err("\taddress %zx parent %zx cnext %zx\n", 919 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext); 920 pr_err("\tflags %lu iip %d level %d num %d\n", 921 pnode->flags, iip, pnode->level, pnode->num); 922 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 923 struct ubifs_lprops *lp = &pnode->lprops[i]; 924 925 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n", 926 i, lp->free, lp->dirty, lp->flags, lp->lnum); 927 } 928 } 929 930 void ubifs_dump_tnc(struct ubifs_info *c) 931 { 932 struct ubifs_znode *znode; 933 int level; 934 935 pr_err("\n"); 936 pr_err("(pid %d) start dumping TNC tree\n", current->pid); 937 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL); 938 level = znode->level; 939 pr_err("== Level %d ==\n", level); 940 while (znode) { 941 if (level != znode->level) { 942 level = znode->level; 943 pr_err("== Level %d ==\n", level); 944 } 945 ubifs_dump_znode(c, znode); 946 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode); 947 } 948 pr_err("(pid %d) finish dumping TNC tree\n", current->pid); 949 } 950 951 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode, 952 void *priv) 953 { 954 ubifs_dump_znode(c, znode); 955 return 0; 956 } 957 958 /** 959 * ubifs_dump_index - dump the on-flash index. 960 * @c: UBIFS file-system description object 961 * 962 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()' 963 * which dumps only in-memory znodes and does not read znodes which from flash. 964 */ 965 void ubifs_dump_index(struct ubifs_info *c) 966 { 967 dbg_walk_index(c, NULL, dump_znode, NULL); 968 } 969 970 #ifndef __UBOOT__ 971 /** 972 * dbg_save_space_info - save information about flash space. 973 * @c: UBIFS file-system description object 974 * 975 * This function saves information about UBIFS free space, dirty space, etc, in 976 * order to check it later. 977 */ 978 void dbg_save_space_info(struct ubifs_info *c) 979 { 980 struct ubifs_debug_info *d = c->dbg; 981 int freeable_cnt; 982 983 spin_lock(&c->space_lock); 984 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats)); 985 memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info)); 986 d->saved_idx_gc_cnt = c->idx_gc_cnt; 987 988 /* 989 * We use a dirty hack here and zero out @c->freeable_cnt, because it 990 * affects the free space calculations, and UBIFS might not know about 991 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks 992 * only when we read their lprops, and we do this only lazily, upon the 993 * need. So at any given point of time @c->freeable_cnt might be not 994 * exactly accurate. 995 * 996 * Just one example about the issue we hit when we did not zero 997 * @c->freeable_cnt. 998 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the 999 * amount of free space in @d->saved_free 1000 * 2. We re-mount R/W, which makes UBIFS to read the "lsave" 1001 * information from flash, where we cache LEBs from various 1002 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()' 1003 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()' 1004 * -> 'ubifs_get_pnode()' -> 'update_cats()' 1005 * -> 'ubifs_add_to_cat()'). 1006 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt 1007 * becomes %1. 1008 * 4. We calculate the amount of free space when the re-mount is 1009 * finished in 'dbg_check_space_info()' and it does not match 1010 * @d->saved_free. 1011 */ 1012 freeable_cnt = c->freeable_cnt; 1013 c->freeable_cnt = 0; 1014 d->saved_free = ubifs_get_free_space_nolock(c); 1015 c->freeable_cnt = freeable_cnt; 1016 spin_unlock(&c->space_lock); 1017 } 1018 1019 /** 1020 * dbg_check_space_info - check flash space information. 1021 * @c: UBIFS file-system description object 1022 * 1023 * This function compares current flash space information with the information 1024 * which was saved when the 'dbg_save_space_info()' function was called. 1025 * Returns zero if the information has not changed, and %-EINVAL it it has 1026 * changed. 1027 */ 1028 int dbg_check_space_info(struct ubifs_info *c) 1029 { 1030 struct ubifs_debug_info *d = c->dbg; 1031 struct ubifs_lp_stats lst; 1032 long long free; 1033 int freeable_cnt; 1034 1035 spin_lock(&c->space_lock); 1036 freeable_cnt = c->freeable_cnt; 1037 c->freeable_cnt = 0; 1038 free = ubifs_get_free_space_nolock(c); 1039 c->freeable_cnt = freeable_cnt; 1040 spin_unlock(&c->space_lock); 1041 1042 if (free != d->saved_free) { 1043 ubifs_err(c, "free space changed from %lld to %lld", 1044 d->saved_free, free); 1045 goto out; 1046 } 1047 1048 return 0; 1049 1050 out: 1051 ubifs_msg(c, "saved lprops statistics dump"); 1052 ubifs_dump_lstats(&d->saved_lst); 1053 ubifs_msg(c, "saved budgeting info dump"); 1054 ubifs_dump_budg(c, &d->saved_bi); 1055 ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt); 1056 ubifs_msg(c, "current lprops statistics dump"); 1057 ubifs_get_lp_stats(c, &lst); 1058 ubifs_dump_lstats(&lst); 1059 ubifs_msg(c, "current budgeting info dump"); 1060 ubifs_dump_budg(c, &c->bi); 1061 dump_stack(); 1062 return -EINVAL; 1063 } 1064 1065 /** 1066 * dbg_check_synced_i_size - check synchronized inode size. 1067 * @c: UBIFS file-system description object 1068 * @inode: inode to check 1069 * 1070 * If inode is clean, synchronized inode size has to be equivalent to current 1071 * inode size. This function has to be called only for locked inodes (@i_mutex 1072 * has to be locked). Returns %0 if synchronized inode size if correct, and 1073 * %-EINVAL if not. 1074 */ 1075 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode) 1076 { 1077 int err = 0; 1078 struct ubifs_inode *ui = ubifs_inode(inode); 1079 1080 if (!dbg_is_chk_gen(c)) 1081 return 0; 1082 if (!S_ISREG(inode->i_mode)) 1083 return 0; 1084 1085 mutex_lock(&ui->ui_mutex); 1086 spin_lock(&ui->ui_lock); 1087 if (ui->ui_size != ui->synced_i_size && !ui->dirty) { 1088 ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean", 1089 ui->ui_size, ui->synced_i_size); 1090 ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino, 1091 inode->i_mode, i_size_read(inode)); 1092 dump_stack(); 1093 err = -EINVAL; 1094 } 1095 spin_unlock(&ui->ui_lock); 1096 mutex_unlock(&ui->ui_mutex); 1097 return err; 1098 } 1099 1100 /* 1101 * dbg_check_dir - check directory inode size and link count. 1102 * @c: UBIFS file-system description object 1103 * @dir: the directory to calculate size for 1104 * @size: the result is returned here 1105 * 1106 * This function makes sure that directory size and link count are correct. 1107 * Returns zero in case of success and a negative error code in case of 1108 * failure. 1109 * 1110 * Note, it is good idea to make sure the @dir->i_mutex is locked before 1111 * calling this function. 1112 */ 1113 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir) 1114 { 1115 unsigned int nlink = 2; 1116 union ubifs_key key; 1117 struct ubifs_dent_node *dent, *pdent = NULL; 1118 struct qstr nm = { .name = NULL }; 1119 loff_t size = UBIFS_INO_NODE_SZ; 1120 1121 if (!dbg_is_chk_gen(c)) 1122 return 0; 1123 1124 if (!S_ISDIR(dir->i_mode)) 1125 return 0; 1126 1127 lowest_dent_key(c, &key, dir->i_ino); 1128 while (1) { 1129 int err; 1130 1131 dent = ubifs_tnc_next_ent(c, &key, &nm); 1132 if (IS_ERR(dent)) { 1133 err = PTR_ERR(dent); 1134 if (err == -ENOENT) 1135 break; 1136 return err; 1137 } 1138 1139 nm.name = dent->name; 1140 nm.len = le16_to_cpu(dent->nlen); 1141 size += CALC_DENT_SIZE(nm.len); 1142 if (dent->type == UBIFS_ITYPE_DIR) 1143 nlink += 1; 1144 kfree(pdent); 1145 pdent = dent; 1146 key_read(c, &dent->key, &key); 1147 } 1148 kfree(pdent); 1149 1150 if (i_size_read(dir) != size) { 1151 ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu", 1152 dir->i_ino, (unsigned long long)i_size_read(dir), 1153 (unsigned long long)size); 1154 ubifs_dump_inode(c, dir); 1155 dump_stack(); 1156 return -EINVAL; 1157 } 1158 if (dir->i_nlink != nlink) { 1159 ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u", 1160 dir->i_ino, dir->i_nlink, nlink); 1161 ubifs_dump_inode(c, dir); 1162 dump_stack(); 1163 return -EINVAL; 1164 } 1165 1166 return 0; 1167 } 1168 1169 /** 1170 * dbg_check_key_order - make sure that colliding keys are properly ordered. 