1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * This file is part of UBIFS. 4 * 5 * Copyright (C) 2006-2008 Nokia Corporation 6 * 7 * Authors: Artem Bityutskiy (Битюцкий Артём) 8 * Adrian Hunter 9 */ 10 11 /* 12 * This file implements most of the debugging stuff which is compiled in only 13 * when it is enabled. But some debugging check functions are implemented in 14 * corresponding subsystem, just because they are closely related and utilize 15 * various local functions of those subsystems. 16 */ 17 18 #ifndef __UBOOT__ 19 #include <linux/module.h> 20 #include <linux/debugfs.h> 21 #include <linux/math64.h> 22 #include <linux/uaccess.h> 23 #include <linux/random.h> 24 #else 25 #include <linux/compat.h> 26 #include <linux/err.h> 27 #endif 28 #include "ubifs.h" 29 30 #ifndef __UBOOT__ 31 static DEFINE_SPINLOCK(dbg_lock); 32 #endif 33 34 static const char *get_key_fmt(int fmt) 35 { 36 switch (fmt) { 37 case UBIFS_SIMPLE_KEY_FMT: 38 return "simple"; 39 default: 40 return "unknown/invalid format"; 41 } 42 } 43 44 static const char *get_key_hash(int hash) 45 { 46 switch (hash) { 47 case UBIFS_KEY_HASH_R5: 48 return "R5"; 49 case UBIFS_KEY_HASH_TEST: 50 return "test"; 51 default: 52 return "unknown/invalid name hash"; 53 } 54 } 55 56 static const char *get_key_type(int type) 57 { 58 switch (type) { 59 case UBIFS_INO_KEY: 60 return "inode"; 61 case UBIFS_DENT_KEY: 62 return "direntry"; 63 case UBIFS_XENT_KEY: 64 return "xentry"; 65 case UBIFS_DATA_KEY: 66 return "data"; 67 case UBIFS_TRUN_KEY: 68 return "truncate"; 69 default: 70 return "unknown/invalid key"; 71 } 72 } 73 74 #ifndef __UBOOT__ 75 static const char *get_dent_type(int type) 76 { 77 switch (type) { 78 case UBIFS_ITYPE_REG: 79 return "file"; 80 case UBIFS_ITYPE_DIR: 81 return "dir"; 82 case UBIFS_ITYPE_LNK: 83 return "symlink"; 84 case UBIFS_ITYPE_BLK: 85 return "blkdev"; 86 case UBIFS_ITYPE_CHR: 87 return "char dev"; 88 case UBIFS_ITYPE_FIFO: 89 return "fifo"; 90 case UBIFS_ITYPE_SOCK: 91 return "socket"; 92 default: 93 return "unknown/invalid type"; 94 } 95 } 96 #endif 97 98 const char *dbg_snprintf_key(const struct ubifs_info *c, 99 const union ubifs_key *key, char *buffer, int len) 100 { 101 char *p = buffer; 102 int type = key_type(c, key); 103 104 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) { 105 switch (type) { 106 case UBIFS_INO_KEY: 107 len -= snprintf(p, len, "(%lu, %s)", 108 (unsigned long)key_inum(c, key), 109 get_key_type(type)); 110 break; 111 case UBIFS_DENT_KEY: 112 case UBIFS_XENT_KEY: 113 len -= snprintf(p, len, "(%lu, %s, %#08x)", 114 (unsigned long)key_inum(c, key), 115 get_key_type(type), key_hash(c, key)); 116 break; 117 case UBIFS_DATA_KEY: 118 len -= snprintf(p, len, "(%lu, %s, %u)", 119 (unsigned long)key_inum(c, key), 120 get_key_type(type), key_block(c, key)); 121 break; 122 case UBIFS_TRUN_KEY: 123 len -= snprintf(p, len, "(%lu, %s)", 124 (unsigned long)key_inum(c, key), 125 get_key_type(type)); 126 break; 127 default: 128 len -= snprintf(p, len, "(bad key type: %#08x, %#08x)", 129 key->u32[0], key->u32[1]); 130 } 131 } else 132 len -= snprintf(p, len, "bad key format %d", c->key_fmt); 133 ubifs_assert(len > 0); 134 return p; 135 } 136 137 const