1171 * @c: UBIFS file-system description object 1172 * @zbr1: first zbranch 1173 * @zbr2: following zbranch 1174 * 1175 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of 1176 * names of the direntries/xentries which are referred by the keys. This 1177 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes 1178 * sure the name of direntry/xentry referred by @zbr1 is less than 1179 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not, 1180 * and a negative error code in case of failure. 1181 */ 1182 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1, 1183 struct ubifs_zbranch *zbr2) 1184 { 1185 int err, nlen1, nlen2, cmp; 1186 struct ubifs_dent_node *dent1, *dent2; 1187 union ubifs_key key; 1188 char key_buf[DBG_KEY_BUF_LEN]; 1189 1190 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key)); 1191 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 1192 if (!dent1) 1193 return -ENOMEM; 1194 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 1195 if (!dent2) { 1196 err = -ENOMEM; 1197 goto out_free; 1198 } 1199 1200 err = ubifs_tnc_read_node(c, zbr1, dent1); 1201 if (err) 1202 goto out_free; 1203 err = ubifs_validate_entry(c, dent1); 1204 if (err) 1205 goto out_free; 1206 1207 err = ubifs_tnc_read_node(c, zbr2, dent2); 1208 if (err) 1209 goto out_free; 1210 err = ubifs_validate_entry(c, dent2); 1211 if (err) 1212 goto out_free; 1213 1214 /* Make sure node keys are the same as in zbranch */ 1215 err = 1; 1216 key_read(c, &dent1->key, &key); 1217 if (keys_cmp(c, &zbr1->key, &key)) { 1218 ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum, 1219 zbr1->offs, dbg_snprintf_key(c, &key, key_buf, 1220 DBG_KEY_BUF_LEN)); 1221 ubifs_err(c, "but it should have key %s according to tnc", 1222 dbg_snprintf_key(c, &zbr1->key, key_buf, 1223 DBG_KEY_BUF_LEN)); 1224 ubifs_dump_node(c, dent1); 1225 goto out_free; 1226 } 1227 1228 key_read(c, &dent2->key, &key); 1229 if (keys_cmp(c, &zbr2->key, &key)) { 1230 ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum, 1231 zbr1->offs, dbg_snprintf_key(c, &key, key_buf, 1232 DBG_KEY_BUF_LEN)); 1233 ubifs_err(c, "but it should have key %s according to tnc", 1234 dbg_snprintf_key(c, &zbr2->key, key_buf, 1235 DBG_KEY_BUF_LEN)); 1236 ubifs_dump_node(c, dent2); 1237 goto out_free; 1238 } 1239 1240 nlen1 = le16_to_cpu(dent1->nlen); 1241 nlen2 = le16_to_cpu(dent2->nlen); 1242 1243 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2)); 1244 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) { 1245 err = 0; 1246 goto out_free; 1247 } 1248 if (cmp == 0 && nlen1 == nlen2) 1249 ubifs_err(c, "2 xent/dent nodes with the same name"); 1250 else 1251 ubifs_err(c, "bad order of colliding key %s", 1252 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 1253 1254 ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs); 1255 ubifs_dump_node(c, dent1); 1256 ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs); 1257 ubifs_dump_node(c, dent2); 1258 1259 out_free: 1260 kfree(dent2); 1261 kfree(dent1); 1262 return err; 1263 } 1264 1265 /** 1266 * dbg_check_znode - check if znode is all right. 1267 * @c: UBIFS file-system description object 1268 * @zbr: zbranch which points to this znode 1269 * 1270 * This function makes sure that znode referred to by @zbr is all right. 1271 * Returns zero if it is, and %-EINVAL if it is not. 1272 */ 1273 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr) 1274 { 1275 struct ubifs_znode *znode = zbr->znode; 1276 struct ubifs_znode *zp = znode->parent; 1277 int n, err, cmp; 1278 1279 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 1280 err = 1; 1281 goto out; 1282 } 1283 if (znode->level < 0) { 1284 err = 2; 1285 goto out; 1286 } 1287 if (znode->iip < 0 || znode->iip >= c->fanout) { 1288 err = 3; 1289 goto out; 1290 } 1291 1292 if (zbr->len == 0) 1293 /* Only dirty zbranch may have no on-flash nodes */ 1294 if (!ubifs_zn_dirty(znode)) { 1295 err = 4; 1296 goto out; 1297 } 1298 1299 if (ubifs_zn_dirty(znode)) { 1300 /* 1301 * If znode is dirty, its parent has to be dirty as well. The 1302 * order of the operation is important, so we have to have 1303 * memory barriers. 1304 */ 1305 smp_mb(); 1306 if (zp && !ubifs_zn_dirty(zp)) { 1307 /* 1308 * The dirty flag is atomic and is cleared outside the 1309 * TNC mutex, so znode's dirty flag may now have 1310 * been cleared. The child is always cleared before the 1311 * parent, so we just need to check again. 1312 */ 1313 smp_mb(); 1314 if (ubifs_zn_dirty(znode)) { 1315 err = 5; 1316 goto out; 1317 } 1318 } 1319 } 1320 1321 if (zp) { 1322 const union ubifs_key *min, *max; 1323 1324 if (znode->level != zp->level - 1) { 1325 err = 6; 1326 goto out; 1327 } 1328 1329 /* Make sure the 'parent' pointer in our znode is correct */ 1330 err = ubifs_search_zbranch(c, zp, &zbr->key, &n); 1331 if (!err) { 1332 /* This zbranch does not exist in the parent */ 1333 err = 7; 1334 goto out; 1335 } 1336 1337 if (znode->iip >= zp->child_cnt) { 1338 err = 8; 1339 goto out; 1340 } 1341 1342 if (znode->iip != n) { 1343 /* This may happen only in case of collisions */ 1344 if (keys_cmp(c, &zp->zbranch[n].key, 1345 &zp->zbranch[znode->iip].key)) { 1346 err = 9; 1347 goto out; 1348 } 1349 n = znode->iip; 1350 } 1351 1352 /* 1353 * Make sure that the first key in our znode is greater than or 1354 * equal to the key in the pointing zbranch. 1355 */ 1356 min = &zbr->key; 1357 cmp = keys_cmp(c, min, &znode->zbranch[0].key); 1358 if (cmp == 1) { 1359 err = 10; 1360 goto out; 1361 } 1362 1363 if (n + 1 < zp->child_cnt) { 1364 max = &zp->zbranch[n + 1].key; 1365 1366 /* 1367 * Make sure the last key in our znode is less or 1368 * equivalent than the key in the zbranch which goes 1369 * after our pointing zbranch. 1370 */ 1371 cmp = keys_cmp(c, max, 1372 &znode->zbranch[znode->child_cnt - 1].key); 1373 if (cmp == -1) { 1374 err = 11; 1375 goto out; 1376 } 1377 } 1378 } else { 1379 /* This may only be root znode */ 1380 if (zbr != &c->zroot) { 1381 err = 12; 1382 goto out; 1383 } 1384 } 1385 1386 /* 1387 * Make sure that next key is greater or equivalent then the previous 1388 * one. 1389 */ 1390 for (n = 1; n < znode->child_cnt; n++) { 1391 cmp = keys_cmp(c, &znode->zbranch[n - 1].key, 1392 &znode->zbranch[n].key); 1393 if (cmp > 0) { 1394 err = 13; 1395 goto out; 1396 } 1397 if (cmp == 0) { 1398 /* This can only be keys with colliding hash */ 1399 if (!is_hash_key(c, &znode->zbranch[n].key)) { 1400 err = 14; 1401 goto out; 1402 } 1403 1404 if (znode->level != 0 || c->replaying) 1405 continue; 1406 1407 /* 1408 * Colliding keys should follow binary order of 1409 * corresponding xentry/dentry names. 1410 */ 1411 err = dbg_check_key_order(c, &znode->zbranch[n - 1], 1412 &znode->zbranch[n]); 1413 if (err < 0) 1414 return err; 1415 if (err) { 1416 err = 15; 1417 goto out; 1418 } 1419 } 1420 } 1421 1422 for (n = 0; n < znode->child_cnt; n++) { 1423 if (!znode->zbranch[n].znode && 1424 (znode->zbranch[n].lnum == 0 || 1425 znode->zbranch[n].len == 0)) { 1426 err = 16; 1427 goto out; 1428 } 1429 1430 if (znode->zbranch[n].lnum != 0 && 1431 znode->zbranch[n].len == 0) { 1432 err = 17; 1433 goto out; 1434 } 1435 1436 if (znode->zbranch[n].lnum == 0 && 1437 znode->zbranch[n].len != 0) { 1438 err = 18; 1439 goto out; 1440 } 1441 1442 if (znode->zbranch[n].lnum == 0 && 1443 znode->zbranch[n].offs != 0) { 1444 err = 19; 1445 goto out; 1446 } 1447 1448 if (znode->level != 0 && znode->zbranch[n].znode) 1449 if (znode->zbranch[n].znode->parent != znode) { 1450 err = 20; 1451 goto out; 1452 } 1453 } 1454 1455 return 0; 1456 1457 out: 1458 ubifs_err(c, "failed, error %d", err); 1459 ubifs_msg(c, "dump of the znode"); 1460 ubifs_dump_znode(c, znode); 1461 if (zp) { 1462 ubifs_msg(c, "dump of the parent znode"); 1463 ubifs_dump_znode(c, zp); 1464 } 1465 dump_stack(); 1466 return -EINVAL; 1467 } 1468 #else 1469 1470 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir) 1471 { 1472 return 0; 1473 } 1474 1475 void dbg_debugfs_exit_fs(struct ubifs_info *c) 1476 { 1477 return; 1478 } 1479 1480 int ubifs_debugging_init(struct ubifs_info *c) 1481 { 1482 return 0; 1483 } 1484 void ubifs_debugging_exit(struct ubifs_info *c) 1485 { 1486 } 1487 int dbg_check_filesystem(struct ubifs_info *c) 1488 { 1489 return 0; 1490 } 1491 int dbg_debugfs_init_fs(struct ubifs_info *c) 1492 { 1493 return 0; 1494 } 1495 #endif 1496 1497 #ifndef __UBOOT__ 1498 /** 1499 * dbg_check_tnc - check TNC tree. 1500 * @c: UBIFS file-system description object 1501 * @extra: do extra checks that are possible at start commit 1502 * 1503 * This function traverses whole TNC tree and checks every znode. Returns zero 1504 * if everything is all right and %-EINVAL if something is wrong with TNC. 1505 */ 1506 int dbg_check_tnc(struct ubifs_info *c, int extra) 1507 { 1508 struct ubifs_znode *znode; 1509 long clean_cnt = 0, dirty_cnt = 0; 1510 int err, last; 1511 1512 if (!dbg_is_chk_index(c)) 1513 return 0; 1514 1515 ubifs_assert(mutex_is_locked(&c->tnc_mutex)); 1516 if (!c->zroot.znode) 1517 return 0; 1518 1519 znode = ubifs_tnc_postorder_first(c->zroot.znode); 1520 while (1) { 1521 struct ubifs_znode *prev; 1522 struct ubifs_zbranch *zbr; 1523 1524 if (!znode->parent) 1525 zbr = &c->zroot; 1526 else 1527 zbr = &znode->parent->zbranch[znode->iip]; 1528 1529 err = dbg_check_znode(c, zbr); 1530 if (err) 1531 return err; 1532 1533 if (extra) { 1534 if (ubifs_zn_dirty(znode)) 1535 dirty_cnt += 1; 1536 else 1537 clean_cnt += 1; 1538 } 1539 1540 prev = znode; 1541 znode = ubifs_tnc_postorder_next(znode); 1542 if (!znode) 1543 break; 1544 1545 /* 1546 * If the last key of this znode is equivalent to the first key 1547 * of the next znode (collision), then check order of the keys. 1548 */ 1549 last = prev->child_cnt - 1; 1550 if (prev->level == 0 && znode->level == 0 && !c->replaying && 1551 !keys_cmp(c, &prev->zbranch[last].key, 1552 &znode->zbranch[0].key)) { 1553 err = dbg_check_key_order(c, &prev->zbranch[last], 1554 &znode->zbranch[0]); 1555 if (err < 0) 1556 return err; 1557 if (err) { 1558 ubifs_msg(c, "first znode"); 1559 ubifs_dump_znode(c, prev); 1560 ubifs_msg(c, "second znode"); 1561 ubifs_dump_znode(c, znode); 1562 return -EINVAL; 1563 } 1564 } 1565 } 1566 1567 if (extra) { 1568 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) { 1569 ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld", 1570 atomic_long_read(&c->clean_zn_cnt), 1571 clean_cnt); 1572 return -EINVAL; 1573 } 1574 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) { 1575 ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld", 1576 atomic_long_read(&c->dirty_zn_cnt), 1577 dirty_cnt); 1578 return -EINVAL; 1579 } 1580 } 1581 1582 return 0; 1583 } 1584 #else 1585 int dbg_check_tnc(struct ubifs_info *c, int extra) 1586 { 1587 return 0; 1588 } 1589 #endif 1590 1591 /** 1592 * dbg_walk_index - walk the on-flash index. 1593 * @c: UBIFS file-system description object 1594 * @leaf_cb: called for each leaf node 1595 * @znode_cb: called for each indexing node 1596 * @priv: private data which is passed to callbacks 1597 * 1598 * This function walks the UBIFS index and calls the @leaf_cb for each leaf 1599 * node and @znode_cb for each indexing node. Returns zero in case of success 1600 * and a negative error code in case of failure. 1601 * 1602 * It would be better if this function removed every znode it pulled to into 1603 * the TNC, so that the behavior more closely matched the non-debugging 1604 * behavior. 1605 */ 1606 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb, 1607 dbg_znode_callback znode_cb, void *priv) 1608 { 1609 int err; 1610 struct ubifs_zbranch *zbr; 1611 struct ubifs_znode *znode, *child; 1612 1613 mutex_lock(&c->tnc_mutex); 1614 /* If the root indexing node is not in TNC - pull it */ 1615 if (!c->zroot.znode) { 1616 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1617 if (IS_ERR(c->zroot.znode)) { 1618 err = PTR_ERR(c->zroot.znode); 1619 c->zroot.znode = NULL; 1620 goto out_unlock; 1621 } 1622 } 1623 1624 /* 1625 * We are going to traverse the indexing tree in the postorder manner. 1626 * Go down and find the leftmost indexing node where we are going to 1627 * start from. 1628 */ 1629 znode = c->zroot.znode; 1630 while (znode->level > 0) { 1631 zbr = &znode->zbranch[0]; 1632 child = zbr->znode; 1633 if (!child) { 1634 child = ubifs_load_znode(c, zbr, znode, 0); 1635 if (IS_ERR(child)) { 1636 err = PTR_ERR(child); 1637 goto out_unlock; 1638 } 1639 zbr->znode = child; 1640 } 1641 1642 znode = child; 1643 } 1644 1645 /* Iterate over all indexing nodes */ 1646 while (1) { 1647 int idx; 1648 1649 cond_resched(); 1650 1651 if (znode_cb) { 1652 err = znode_cb(c, znode, priv); 1653 if (err) { 1654 ubifs_err(c, "znode checking function returned error %d", 1655 err); 1656 ubifs_dump_znode(c, znode); 1657 goto out_dump; 1658 } 1659 } 1660 if (leaf_cb && znode->level == 0) { 1661 for (idx = 0; idx < znode->child_cnt; idx++) { 1662 zbr = &znode->zbranch[idx]; 1663 err = leaf_cb(c, zbr, priv); 1664 if (err) { 1665 ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d", 1666 err, zbr->lnum, zbr->offs); 1667 goto out_dump; 1668 } 1669 } 1670 } 1671 1672 if (!znode->parent) 1673 break; 1674 1675 idx = znode->iip + 1; 1676 znode = znode->parent; 1677 if (idx < znode->child_cnt) { 1678 /* Switch to the next index in the parent */ 1679 zbr = &znode->zbranch[idx]; 1680 child = zbr->znode; 1681 if (!child) { 1682 child = ubifs_load_znode(c, zbr, znode, idx); 1683 if (IS_ERR(child)) { 1684 err = PTR_ERR(child); 1685 goto out_unlock; 1686 } 1687 zbr->znode = child; 1688 } 1689 znode = child; 1690 } else 1691 /* 1692 * This is the last child, switch to the parent and 1693 * continue. 1694 */ 1695 continue; 1696 1697 /* Go to the lowest leftmost znode in the new sub-tree */ 1698 while (znode->level > 0) { 1699 zbr = &znode->zbranch[0]; 1700 child = zbr->znode; 1701 if (!child) { 1702 child = ubifs_load_znode(c, zbr, znode, 0); 1703 if (IS_ERR(child)) { 1704 err = PTR_ERR(child); 1705 goto out_unlock; 1706 } 1707 zbr->znode = child; 1708 } 1709 znode = child; 1710 } 1711 } 1712 1713 mutex_unlock(&c->tnc_mutex); 1714 return 0; 1715 1716 out_dump: 1717 if (znode->parent) 1718 zbr = &znode->parent->zbranch[znode->iip]; 1719 else 1720 zbr = &c->zroot; 1721 ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs); 1722 ubifs_dump_znode(c, znode); 1723 out_unlock: 1724 mutex_unlock(&c->tnc_mutex); 1725 return err; 1726 } 1727 1728 /** 1729 * add_size - add znode size to partially calculated index size. 1730 * @c: UBIFS file-system description object 1731 * @znode: znode to add size for 1732 * @priv: partially calculated index size 1733 * 1734 * This is a helper function for 'dbg_check_idx_size()' which is called for 1735 * every indexing node and adds its size to the 'long long' variable pointed to 1736 * by @priv. 1737 */ 1738 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv) 1739 { 1740 long long *idx_size = priv; 1741 int add; 1742 1743 add = ubifs_idx_node_sz(c, znode->child_cnt); 1744 add = ALIGN(add, 8); 1745 *idx_size += add; 1746 return 0; 1747 } 1748 1749 /** 1750 * dbg_check_idx_size - check index size. 1751 * @c: UBIFS file-system description object 1752 * @idx_size: size to check 1753 * 1754 * This function walks the UBIFS index, calculates its size and checks that the 1755 * size is equivalent to @idx_size. Returns zero in case of success and a 1756 * negative error code in case of failure. 1757 */ 1758 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size) 1759 { 1760 int err; 1761 long long calc = 0; 1762 1763 if (!dbg_is_chk_index(c)) 1764 return 0; 1765 1766 err = dbg_walk_index(c, NULL, add_size, &calc); 1767 if (err) { 1768 ubifs_err(c, "error %d while walking the index", err); 1769 return err; 1770 } 1771 1772 if (calc != idx_size) { 1773 ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld", 1774 calc, idx_size); 1775 dump_stack(); 1776 return -EINVAL; 1777 } 1778 1779 return 0; 1780 } 1781 1782 #ifndef __UBOOT__ 1783 /** 1784 * struct fsck_inode - information about an inode used when checking the file-system. 