char *dbg_ntype(int type) 138 { 139 switch (type) { 140 case UBIFS_PAD_NODE: 141 return "padding node"; 142 case UBIFS_SB_NODE: 143 return "superblock node"; 144 case UBIFS_MST_NODE: 145 return "master node"; 146 case UBIFS_REF_NODE: 147 return "reference node"; 148 case UBIFS_INO_NODE: 149 return "inode node"; 150 case UBIFS_DENT_NODE: 151 return "direntry node"; 152 case UBIFS_XENT_NODE: 153 return "xentry node"; 154 case UBIFS_DATA_NODE: 155 return "data node"; 156 case UBIFS_TRUN_NODE: 157 return "truncate node"; 158 case UBIFS_IDX_NODE: 159 return "indexing node"; 160 case UBIFS_CS_NODE: 161 return "commit start node"; 162 case UBIFS_ORPH_NODE: 163 return "orphan node"; 164 default: 165 return "unknown node"; 166 } 167 } 168 169 static const char *dbg_gtype(int type) 170 { 171 switch (type) { 172 case UBIFS_NO_NODE_GROUP: 173 return "no node group"; 174 case UBIFS_IN_NODE_GROUP: 175 return "in node group"; 176 case UBIFS_LAST_OF_NODE_GROUP: 177 return "last of node group"; 178 default: 179 return "unknown"; 180 } 181 } 182 183 const char *dbg_cstate(int cmt_state) 184 { 185 switch (cmt_state) { 186 case COMMIT_RESTING: 187 return "commit resting"; 188 case COMMIT_BACKGROUND: 189 return "background commit requested"; 190 case COMMIT_REQUIRED: 191 return "commit required"; 192 case COMMIT_RUNNING_BACKGROUND: 193 return "BACKGROUND commit running"; 194 case COMMIT_RUNNING_REQUIRED: 195 return "commit running and required"; 196 case COMMIT_BROKEN: 197 return "broken commit"; 198 default: 199 return "unknown commit state"; 200 } 201 } 202 203 const char *dbg_jhead(int jhead) 204 { 205 switch (jhead) { 206 case GCHD: 207 return "0 (GC)"; 208 case BASEHD: 209 return "1 (base)"; 210 case DATAHD: 211 return "2 (data)"; 212 default: 213 return "unknown journal head"; 214 } 215 } 216 217 static void dump_ch(const struct ubifs_ch *ch) 218 { 219 pr_err("\tmagic %#x\n", le32_to_cpu(ch->magic)); 220 pr_err("\tcrc %#x\n", le32_to_cpu(ch->crc)); 221 pr_err("\tnode_type %d (%s)\n", ch->node_type, 222 dbg_ntype(ch->node_type)); 223 pr_err("\tgroup_type %d (%s)\n", ch->group_type, 224 dbg_gtype(ch->group_type)); 225 pr_err("\tsqnum %llu\n", 226 (unsigned long long)le64_to_cpu(ch->sqnum)); 227 pr_err("\tlen %u\n", le32_to_cpu(ch->len)); 228 } 229 230 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode) 231 { 232 #ifndef __UBOOT__ 233 const struct ubifs_inode *ui = ubifs_inode(inode); 234 struct qstr nm = { .name = NULL }; 235 union ubifs_key key; 236 struct ubifs_dent_node *dent, *pdent = NULL; 237 int count = 2; 238 239 pr_err("Dump in-memory inode:"); 240 pr_err("\tinode %lu\n", inode->i_ino); 241 pr_err("\tsize %llu\n", 242 (unsigned long long)i_size_read(inode)); 243 pr_err("\tnlink %u\n", inode->i_nlink); 244 pr_err("\tuid %u\n", (unsigned int)i_uid_read(inode)); 245 pr_err("\tgid %u\n", (unsigned int)i_gid_read(inode)); 246 pr_err("\tatime %u.%u\n", 247 (unsigned int)inode->i_atime.tv_sec, 248 (unsigned int)inode->i_atime.tv_nsec); 249 pr_err("\tmtime %u.%u\n", 250 (unsigned int)inode->i_mtime.tv_sec, 251 (unsigned int)inode->i_mtime.tv_nsec); 252 pr_err("\tctime %u.%u\n", 253 (unsigned int)inode->i_ctime.tv_sec, 254 (unsigned int)inode->i_ctime.tv_nsec); 255 pr_err("\tcreat_sqnum %llu\n", ui->creat_sqnum); 256 pr_err("\txattr_size %u\n", ui->xattr_size); 257 pr_err("\txattr_cnt %u\n", ui->xattr_cnt); 258 pr_err("\txattr_names %u\n", ui->xattr_names); 259 pr_err("\tdirty %u\n", ui->dirty); 260 pr_err("\txattr %u\n", ui->xattr); 261 pr_err("\tbulk_read %u\n", ui->xattr); 262 pr_err("\tsynced_i_size %llu\n", 263 (unsigned long long)ui->synced_i_size); 264 pr_err("\tui_size %llu\n", 265 (unsigned long long)ui->ui_size); 266 pr_err("\tflags %d\n", ui->flags); 267 pr_err("\tcompr_type %d\n", ui->compr_type); 268 pr_err("\tlast_page_read %lu\n", ui->last_page_read); 269 pr_err("\tread_in_a_row %lu\n", ui->read_in_a_row); 270 pr_err("\tdata_len %d\n", ui->data_len); 271 272 if (!S_ISDIR(inode->i_mode)) 273 return; 274 275 pr_err("List of directory entries:\n"); 276 ubifs_assert(!mutex_is_locked(&c->tnc_mutex)); 277 278 lowest_dent_key(c, &key, inode->i_ino); 279 while (1) { 280 dent = ubifs_tnc_next_ent(c, &key, &nm); 281 if (IS_ERR(dent)) { 282 if (PTR_ERR(dent) != -ENOENT) 283 pr_err("error %ld\n", PTR_ERR(dent)); 284 break; 285 } 286 287 pr_err("\t%d: %s (%s)\n", 288 count++, dent->name, get_dent_type(dent->type)); 289 290 nm.name = dent->name; 291 nm.len = le16_to_cpu(dent->nlen); 292 kfree(pdent); 293 pdent = dent; 294 key_read(c, &dent->key, &key); 295 } 296 kfree(pdent); 297 #endif 298 } 299 300 void ubifs_dump_node(const struct ubifs_info *c, const void *node) 301 { 302 int i, n; 303 union ubifs_key key; 304 const struct ubifs_ch *ch = node; 305 char key_buf[DBG_KEY_BUF_LEN]; 306 307 /* If the magic is incorrect, just hexdump the first bytes */ 308 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) { 309 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ); 310 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1, 311 (void *)node, UBIFS_CH_SZ, 1); 312 return; 313 } 314 315 spin_lock(&dbg_lock); 316 dump_ch(node); 317 318 switch (ch->node_type) { 319 case UBIFS_PAD_NODE: 320 { 321 const struct ubifs_pad_node *pad = node; 322 323 pr_err("\tpad_len %u\n", le32_to_cpu(pad->pad_len)); 324 break; 325 } 326 case UBIFS_SB_NODE: 327 { 328 const struct ubifs_sb_node *sup = node; 329 unsigned int sup_flags = le32_to_cpu(sup->flags); 330 331 pr_err("\tkey_hash %d (%s)\n", 332 (int)sup->key_hash, get_key_hash(sup->key_hash)); 333 pr_err("\tkey_fmt %d (%s)\n", 334 (int)sup->key_fmt, get_key_fmt(sup->key_fmt)); 335 pr_err("\tflags %#x\n", sup_flags); 336 pr_err("\tbig_lpt %u\n", 337 !!(sup_flags & UBIFS_FLG_BIGLPT)); 338 pr_err("\tspace_fixup %u\n", 339 !!(sup_flags & UBIFS_FLG_SPACE_FIXUP)); 340 pr_err("\tmin_io_size %u\n", le32_to_cpu(sup->min_io_size)); 341 pr_err("\tleb_size %u\n", le32_to_cpu(sup->leb_size)); 342 pr_err("\tleb_cnt %u\n", le32_to_cpu(sup->leb_cnt)); 343 pr_err("\tmax_leb_cnt %u\n", le32_to_cpu(sup->max_leb_cnt)); 344 pr_err("\tmax_bud_bytes %llu\n", 345 (unsigned long long)le64_to_cpu(sup->max_bud_bytes)); 346 pr_err("\tlog_lebs %u\n", le32_to_cpu(sup->log_lebs)); 347 pr_err("\tlpt_lebs %u\n", le32_to_cpu(sup->lpt_lebs)); 348 pr_err("\torph_lebs %u\n", le32_to_cpu(sup->orph_lebs)); 349 pr_err("\tjhead_cnt %u\n", le32_to_cpu(sup->jhead_cnt)); 350 pr_err("\tfanout %u\n", le32_to_cpu(sup->fanout)); 351 pr_err("\tlsave_cnt %u\n", le32_to_cpu(sup->lsave_cnt)); 352 pr_err("\tdefault_compr %u\n", 353 (int)le16_to_cpu(sup->default_compr)); 354 pr_err("\trp_size %llu\n", 355 (unsigned long long)le64_to_cpu(sup->rp_size)); 356 pr_err("\trp_uid %u\n", le32_to_cpu(sup->rp_uid)); 357 pr_err("\trp_gid %u\n", le32_to_cpu(sup->rp_gid)); 358 pr_err("\tfmt_version %u\n", le32_to_cpu(sup->fmt_version)); 359 pr_err("\ttime_gran %u\n", le32_to_cpu(sup->time_gran)); 360 pr_err("\tUUID %pUB\n", sup->uuid); 361 break; 362 } 363 case UBIFS_MST_NODE: 364 { 365 const struct ubifs_mst_node *mst = node; 366 367 pr_err("\thighest_inum %llu\n", 368 (unsigned long long)le64_to_cpu(mst->highest_inum)); 369 pr_err("\tcommit number %llu\n", 370 (unsigned long long)le64_to_cpu(mst->cmt_no)); 371 pr_err("\tflags %#x\n", le32_to_cpu(mst->flags)); 372 pr_err("\tlog_lnum %u\n", le32_to_cpu(mst->log_lnum)); 373 pr_err("\troot_lnum %u\n", le32_to_cpu(mst->root_lnum)); 374 pr_err("\troot_offs %u\n", le32_to_cpu(mst->root_offs)); 375 pr_err("\troot_len %u\n", le32_to_cpu(mst->root_len)); 376 pr_err("\tgc_lnum %u\n", le32_to_cpu(mst->gc_lnum)); 377 pr_err("\tihead_lnum %u\n", le32_to_cpu(mst->ihead_lnum)); 378 pr_err("\tihead_offs %u\n", le32_to_cpu(mst->ihead_offs)); 379 pr_err("\tindex_size %llu\n", 380 (unsigned long long)le64_to_cpu(mst->index_size)); 381 pr_err("\tlpt_lnum %u\n", le32_to_cpu(mst->lpt_lnum)); 382 pr_err("\tlpt_offs %u\n", le32_to_cpu(mst->lpt_offs)); 383 pr_err("\tnhead_lnum %u\n", le32_to_cpu(mst->nhead_lnum)); 384 pr_err("\tnhead_offs %u\n", le32_to_cpu(mst->nhead_offs)); 385 pr_err("\tltab_lnum %u\n", le32_to_cpu(mst->ltab_lnum)); 386 pr_err("\tltab_offs %u\n", le32_to_cpu(mst->ltab_offs)); 387 pr_err("\tlsave_lnum %u\n", le32_to_cpu(mst->lsave_lnum)); 388 pr_err("\tlsave_offs %u\n", le32_to_cpu(mst->lsave_offs)); 389 pr_err("\tlscan_lnum %u\n", le32_to_cpu(mst->lscan_lnum)); 390 pr_err("\tleb_cnt %u\n", le32_to_cpu(mst->leb_cnt)); 391 pr_err("\tempty_lebs %u\n", le32_to_cpu(mst->empty_lebs)); 392 pr_err("\tidx_lebs %u\n", le32_to_cpu(mst->idx_lebs)); 393 pr_err("\ttotal_free %llu\n", 394 (unsigned long long)le64_to_cpu(mst->total_free)); 395 pr_err("\ttotal_dirty %llu\n", 396 (unsigned long long)le64_to_cpu(mst->total_dirty)); 397 pr_err("\ttotal_used %llu\n", 398 (unsigned long long)le64_to_cpu(mst->total_used)); 399 pr_err("\ttotal_dead %llu\n", 400 (unsigned long long)le64_to_cpu(mst->total_dead)); 401 pr_err("\ttotal_dark %llu\n", 402 (unsigned long long)le64_to_cpu(mst->total_dark)); 403 break; 404 } 405 case UBIFS_REF_NODE: 406 { 407 const struct ubifs_ref_node *ref = node; 408 409 pr_err("\tlnum %u\n", le32_to_cpu(ref->lnum)); 410 pr_err("\toffs %u\n", le32_to_cpu(ref->offs)); 411 pr_err("\tjhead %u\n", le32_to_cpu(ref->jhead)); 412 break; 413 } 414 case UBIFS_INO_NODE: 415 { 416 const struct ubifs_ino_node *ino = node; 417 418 key_read(c, &ino->key, &key); 419 pr_err("\tkey %s\n", 420 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 421 pr_err("\tcreat_sqnum %llu\n", 422 (unsigned long long)le64_to_cpu(ino->creat_sqnum)); 423 pr_err("\tsize %llu\n", 424 (unsigned long long)le64_to_cpu(ino->size)); 425 pr_err("\tnlink %u\n", le32_to_cpu(ino->nlink)); 426 pr_err("\tatime %lld.