1785 * @rb: link in the RB-tree of inodes 1786 * @inum: inode number 1787 * @mode: inode type, permissions, etc 1788 * @nlink: inode link count 1789 * @xattr_cnt: count of extended attributes 1790 * @references: how many directory/xattr entries refer this inode (calculated 1791 * while walking the index) 1792 * @calc_cnt: for directory inode count of child directories 1793 * @size: inode size (read from on-flash inode) 1794 * @xattr_sz: summary size of all extended attributes (read from on-flash 1795 * inode) 1796 * @calc_sz: for directories calculated directory size 1797 * @calc_xcnt: count of extended attributes 1798 * @calc_xsz: calculated summary size of all extended attributes 1799 * @xattr_nms: sum of lengths of all extended attribute names belonging to this 1800 * inode (read from on-flash inode) 1801 * @calc_xnms: calculated sum of lengths of all extended attribute names 1802 */ 1803 struct fsck_inode { 1804 struct rb_node rb; 1805 ino_t inum; 1806 umode_t mode; 1807 unsigned int nlink; 1808 unsigned int xattr_cnt; 1809 int references; 1810 int calc_cnt; 1811 long long size; 1812 unsigned int xattr_sz; 1813 long long calc_sz; 1814 long long calc_xcnt; 1815 long long calc_xsz; 1816 unsigned int xattr_nms; 1817 long long calc_xnms; 1818 }; 1819 1820 /** 1821 * struct fsck_data - private FS checking information. 1822 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects) 1823 */ 1824 struct fsck_data { 1825 struct rb_root inodes; 1826 }; 1827 1828 /** 1829 * add_inode - add inode information to RB-tree of inodes. 1830 * @c: UBIFS file-system description object 1831 * @fsckd: FS checking information 1832 * @ino: raw UBIFS inode to add 1833 * 1834 * This is a helper function for 'check_leaf()' which adds information about 1835 * inode @ino to the RB-tree of inodes. Returns inode information pointer in 1836 * case of success and a negative error code in case of failure. 1837 */ 1838 static struct fsck_inode *add_inode(struct ubifs_info *c, 1839 struct fsck_data *fsckd, 1840 struct ubifs_ino_node *ino) 1841 { 1842 struct rb_node **p, *parent = NULL; 1843 struct fsck_inode *fscki; 1844 ino_t inum = key_inum_flash(c, &ino->key); 1845 struct inode *inode; 1846 struct ubifs_inode *ui; 1847 1848 p = &fsckd->inodes.rb_node; 1849 while (*p) { 1850 parent = *p; 1851 fscki = rb_entry(parent, struct fsck_inode, rb); 1852 if (inum < fscki->inum) 1853 p = &(*p)->rb_left; 1854 else if (inum > fscki->inum) 1855 p = &(*p)->rb_right; 1856 else 1857 return fscki; 1858 } 1859 1860 if (inum > c->highest_inum) { 1861 ubifs_err(c, "too high inode number, max. is %lu", 1862 (unsigned long)c->highest_inum); 1863 return ERR_PTR(-EINVAL); 1864 } 1865 1866 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS); 1867 if (!fscki) 1868 return ERR_PTR(-ENOMEM); 1869 1870 inode = ilookup(c->vfs_sb, inum); 1871 1872 fscki->inum = inum; 1873 /* 1874 * If the inode is present in the VFS inode cache, use it instead of 1875 * the on-flash inode which might be out-of-date. E.g., the size might 1876 * be out-of-date. If we do not do this, the following may happen, for 1877 * example: 1878 * 1. A power cut happens 1879 * 2. We mount the file-system R/O, the replay process fixes up the 1880 * inode size in the VFS cache, but on on-flash. 1881 * 3. 'check_leaf()' fails because it hits a data node beyond inode 1882 * size. 1883 */ 1884 if (!inode) { 1885 fscki->nlink = le32_to_cpu(ino->nlink); 1886 fscki->size = le64_to_cpu(ino->size); 1887 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 1888 fscki->xattr_sz = le32_to_cpu(ino->xattr_size); 1889 fscki->xattr_nms = le32_to_cpu(ino->xattr_names); 1890 fscki->mode = le32_to_cpu(ino->mode); 1891 } else { 1892 ui = ubifs_inode(inode); 1893 fscki->nlink = inode->i_nlink; 1894 fscki->size = inode->i_size; 1895 fscki->xattr_cnt = ui->xattr_cnt; 1896 fscki->xattr_sz = ui->xattr_size; 1897 fscki->xattr_nms = ui->xattr_names; 1898 fscki->mode = inode->i_mode; 1899 iput(inode); 1900 } 1901 1902 if (S_ISDIR(fscki->mode)) { 1903 fscki->calc_sz = UBIFS_INO_NODE_SZ; 1904 fscki->calc_cnt = 2; 1905 } 1906 1907 rb_link_node(&fscki->rb, parent, p); 1908 rb_insert_color(&fscki->rb, &fsckd->inodes); 1909 1910 return fscki; 1911 } 1912 1913 /** 1914 * search_inode - search inode in the RB-tree of inodes. 1915 * @fsckd: FS checking information 1916 * @inum: inode number to search 1917 * 1918 * This is a helper function for 'check_leaf()' which searches inode @inum in 1919 * the RB-tree of inodes and returns an inode information pointer or %NULL if 1920 * the inode was not found. 1921 */ 1922 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum) 1923 { 1924 struct rb_node *p; 1925 struct fsck_inode *fscki; 1926 1927 p = fsckd->inodes.rb_node; 1928 while (p) { 1929 fscki = rb_entry(p, struct fsck_inode, rb); 1930 if (inum < fscki->inum) 1931 p = p->rb_left; 1932 else if (inum > fscki->inum) 1933 p = p->rb_right; 1934 else 1935 return fscki; 1936 } 1937 return NULL; 1938 } 1939 1940 /** 1941 * read_add_inode - read inode node and add it to RB-tree of inodes. 1942 * @c: UBIFS file-system description object 1943 * @fsckd: FS checking information 1944 * @inum: inode number to read 1945 * 1946 * This is a helper function for 'check_leaf()' which finds inode node @inum in 1947 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode 1948 * information pointer in case of success and a negative error code in case of 1949 * failure. 1950 */ 1951 static struct fsck_inode *read_add_inode(struct ubifs_info *c, 1952 struct fsck_data *fsckd, ino_t inum) 1953 { 1954 int n, err; 1955 union ubifs_key key; 1956 struct ubifs_znode *znode; 1957 struct ubifs_zbranch *zbr; 1958 struct ubifs_ino_node *ino; 1959 struct fsck_inode *fscki; 1960 1961 fscki = search_inode(fsckd, inum); 1962 if (fscki) 1963 return fscki; 1964 1965 ino_key_init(c, &key, inum); 1966 err = ubifs_lookup_level0(c, &key, &znode, &n); 1967 if (!err) { 1968 ubifs_err(c, "inode %lu not found in index", (unsigned long)inum); 1969 return ERR_PTR(-ENOENT); 1970 } else if (err < 0) { 1971 ubifs_err(c, "error %d while looking up inode %lu", 1972 err, (unsigned long)inum); 1973 return ERR_PTR(err); 1974 } 1975 1976 zbr = &znode->zbranch[n]; 1977 if (zbr->len < UBIFS_INO_NODE_SZ) { 1978 ubifs_err(c, "bad node %lu node length %d", 1979 (unsigned long)inum, zbr->len); 1980 return ERR_PTR(-EINVAL); 1981 } 1982 1983 ino = kmalloc(zbr->len, GFP_NOFS); 1984 if (!ino) 1985 return ERR_PTR(-ENOMEM); 1986 1987 err = ubifs_tnc_read_node(c, zbr, ino); 1988 if (err) { 1989 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d", 1990 zbr->lnum, zbr->offs, err); 1991 kfree(ino); 1992 return ERR_PTR(err); 1993 } 1994 1995 fscki = add_inode(c, fsckd, ino); 1996 kfree(ino); 1997 if (IS_ERR(fscki)) { 1998 ubifs_err(c, "error %ld while adding inode %lu node", 1999 PTR_ERR(fscki), (unsigned long)inum); 2000 return fscki; 2001 } 2002 2003 return fscki; 2004 } 2005 2006 /** 2007 * check_leaf - check leaf node. 2008 * @c: UBIFS file-system description object 2009 * @zbr: zbranch of the leaf node to check 2010 * @priv: FS checking information 2011 * 2012 * This is a helper function for 'dbg_check_filesystem()' which is called for 2013 * every single leaf node while walking the indexing tree. It checks that the 2014 * leaf node referred from the indexing tree exists, has correct CRC, and does 2015 * some other basic validation. This function is also responsible for building 2016 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also 2017 * calculates reference count, size, etc for each inode in order to later 2018 * compare them to the information stored inside the inodes and detect possible 2019 * inconsistencies. Returns zero in case of success and a negative error code 2020 * in case of failure. 