%u\n", 427 (long long)le64_to_cpu(ino->atime_sec), 428 le32_to_cpu(ino->atime_nsec)); 429 pr_err("\tmtime %lld.%u\n", 430 (long long)le64_to_cpu(ino->mtime_sec), 431 le32_to_cpu(ino->mtime_nsec)); 432 pr_err("\tctime %lld.%u\n", 433 (long long)le64_to_cpu(ino->ctime_sec), 434 le32_to_cpu(ino->ctime_nsec)); 435 pr_err("\tuid %u\n", le32_to_cpu(ino->uid)); 436 pr_err("\tgid %u\n", le32_to_cpu(ino->gid)); 437 pr_err("\tmode %u\n", le32_to_cpu(ino->mode)); 438 pr_err("\tflags %#x\n", le32_to_cpu(ino->flags)); 439 pr_err("\txattr_cnt %u\n", le32_to_cpu(ino->xattr_cnt)); 440 pr_err("\txattr_size %u\n", le32_to_cpu(ino->xattr_size)); 441 pr_err("\txattr_names %u\n", le32_to_cpu(ino->xattr_names)); 442 pr_err("\tcompr_type %#x\n", 443 (int)le16_to_cpu(ino->compr_type)); 444 pr_err("\tdata len %u\n", le32_to_cpu(ino->data_len)); 445 break; 446 } 447 case UBIFS_DENT_NODE: 448 case UBIFS_XENT_NODE: 449 { 450 const struct ubifs_dent_node *dent = node; 451 int nlen = le16_to_cpu(dent->nlen); 452 453 key_read(c, &dent->key, &key); 454 pr_err("\tkey %s\n", 455 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 456 pr_err("\tinum %llu\n", 457 (unsigned long long)le64_to_cpu(dent->inum)); 458 pr_err("\ttype %d\n", (int)dent->type); 459 pr_err("\tnlen %d\n", nlen); 460 pr_err("\tname "); 461 462 if (nlen > UBIFS_MAX_NLEN) 463 pr_err("(bad name length, not printing, bad or corrupted node)"); 464 else { 465 for (i = 0; i < nlen && dent->name[i]; i++) 466 pr_cont("%c", dent->name[i]); 467 } 468 pr_cont("\n"); 469 470 break; 471 } 472 case UBIFS_DATA_NODE: 473 { 474 const struct ubifs_data_node *dn = node; 475 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ; 476 477 key_read(c, &dn->key, &key); 478 pr_err("\tkey %s\n", 479 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 480 pr_err("\tsize %u\n", le32_to_cpu(dn->size)); 481 pr_err("\tcompr_typ %d\n", 482 (int)le16_to_cpu(dn->compr_type)); 483 pr_err("\tdata size %d\n", dlen); 484 pr_err("\tdata:\n"); 485 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1, 486 (void *)&dn->data, dlen, 0); 487 break; 488 } 489 case UBIFS_TRUN_NODE: 490 { 491 const struct ubifs_trun_node *trun = node; 492 493 pr_err("\tinum %u\n", le32_to_cpu(trun->inum)); 494 pr_err("\told_size %llu\n", 495 (unsigned long long)le64_to_cpu(trun->old_size)); 496 pr_err("\tnew_size %llu\n", 497 (unsigned long long)le64_to_cpu(trun->new_size)); 498 break; 499 } 500 case UBIFS_IDX_NODE: 501 { 502 const struct ubifs_idx_node *idx = node; 503 504 n = le16_to_cpu(idx->child_cnt); 505 pr_err("\tchild_cnt %d\n", n); 506 pr_err("\tlevel %d\n", (int)le16_to_cpu(idx->level)); 507 pr_err("\tBranches:\n"); 508 509 for (i = 0; i < n && i < c->fanout - 1; i++) { 510 const struct ubifs_branch *br; 511 512 br = ubifs_idx_branch(c, idx, i); 513 key_read(c, &br->key, &key); 514 pr_err("\t%d: LEB %d:%d len %d key %s\n", 515 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs), 516 le32_to_cpu(br->len), 517 dbg_snprintf_key(c, &key, key_buf, 518 DBG_KEY_BUF_LEN)); 519 } 520 break; 521 } 522 case UBIFS_CS_NODE: 523 break; 524 case UBIFS_ORPH_NODE: 525 { 526 const struct ubifs_orph_node *orph = node; 527 528 pr_err("\tcommit number %llu\n", 529 (unsigned long long) 530 le64_to_cpu(orph->cmt_no) & LLONG_MAX); 531 pr_err("\tlast node flag %llu\n", 532 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63); 533 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3; 534 pr_err("\t%d orphan inode numbers:\n", n); 535 for (i = 0; i < n; i++) 536 pr_err("\t ino %llu\n", 537 (unsigned long long)le64_to_cpu(orph->inos[i])); 538 break; 539 } 540 default: 541 pr_err("node type %d was not recognized\n", 542 (int)ch->node_type); 543 } 544 spin_unlock(&dbg_lock); 545 } 546 547 void ubifs_dump_budget_req(const struct ubifs_budget_req *req) 548 { 549 spin_lock(&dbg_lock); 550 pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n", 551 req->new_ino, req->dirtied_ino); 552 pr_err("\tnew_ino_d %d, dirtied_ino_d %d\n", 553 req->new_ino_d, req->dirtied_ino_d); 554 pr_err("\tnew_page %d, dirtied_page %d\n", 555 req->new_page, req->dirtied_page); 556 pr_err("\tnew_dent %d, mod_dent %d\n", 557 req->new_dent, req->mod_dent); 558 pr_err("\tidx_growth %d\n", req->idx_growth); 559 pr_err("\tdata_growth %d dd_growth %d\n", 560 req->data_growth, req->dd_growth); 561 spin_unlock(&dbg_lock); 562 } 563 564 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst) 565 { 566 spin_lock(&dbg_lock); 567 pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs %d\n", 568 current->pid, lst->empty_lebs, lst->idx_lebs); 569 pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n", 570 lst->taken_empty_lebs, lst->total_free, lst->total_dirty); 571 pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n", 572 lst->total_used, lst->total_dark, lst->total_dead); 573 spin_unlock(&dbg_lock); 574 } 575 576 #ifndef __UBOOT__ 577 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi) 578 { 579 int i; 580 struct rb_node *rb; 581 struct ubifs_bud *bud; 582 struct ubifs_gced_idx_leb *idx_gc; 583 long long available, outstanding, free; 584 585 spin_lock(&c->space_lock); 586 spin_lock(&dbg_lock); 587 pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n", 588 current->pid, bi->data_growth + bi->dd_growth, 589 bi->data_growth + bi->dd_growth + bi->idx_growth); 590 pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n", 591 bi->data_growth, bi->dd_growth, bi->idx_growth); 592 pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n", 593 bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx); 594 pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n", 595 bi->page_budget, bi->inode_budget, bi->dent_budget); 596 pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp); 597 pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n", 598 c->dark_wm, c->dead_wm, c->max_idx_node_sz); 599 600 if (bi != &c->bi) 601 /* 602 * If we are dumping saved budgeting data, do not print 603 * additional information which is about the current state, not 604 * the old one which corresponded to the saved budgeting data. 605 */ 606 goto out_unlock; 607 608 pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n", 609 c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt); 610 pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n", 611 atomic_long_read(&c->dirty_pg_cnt), 612 atomic_long_read(&c->dirty_zn_cnt), 613 