2021 */ 2022 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr, 2023 void *priv) 2024 { 2025 ino_t inum; 2026 void *node; 2027 struct ubifs_ch *ch; 2028 int err, type = key_type(c, &zbr->key); 2029 struct fsck_inode *fscki; 2030 2031 if (zbr->len < UBIFS_CH_SZ) { 2032 ubifs_err(c, "bad leaf length %d (LEB %d:%d)", 2033 zbr->len, zbr->lnum, zbr->offs); 2034 return -EINVAL; 2035 } 2036 2037 node = kmalloc(zbr->len, GFP_NOFS); 2038 if (!node) 2039 return -ENOMEM; 2040 2041 err = ubifs_tnc_read_node(c, zbr, node); 2042 if (err) { 2043 ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d", 2044 zbr->lnum, zbr->offs, err); 2045 goto out_free; 2046 } 2047 2048 /* If this is an inode node, add it to RB-tree of inodes */ 2049 if (type == UBIFS_INO_KEY) { 2050 fscki = add_inode(c, priv, node); 2051 if (IS_ERR(fscki)) { 2052 err = PTR_ERR(fscki); 2053 ubifs_err(c, "error %d while adding inode node", err); 2054 goto out_dump; 2055 } 2056 goto out; 2057 } 2058 2059 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY && 2060 type != UBIFS_DATA_KEY) { 2061 ubifs_err(c, "unexpected node type %d at LEB %d:%d", 2062 type, zbr->lnum, zbr->offs); 2063 err = -EINVAL; 2064 goto out_free; 2065 } 2066 2067 ch = node; 2068 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) { 2069 ubifs_err(c, "too high sequence number, max. is %llu", 2070 c->max_sqnum); 2071 err = -EINVAL; 2072 goto out_dump; 2073 } 2074 2075 if (type == UBIFS_DATA_KEY) { 2076 long long blk_offs; 2077 struct ubifs_data_node *dn = node; 2078 2079 ubifs_assert(zbr->len >= UBIFS_DATA_NODE_SZ); 2080 2081 /* 2082 * Search the inode node this data node belongs to and insert 2083 * it to the RB-tree of inodes. 2084 */ 2085 inum = key_inum_flash(c, &dn->key); 2086 fscki = read_add_inode(c, priv, inum); 2087 if (IS_ERR(fscki)) { 2088 err = PTR_ERR(fscki); 2089 ubifs_err(c, "error %d while processing data node and trying to find inode node %lu", 2090 err, (unsigned long)inum); 2091 goto out_dump; 2092 } 2093 2094 /* Make sure the data node is within inode size */ 2095 blk_offs = key_block_flash(c, &dn->key); 2096 blk_offs <<= UBIFS_BLOCK_SHIFT; 2097 blk_offs += le32_to_cpu(dn->size); 2098 if (blk_offs > fscki->size) { 2099 ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld", 2100 zbr->lnum, zbr->offs, fscki->size); 2101 err = -EINVAL; 2102 goto out_dump; 2103 } 2104 } else { 2105 int nlen; 2106 struct ubifs_dent_node *dent = node; 2107 struct fsck_inode *fscki1; 2108 2109 ubifs_assert(zbr->len >= UBIFS_DENT_NODE_SZ); 2110 2111 err = ubifs_validate_entry(c, dent); 2112 if (err) 2113 goto out_dump; 2114 2115 /* 2116 * Search the inode node this entry refers to and the parent 2117 * inode node and insert them to the RB-tree of inodes. 2118 */ 2119 inum = le64_to_cpu(dent->inum); 2120 fscki = read_add_inode(c, priv, inum); 2121 if (IS_ERR(fscki)) { 2122 err = PTR_ERR(fscki); 2123 ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu", 2124 err, (unsigned long)inum); 2125 goto out_dump; 2126 } 2127 2128 /* Count how many direntries or xentries refers this inode */ 2129 fscki->references += 1; 2130 2131 inum = key_inum_flash(c, &dent->key); 2132 fscki1 = read_add_inode(c, priv, inum); 2133 if (IS_ERR(fscki1)) { 2134 err = PTR_ERR(fscki1); 2135 ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu", 2136 err, (unsigned long)inum); 2137 goto out_dump; 2138 } 2139 2140 nlen = le16_to_cpu(dent->nlen); 2141 if (type == UBIFS_XENT_KEY) { 2142 fscki1->calc_xcnt += 1; 2143 fscki1->calc_xsz += CALC_DENT_SIZE(nlen); 2144 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size); 2145 fscki1->calc_xnms += nlen; 2146 } else { 2147 fscki1->calc_sz += CALC_DENT_SIZE(nlen); 2148 if (dent->type == UBIFS_ITYPE_DIR) 2149 fscki1->calc_cnt += 1; 2150 } 2151 } 2152 2153 out: 2154 kfree(node); 2155 return 0; 2156 2157 out_dump: 2158 ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs); 2159 ubifs_dump_node(c, node); 2160 out_free: 2161 kfree(node); 2162 return err; 2163 } 2164 2165 /** 2166 * free_inodes - free RB-tree of inodes. 2167 * @fsckd: FS checking information 2168 */ 2169 static void free_inodes(struct fsck_data *fsckd) 2170 { 2171 struct fsck_inode *fscki, *n; 2172 2173 rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb) 2174 kfree(fscki); 2175 } 2176 2177 /** 2178 * check_inodes - checks all inodes. 2179 * @c: UBIFS file-system description object 2180 * @fsckd: FS checking information 2181 * 2182 * This is a helper function for 'dbg_check_filesystem()' which walks the 2183 * RB-tree of inodes after the index scan has been finished, and checks that 2184 * inode nlink, size, etc are correct. Returns zero if inodes are fine, 2185 * %-EINVAL if not, and a negative error code in case of failure. 2186 */ 2187 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd) 2188 { 2189 int n, err; 2190 union ubifs_key key; 2191 struct ubifs_znode *znode; 2192 struct ubifs_zbranch *zbr; 2193 struct ubifs_ino_node *ino; 2194 struct fsck_inode *fscki; 2195 struct rb_node *this = rb_first(&fsckd->inodes); 2196 2197 while (this) { 2198 fscki = rb_entry(this, struct fsck_inode, rb); 2199 this = rb_next(this); 2200 2201 if (S_ISDIR(fscki->mode)) { 2202 /* 2203 * Directories have to have exactly one reference (they 2204 * cannot have hardlinks), although root inode is an 2205 * exception. 2206 */ 2207 if (fscki->inum != UBIFS_ROOT_INO && 2208 fscki->references != 1) { 2209 ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1", 2210 (unsigned long)fscki->inum, 2211 fscki->references); 2212 goto out_dump; 2213 } 2214 if (fscki->inum == UBIFS_ROOT_INO && 2215 fscki->references != 0) { 2216 ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it", 2217 (unsigned long)fscki->inum, 2218 fscki->references); 2219 goto out_dump; 2220 } 2221 if (fscki->calc_sz != fscki->size) { 2222 ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld", 2223 (unsigned long)fscki->inum, 2224 fscki->size, fscki->calc_sz); 2225 goto out_dump; 2226 } 2227 if (fscki->calc_cnt != fscki->nlink) { 2228 ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d", 2229 (unsigned long)fscki->inum, 2230 fscki->nlink, fscki->calc_cnt); 2231 goto out_dump; 2232 } 2233 } else { 2234 if (fscki->references != fscki->nlink) { 2235 ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d", 2236 (unsigned long)fscki->inum, 2237 fscki->nlink, fscki->references); 2238 goto out_dump; 2239 } 2240 } 2241 if (fscki->xattr_sz != fscki->calc_xsz) { 2242 ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld", 2243 (unsigned long)fscki->inum, fscki->xattr_sz, 2244 fscki->calc_xsz); 2245 goto out_dump; 2246 } 2247 if (fscki->xattr_cnt != fscki->calc_xcnt) { 2248 ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld", 2249 (unsigned long)fscki->inum, 2250 fscki->xattr_cnt, fscki->calc_xcnt); 2251 goto out_dump; 2252 } 2253 if (fscki->xattr_nms != fscki->calc_xnms) { 2254 ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld", 2255 (unsigned long)fscki->inum, fscki->xattr_nms, 2256 fscki->calc_xnms); 2257 goto out_dump; 2258 } 2259 } 2260 2261 return 0; 2262 2263 out_dump: 2264 /* Read the bad inode and dump it */ 2265 ino_key_init(c, &key, fscki->inum); 2266 err = ubifs_lookup_level0(c, &key, &znode, &n); 2267 if (!err) { 2268 ubifs_err(c, "inode %lu not found in index", 2269 (unsigned long)fscki->inum); 2270 return -ENOENT; 2271 } else if (err < 0) { 2272 ubifs_err(c, "error %d while looking up inode %lu", 2273 err, (unsigned long)fscki->inum); 2274 return err; 2275 } 2276 2277 zbr = &znode->zbranch[n]; 2278 ino = kmalloc(zbr->len, GFP_NOFS); 2279 if (!ino) 2280 return -ENOMEM; 2281 2282 err = ubifs_tnc_read_node(c, zbr, ino); 2283 if (err) { 2284 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d", 2285 zbr->lnum, zbr->offs, err); 2286 kfree(ino); 2287 return err; 2288 } 2289 2290 ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d", 2291 (unsigned long)fscki->inum, zbr->lnum, zbr->offs); 2292 ubifs_dump_node(c, ino); 2293 kfree(ino); 2294 return -EINVAL; 2295 } 2296 2297 /** 2298 * dbg_check_filesystem - check the file-system. 2299 * @c: UBIFS file-system description object 2300 * 2301 * This function checks the file system, namely: 2302 * o makes sure that all leaf nodes exist and their CRCs are correct; 2303 * o makes sure inode nlink, size, xattr size/count are correct (for all 2304 * inodes). 2305 * 2306 * The function reads whole indexing tree and all nodes, so it is pretty 2307 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if 2308 * not, and a negative error code in case of failure. 2309 */ 2310 int dbg_check_filesystem(struct ubifs_info *c) 2311 { 2312 int err; 2313 struct fsck_data fsckd; 2314 2315 if (!dbg_is_chk_fs(c)) 2316 return 0; 2317 2318 fsckd.inodes = RB_ROOT; 2319 err = dbg_walk_index(c, check_leaf, NULL, &fsckd); 2320 if (err) 2321 goto out_free; 2322 2323 err = check_inodes(c, &fsckd); 2324 if (err) 2325 goto out_free; 2326 2327 free_inodes(&fsckd); 2328 return 0; 2329 2330 out_free: 2331 ubifs_err(c, "file-system check failed with error %d", err); 2332 dump_stack(); 2333 free_inodes(&fsckd); 2334 return err; 2335 } 2336 2337 /** 2338 * dbg_check_data_nodes_order - check that list of data nodes is sorted. 2339 * @c: UBIFS file-system description object 2340 * @head: the list of nodes ('struct ubifs_scan_node' objects) 2341 * 2342 * This function returns zero if the list of data nodes is sorted correctly, 2343 * and %-EINVAL if not. 2344 */ 2345 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head) 2346 { 2347 struct list_head *cur; 2348 struct ubifs_scan_node *sa, *sb; 2349 2350 if (!dbg_is_chk_gen(c)) 2351 return 0; 2352 2353 for (cur = head->next; cur->next != head; cur = cur->next) { 2354 ino_t inuma, inumb; 2355 uint32_t blka, blkb; 2356 2357 cond_resched(); 2358 sa = container_of(cur, struct ubifs_scan_node, list); 2359 sb = container_of(cur->next, struct ubifs_scan_node, list); 2360 2361 if (sa->type != UBIFS_DATA_NODE) { 2362 ubifs_err(c, "bad node type %d", sa->type); 2363 ubifs_dump_node(c, sa->node); 2364 return -EINVAL; 2365 } 2366 if (sb->type != UBIFS_DATA_NODE) { 2367 ubifs_err(c, "bad node type %d", sb->type); 2368 ubifs_dump_node(c, sb->node); 2369 return -EINVAL; 2370 } 2371 2372 inuma = key_inum(c, &sa->key); 2373 inumb = key_inum(c, &sb->key); 2374 2375 if (inuma < inumb) 2376 continue; 2377 if (inuma > inumb) { 2378 ubifs_err(c, "larger inum %lu goes before inum %lu", 2379 (unsigned long)inuma, (unsigned long)inumb); 2380 goto error_dump; 2381 } 2382 2383 blka = key_block(c, &sa->key); 2384 blkb = key_block(c, &sb->key); 2385 2386 if (blka > blkb) { 2387 ubifs_err(c, "larger block %u goes before %u", blka, blkb); 2388 goto error_dump; 2389 } 2390 if (blka == blkb) { 2391 ubifs_err(c, "two data nodes for the same block"); 2392 goto error_dump; 2393 } 2394 } 2395 2396 return 0; 2397 2398 error_dump: 2399 ubifs_dump_node(c, sa->node); 2400 ubifs_dump_node(c, sb->node); 2401 return -EINVAL; 2402 } 2403 2404 /** 2405 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted. 2406 * @c: UBIFS file-system description object 2407 * @head: the list of nodes ('struct ubifs_scan_node' objects) 2408 * 2409 * This function returns zero if the list of non-data nodes is sorted correctly, 2410 * and %-EINVAL if not. 2411 */ 2412 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head) 2413 { 2414 struct list_head *cur; 2415 struct ubifs_scan_node *sa, *sb; 2416 2417 if (!dbg_is_chk_gen(c)) 2418 return 0; 2419 2420 for (cur = head->next; cur->next != head; cur = cur->next) { 2421 ino_t inuma, inumb; 2422 uint32_t hasha, hashb; 2423 2424 cond_resched(); 2425 sa = container_of(cur, struct ubifs_scan_node, list); 2426 sb = container_of(cur->next, struct ubifs_scan_node, list); 2427 2428 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE && 2429 sa->type != UBIFS_XENT_NODE) { 2430 ubifs_err(c, "bad node type %d", sa->type); 2431 ubifs_dump_node(c, sa->node); 2432 return -EINVAL; 2433 } 2434 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE && 2435 sa->type != UBIFS_XENT_NODE) { 2436 ubifs_err(c, "bad node type %d", sb->type); 2437 ubifs_dump_node(c, sb->node); 2438 return -EINVAL; 2439 } 2440 2441 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { 2442 ubifs_err(c, "non-inode node goes before inode node"); 2443 goto error_dump; 2444 } 2445 2446 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE) 2447 continue; 2448 2449 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { 2450 /* Inode nodes are sorted in descending size order */ 2451 if (sa->len < sb->len) { 2452 ubifs_err(c, "smaller inode node goes first"); 2453 goto error_dump; 2454 } 2455 continue; 2456 } 2457 2458 /* 2459 * This is either a dentry or xentry, which should be sorted in 2460 * ascending (parent ino, hash) order. 2461 */ 2462 inuma = key_inum(c, &sa->key); 2463 inumb = key_inum(c, &sb->key); 2464 2465 if (inuma < inumb) 2466 continue; 2467 if (inuma > inumb) { 2468 ubifs_err(c, "larger inum %lu goes before inum %lu", 2469 (unsigned long)inuma, (unsigned long)inumb); 2470 goto error_dump; 2471 } 2472 2473 hasha = key_block(c, &sa->key); 2474 hashb = key_block(c, &sb->key); 2475 2476 if (hasha > hashb) { 2477 ubifs_err(c, "larger hash %u goes before %u", 2478 hasha, hashb); 2479 goto error_dump; 2480 } 2481 } 2482 2483 return 0; 2484 2485 error_dump: 2486 ubifs_msg(c, "dumping first node"); 2487 ubifs_dump_node(c, sa->node); 2488 ubifs_msg(c, "dumping second node"); 2489 ubifs_dump_node(c, sb->node); 2490 return -EINVAL; 2491 return 0; 2492 } 2493 2494 static inline int chance(unsigned int n, unsigned int out_of) 2495 { 2496 return !!((prandom_u32() % out_of) + 1 <= n); 2497 2498 } 2499 2500 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write) 2501 { 2502 struct ubifs_debug_info *d = c->dbg; 2503 2504 ubifs_assert(dbg_is_tst_rcvry(c)); 2505 2506 if (!d->pc_cnt) { 2507 /* First call - decide delay to the power cut */ 2508 if (chance(1, 2)) { 2509 unsigned long delay; 2510 2511 if (chance(1, 2)) { 2512 d->pc_delay = 1; 2513 /* Fail within 1 minute */ 2514 delay = prandom_u32() % 60000; 2515 d->pc_timeout = jiffies; 2516 d->pc_timeout += msecs_to_jiffies(delay); 2517 ubifs_warn(c, "failing after %lums", delay); 2518 } else { 2519 d->pc_delay = 2; 2520 delay = prandom_u32() % 10000; 2521 /* Fail within 10000 operations */ 2522 d->pc_cnt_max = delay; 2523 ubifs_warn(c, "failing after %lu calls", delay); 2524 } 2525 } 2526 2527 d->pc_cnt += 1; 2528 } 2529 2530 /* Determine if failure delay has expired */ 2531 if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout)) 2532 return 0; 2533 if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max) 2534 return 0; 2535 2536 if (lnum == UBIFS_SB_LNUM) { 2537 if (write && chance(1, 2)) 2538 return 0; 2539 if (chance(19, 20)) 2540 return 0; 2541 ubifs_warn(c, "failing in super block LEB %d", lnum); 2542 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) { 2543 if (chance(19, 20)) 2544 return 0; 2545 ubifs_warn(c, "failing in master LEB %d", lnum); 2546 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) { 2547 if (write && chance(99, 100)) 2548 return 0; 2549 if (chance(399, 400)) 2550 return 0; 2551 ubifs_warn(c, "failing in log LEB %d", lnum); 2552 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) { 2553 if (write && chance(7, 8)) 2554 return 0; 2555 if (chance(19, 20)) 2556 return 0; 2557 ubifs_warn(c, "failing in LPT LEB %d", lnum); 2558 } else if (lnum >= c->orph_first && lnum <= c->orph_last) { 2559 if (write && chance(1, 2)) 2560 return 0; 2561 if (chance(9, 10)) 2562 return 0; 2563 ubifs_warn(c, "failing in orphan LEB %d", lnum); 2564 } else if (lnum == c->ihead_lnum) { 2565 if (chance(99, 100)) 2566 return 0; 2567 ubifs_warn(c, "failing in index head LEB %d", lnum); 2568 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) { 2569 if (chance(9, 10)) 2570 return 0; 2571 ubifs_warn(c, "failing in GC head LEB %d", lnum); 2572 } else if (write && !RB_EMPTY_ROOT(&c->buds) && 2573 !ubifs_search_bud(c, lnum)) { 2574 if (chance(19, 20)) 2575 return 0; 2576 ubifs_warn(c, "failing in non-bud LEB %d", lnum); 2577 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND || 2578 c->cmt_state == COMMIT_RUNNING_REQUIRED) { 2579 if (chance(999, 1000)) 2580 return 0; 2581 ubifs_warn(c, "failing in bud LEB %d commit running", lnum); 2582 } else { 2583 if (chance(9999, 10000)) 2584 return 0; 2585 ubifs_warn(c, "failing in bud LEB %d commit not running", lnum); 2586 } 2587 2588 d->pc_happened = 1; 2589 ubifs_warn(c, "========== Power cut emulated =========="); 2590 dump_stack(); 2591 return 1; 2592 } 2593 2594 static int corrupt_data(const struct ubifs_info *c, const void *buf, 2595 unsigned int len) 2596 { 2597 unsigned int from, to, ffs = chance(1, 2); 2598 unsigned char *p = (void *)buf; 2599 2600 from = prandom_u32() % len; 2601 /* Corruption span max to end of write unit */ 2602 to = min(len, ALIGN(from + 1, c->max_write_size)); 2603 2604 ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1, 2605 ffs ? "0xFFs" : "random data"); 2606 2607 if (ffs) 2608 memset(p + from, 0xFF, to - from); 2609 else 2610 prandom_bytes(p + from, to - from); 2611 2612 return to; 2613 } 2614 2615 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf, 2616 int offs, int len) 2617 { 2618 int err, failing; 2619 2620 if (c->dbg->pc_happened) 2621 return -EROFS; 2622 2623 failing = power_cut_emulated(c, lnum, 1); 2624 if (failing) { 2625 len = corrupt_data(c, buf, len); 2626 ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)", 2627 len, lnum, offs); 2628 } 2629 err = ubi_leb_write(c->ubi, lnum, buf, offs, len); 2630 if (err) 2631 return err; 2632 if (failing) 2633 return -EROFS; 2634 return 0; 2635 } 2636 2637 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf, 2638 int len) 2639 { 2640 int err; 2641 2642 if (c->dbg->pc_happened) 2643 return -EROFS; 2644 if (power_cut_emulated(c, lnum, 1)) 2645 return -EROFS; 2646 err = ubi_leb_change(c->ubi, lnum, buf, len); 2647 if (err) 2648 return err; 2649 if (power_cut_emulated(c, lnum, 1)) 2650 return -EROFS; 2651 return 0; 2652 } 2653 2654 int dbg_leb_unmap(struct ubifs_info *c, int lnum) 2655 { 2656 int err; 2657 2658 if (c->dbg->pc_happened) 2659 return -EROFS; 2660 if (power_cut_emulated(c, lnum, 0)) 2661 return -EROFS; 2662 err = ubi_leb_unmap(c->ubi, lnum); 2663 if (err) 2664 return err; 2665 if (power_cut_emulated(c, lnum, 0)) 2666 return -EROFS; 2667 return 0; 2668 } 2669 2670 int dbg_leb_map(struct ubifs_info *c, int lnum) 2671 { 2672 int err; 2673 2674 if (c->dbg->pc_happened) 2675 return -EROFS; 2676 if (power_cut_emulated(c, lnum, 0)) 2677 return -EROFS; 2678 err = ubi_leb_map(c->ubi, lnum); 2679 if (err) 2680 return err; 2681 if (power_cut_emulated(c, lnum, 0)) 2682 return -EROFS; 2683 return 0; 2684 } 2685 2686 /* 2687 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which 2688 * contain the stuff specific to particular file-system mounts. 2689 */ 2690 static struct dentry *dfs_rootdir; 2691 2692 static int dfs_file_open(struct inode *inode, struct file *file) 2693 { 2694 file->private_data = inode->i_private; 2695 return nonseekable_open(inode, file); 2696 } 2697 2698 /** 2699 * provide_user_output - provide output to the user reading a debugfs file. 2700 * @val: boolean value for the answer 2701 * @u: the buffer to store the answer at 2702 * @count: size of the buffer 2703 * @ppos: position in the @u output buffer 2704 * 2705 * This is a simple helper function which stores @val boolean value in the user 2706 * buffer when the user reads one of UBIFS debugfs files. Returns amount of 2707 * bytes written to @u in case of success and a negative error code in case of 2708 * failure. 2709 */ 2710 static int provide_user_output(int val, char __user *u, size_t count, 2711 loff_t *ppos) 2712 { 2713 char buf[3]; 2714 2715 if (val) 2716 buf[0] = '1'; 2717 else 2718 buf[0] = '0'; 2719 buf[1] = '\n'; 2720 buf[2] = 0x00; 2721 2722 return simple_read_from_buffer(u, count, ppos, buf, 2); 2723 } 2724 2725 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count, 2726 loff_t *ppos) 2727 { 2728 struct dentry *dent = file->f_path.dentry; 2729 struct ubifs_info *c = file->private_data; 2730 struct ubifs_debug_info *d = c->dbg; 2731 int val; 2732 2733 if (dent == d->dfs_chk_gen) 2734 val = d->chk_gen; 2735 else if (dent == d->dfs_chk_index) 2736 val = d->chk_index; 2737 else if (dent == d->dfs_chk_orph) 2738 val = d->chk_orph; 2739 else if (dent == d->dfs_chk_lprops) 2740 val = d->chk_lprops; 2741 else if (dent == d->dfs_chk_fs) 2742 val = d->chk_fs; 2743 else if (dent == d->dfs_tst_rcvry) 2744 val = d->tst_rcvry; 2745 else if (dent == d->dfs_ro_error) 2746 val = c->ro_error; 2747 else 2748 return -EINVAL; 2749 2750 return provide_user_output(val, u, count, ppos); 2751 } 2752 2753 /** 2754 * interpret_user_input - interpret user debugfs file input. 2755 * @u: user-provided buffer with the input 2756 * @count: buffer size 2757 * 2758 * This is a helper function which interpret user input to a boolean UBIFS 2759 * debugfs file. Returns %0 or %1 in case of success and a negative error code 2760 * in case of failure. 2761 */ 2762 static int interpret_user_input(const char __user *u, size_t count) 2763 { 2764 size_t buf_size; 2765 char buf[8]; 2766 2767 buf_size = min_t(size_t, count, (sizeof(buf) - 1)); 2768 if (copy_from_user(buf, u, buf_size)) 2769 return -EFAULT; 2770 2771 if (buf[0] == '1') 2772 return 1; 2773 else if (buf[0] == '0') 2774 return 0; 2775 2776 return -EINVAL; 2777 } 2778 2779 static ssize_t dfs_file_write(struct file *file, const char __user *u, 2780 size_t count, loff_t *ppos) 2781 { 2782 struct ubifs_info *c = file->private_data; 2783 struct ubifs_debug_info *d = c->dbg; 2784 struct dentry *dent = file->f_path.dentry; 2785 int val; 2786 2787 /* 2788 * TODO: this is racy - the file-system might have already been 2789 * unmounted and we'd oops in this case. The plan is to fix it with 2790 * help of 'iterate_supers_type()' which we should have in v3.0: when 2791 * a debugfs opened, we rember FS's UUID in file->private_data. Then 2792 * whenever we access the FS via a debugfs file, we iterate all UBIFS 2793 * superblocks and fine the one with the same UUID, and take the 2794 * locking right. 2795 * 2796 * The other way to go suggested by Al Viro is to create a separate 2797 * 'ubifs-debug' file-system instead. 2798 */ 2799 if (file->f_path.dentry == d->dfs_dump_lprops) { 2800 ubifs_dump_lprops(c); 2801 return count; 2802 } 2803 if (file->f_path.dentry == d->dfs_dump_budg) { 2804 ubifs_dump_budg(c, &c->bi); 2805 return count; 2806 } 2807 if (file->f_path.dentry == d->dfs_dump_tnc) { 2808 mutex_lock(&c->tnc_mutex); 2809 ubifs_dump_tnc(c); 2810 mutex_unlock(&c->tnc_mutex); 2811 return count; 2812 } 2813 2814 val = interpret_user_input(u, count); 2815 if (val < 0) 2816 return val; 2817 2818 if (dent == d->dfs_chk_gen) 2819 d->chk_gen = val; 2820 else if (dent == d->dfs_chk_index) 2821 d->chk_index = val; 2822 else if (dent == d->dfs_chk_orph) 2823 d->chk_orph = val; 2824 else if (dent == d->dfs_chk_lprops) 2825 d->chk_lprops = val; 2826 else if (dent == d->dfs_chk_fs) 2827 d->chk_fs = val; 2828 else if (dent == d->dfs_tst_rcvry) 2829 d->tst_rcvry = val; 2830 else if (dent == d->dfs_ro_error) 2831 c->ro_error = !!val; 2832 else 2833 return -EINVAL; 2834 2835 return count; 2836 } 2837 2838 static const struct file_operations dfs_fops = { 2839 .open = dfs_file_open, 2840 .read = dfs_file_read, 2841 .write = dfs_file_write, 2842 .owner = THIS_MODULE, 2843 .llseek = no_llseek, 2844 }; 2845 2846 /** 2847 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance. 2848 * @c: UBIFS file-system description object 2849 * 2850 * This function creates all debugfs files for this instance of UBIFS. Returns 2851 * zero in case of success and a negative error code in case of failure. 2852 * 2853 * Note, the only reason we have not merged this function with the 2854 * 'ubifs_debugging_init()' function is because it is better to initialize 2855 * debugfs interfaces at the very end of the mount process, and remove them at 2856 * the very beginning of the mount process. 2857 */ 2858 int dbg_debugfs_init_fs(struct ubifs_info *c) 2859 { 2860 int err, n; 2861 const char *fname; 2862 struct dentry *dent; 2863 struct ubifs_debug_info *d = c->dbg; 2864 2865 if (!IS_ENABLED(CONFIG_DEBUG_FS)) 2866 return 0; 2867 2868 n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME, 2869 c->vi.ubi_num, c->vi.vol_id); 2870 if (n == UBIFS_DFS_DIR_LEN) { 2871 /* The array size is too small */ 2872 fname = UBIFS_DFS_DIR_NAME; 2873 dent = ERR_PTR(-EINVAL); 2874 goto out; 2875 } 2876 2877 fname = d->dfs_dir_name; 2878 dent = debugfs_create_dir(fname, dfs_rootdir); 2879 if (IS_ERR_OR_NULL(dent)) 2880 goto out; 2881 d->dfs_dir = dent; 2882 2883 fname = "dump_lprops"; 2884 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); 2885 if (IS_ERR_OR_NULL(dent)) 2886 goto out_remove; 2887 d->dfs_dump_lprops = dent; 2888 2889 fname = "dump_budg"; 2890 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); 2891 if (IS_ERR_OR_NULL(dent)) 2892 goto out_remove; 2893 d->dfs_dump_budg = dent; 2894 2895 fname = "dump_tnc"; 2896 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); 2897 if (IS_ERR_OR_NULL(dent)) 2898 goto out_remove; 2899 d->dfs_dump_tnc = dent; 2900 2901 fname = "chk_general"; 2902 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2903 &dfs_fops); 2904 if (IS_ERR_OR_NULL(dent)) 2905 goto out_remove; 2906 d->dfs_chk_gen = dent; 2907 2908 fname = "chk_index"; 2909 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2910 &dfs_fops); 2911 if (IS_ERR_OR_NULL(dent)) 2912 goto out_remove; 2913 d->dfs_chk_index = dent; 2914 2915 fname = "chk_orphans"; 2916 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2917 &dfs_fops); 2918 if (IS_ERR_OR_NULL(dent)) 2919 goto out_remove; 2920 d->dfs_chk_orph = dent; 2921 2922 fname = "chk_lprops"; 2923 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2924 &dfs_fops); 2925 if (IS_ERR_OR_NULL(dent)) 2926 goto out_remove; 2927 d->dfs_chk_lprops = dent; 2928 2929 fname = "chk_fs"; 2930 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2931 &dfs_fops); 2932 if (IS_ERR_OR_NULL(dent)) 2933 goto out_remove; 2934 d->dfs_chk_fs = dent; 2935 2936 fname = "tst_recovery"; 2937 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2938 &dfs_fops); 2939 if (IS_ERR_OR_NULL(dent)) 2940 goto out_remove; 2941 d->dfs_tst_rcvry = dent; 2942 2943 fname = "ro_error"; 2944 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2945 &dfs_fops); 2946 if (IS_ERR_OR_NULL(dent)) 2947 goto out_remove; 2948 d->dfs_ro_error = dent; 2949 2950 return 0; 2951 2952 out_remove: 2953 debugfs_remove_recursive(d->dfs_dir); 2954 out: 2955 err = dent ? PTR_ERR(dent) : -ENODEV; 2956 ubifs_err(c, "cannot create \"%s\" debugfs file or directory, error %d\n", 2957 fname, err); 2958 return err; 2959 } 2960 2961 /** 2962 * dbg_debugfs_exit_fs - remove all debugfs files. 2963 * @c: UBIFS file-system description object 2964 */ 2965 void dbg_debugfs_exit_fs(struct ubifs_info *c) 2966 { 2967 if (IS_ENABLED(CONFIG_DEBUG_FS)) 2968 debugfs_remove_recursive(c->dbg->dfs_dir); 2969 } 2970 2971 struct ubifs_global_debug_info ubifs_dbg; 2972 2973 static struct dentry *dfs_chk_gen; 2974 static struct dentry *dfs_chk_index; 2975 static struct dentry *dfs_chk_orph; 2976 static struct dentry *dfs_chk_lprops; 2977 static struct dentry *dfs_chk_fs; 2978 static struct dentry *dfs_tst_rcvry; 2979 2980 static ssize_t dfs_global_file_read(struct file *file, char __user *u, 2981 size_t count, loff_t *ppos) 2982 { 2983 struct dentry *dent = file->f_path.dentry; 2984 int val; 2985 2986 if (dent == dfs_chk_gen) 2987 val = ubifs_dbg.chk_gen; 2988 else if (dent == dfs_chk_index) 2989 val = ubifs_dbg.chk_index; 2990 else if (dent == dfs_chk_orph) 2991 val = ubifs_dbg.chk_orph; 2992 else if (dent == dfs_chk_lprops) 2993 val = ubifs_dbg.chk_lprops; 2994 else if (dent == dfs_chk_fs) 2995 val = ubifs_dbg.chk_fs; 2996 else if (dent == dfs_tst_rcvry) 2997 val = ubifs_dbg.tst_rcvry; 2998 else 2999 return -EINVAL; 3000 3001 return provide_user_output(val, u, count, ppos); 3002 } 3003 3004 static ssize_t dfs_global_file_write(struct file *file, const char __user *u, 3005 size_t count, loff_t *ppos) 3006 { 3007 struct dentry *dent = file->f_path.dentry; 3008 int val; 3009 3010 val = interpret_user_input(u, count); 3011 if (val < 0) 3012 return val; 3013 3014 if (dent == dfs_chk_gen) 3015 ubifs_dbg.chk_gen = val; 3016 else if (dent == dfs_chk_index) 3017 ubifs_dbg.chk_index = val; 3018 else if (dent == dfs_chk_orph) 3019 ubifs_dbg.chk_orph = val; 3020 else if (dent == dfs_chk_lprops) 3021 ubifs_dbg.chk_lprops = val; 3022 else if (dent == dfs_chk_fs) 3023 ubifs_dbg.chk_fs = val; 3024 else if (dent == dfs_tst_rcvry) 3025 ubifs_dbg.tst_rcvry = val; 3026 else 3027 return -EINVAL; 3028 3029 return count; 3030 } 3031 3032 static const struct file_operations dfs_global_fops = { 3033 .read = dfs_global_file_read, 3034 .write = dfs_global_file_write, 3035 .owner = THIS_MODULE, 3036 .llseek = no_llseek, 3037 }; 3038 3039 /** 3040 * dbg_debugfs_init - initialize debugfs file-system. 3041 * 3042 * UBIFS uses debugfs file-system to expose various debugging knobs to 3043 * user-space. This function creates "ubifs" directory in the debugfs 3044 * file-system. Returns zero in case of success and a negative error code in 3045 * case of failure. 3046 */ 3047 int dbg_debugfs_init(void) 3048 { 3049 int err; 3050 const char *fname; 3051 struct dentry *dent; 3052 3053 if (!IS_ENABLED(CONFIG_DEBUG_FS)) 3054 return 0; 3055 3056 fname = "ubifs"; 3057 dent = debugfs_create_dir(fname, NULL); 3058 if (IS_ERR_OR_NULL(dent)) 3059 goto out; 3060 dfs_rootdir = dent; 3061 3062 fname = "chk_general"; 3063 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3064 &dfs_global_fops); 3065 if (IS_ERR_OR_NULL(dent)) 3066 goto out_remove; 3067 dfs_chk_gen = dent; 3068 3069 fname = "chk_index"; 3070 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3071 &dfs_global_fops); 3072 if (IS_ERR_OR_NULL(dent)) 3073 goto out_remove; 3074 dfs_chk_index = dent; 3075 3076 fname = "chk_orphans"; 3077 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3078 &dfs_global_fops); 3079 if (IS_ERR_OR_NULL(dent)) 3080 goto out_remove; 3081 dfs_chk_orph = dent; 3082 3083 fname = "chk_lprops"; 3084 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3085 &dfs_global_fops); 3086 if (IS_ERR_OR_NULL(dent)) 3087 goto out_remove; 3088 dfs_chk_lprops = dent; 3089 3090 fname = "chk_fs"; 3091 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3092 &dfs_global_fops); 3093 if (IS_ERR_OR_NULL(dent)) 3094 goto out_remove; 3095 dfs_chk_fs = dent; 3096 3097 fname = "tst_recovery"; 3098 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3099 &dfs_global_fops); 3100 if (IS_ERR_OR_NULL(dent)) 3101 goto out_remove; 3102 dfs_tst_rcvry = dent; 3103 3104 return 0; 3105 3106 out_remove: 3107 debugfs_remove_recursive(dfs_rootdir); 3108 out: 3109 err = dent ? PTR_ERR(dent) : -ENODEV; 3110 pr_err("UBIFS error (pid %d): cannot create \"%s\" debugfs file or directory, error %d\n", 3111 current->pid, fname, err); 3112 return err; 3113 } 3114 3115 /** 3116 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system. 3117 */ 3118 void dbg_debugfs_exit(void) 3119 { 3120 if (IS_ENABLED(CONFIG_DEBUG_FS)) 3121 debugfs_remove_recursive(dfs_rootdir); 3122 } 3123 3124 /** 3125 * ubifs_debugging_init - initialize UBIFS debugging. 3126 * @c: UBIFS file-system description object 3127 * 3128 * This function initializes debugging-related data for the file system. 3129 * Returns zero in case of success and a negative error code in case of 3130 * failure. 3131 */ 3132 int ubifs_debugging_init(struct ubifs_info *c) 3133 { 3134 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL); 3135 if (!c->dbg) 3136 return -ENOMEM; 3137 3138 return 0; 3139 } 3140 3141 /** 3142 * ubifs_debugging_exit - free debugging data. 3143 * @c: UBIFS file-system description object 3144 */ 3145 void ubifs_debugging_exit(struct ubifs_info *c) 3146 { 3147 kfree(c->dbg); 3148 } 3149 #endif 3150