atomic_long_read(&c->clean_zn_cnt)); 614 pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum); 615 616 /* If we are in R/O mode, journal heads do not exist */ 617 if (c->jheads) 618 for (i = 0; i < c->jhead_cnt; i++) 619 pr_err("\tjhead %s\t LEB %d\n", 620 dbg_jhead(c->jheads[i].wbuf.jhead), 621 c->jheads[i].wbuf.lnum); 622 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) { 623 bud = rb_entry(rb, struct ubifs_bud, rb); 624 pr_err("\tbud LEB %d\n", bud->lnum); 625 } 626 list_for_each_entry(bud, &c->old_buds, list) 627 pr_err("\told bud LEB %d\n", bud->lnum); 628 list_for_each_entry(idx_gc, &c->idx_gc, list) 629 pr_err("\tGC'ed idx LEB %d unmap %d\n", 630 idx_gc->lnum, idx_gc->unmap); 631 pr_err("\tcommit state %d\n", c->cmt_state); 632 633 /* Print budgeting predictions */ 634 available = ubifs_calc_available(c, c->bi.min_idx_lebs); 635 outstanding = c->bi.data_growth + c->bi.dd_growth; 636 free = ubifs_get_free_space_nolock(c); 637 pr_err("Budgeting predictions:\n"); 638 pr_err("\tavailable: %lld, outstanding %lld, free %lld\n", 639 available, outstanding, free); 640 out_unlock: 641 spin_unlock(&dbg_lock); 642 spin_unlock(&c->space_lock); 643 } 644 #else 645 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi) 646 { 647 } 648 #endif 649 650 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp) 651 { 652 int i, spc, dark = 0, dead = 0; 653 struct rb_node *rb; 654 struct ubifs_bud *bud; 655 656 spc = lp->free + lp->dirty; 657 if (spc < c->dead_wm) 658 dead = spc; 659 else 660 dark = ubifs_calc_dark(c, spc); 661 662 if (lp->flags & LPROPS_INDEX) 663 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (", 664 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc, 665 lp->flags); 666 else 667 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (", 668 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc, 669 dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags); 670 671 if (lp->flags & LPROPS_TAKEN) { 672 if (lp->flags & LPROPS_INDEX) 673 pr_cont("index, taken"); 674 else 675 pr_cont("taken"); 676 } else { 677 const char *s; 678 679 if (lp->flags & LPROPS_INDEX) { 680 switch (lp->flags & LPROPS_CAT_MASK) { 681 case LPROPS_DIRTY_IDX: 682 s = "dirty index"; 683 break; 684 case LPROPS_FRDI_IDX: 685 s = "freeable index"; 686 break; 687 default: 688 s = "index"; 689 } 690 } else { 691 switch (lp->flags & LPROPS_CAT_MASK) { 692 case LPROPS_UNCAT: 693 s = "not categorized"; 694 break; 695 case LPROPS_DIRTY: 696 s = "dirty"; 697 break; 698 case LPROPS_FREE: 699 s = "free"; 700 break; 701 case LPROPS_EMPTY: 702 s = "empty"; 703 break; 704 case LPROPS_FREEABLE: 705 s = "freeable"; 706 break; 707 default: 708 s = NULL; 709 break; 710 } 711 } 712 pr_cont("%s", s); 713 } 714 715 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) { 716 bud = rb_entry(rb, struct ubifs_bud, rb); 717 if (bud->lnum == lp->lnum) { 718 int head = 0; 719 for (i = 0; i < c->jhead_cnt; i++) { 720 /* 721 * Note, if we are in R/O mode or in the middle 722 * of mounting/re-mounting, the write-buffers do 723 * not exist. 724 */ 725 if (c->jheads && 726 lp->lnum == c->jheads[i].wbuf.lnum) { 727 pr_cont(", jhead %s", dbg_jhead(i)); 728 head = 1; 729 } 730 } 731 if (!head) 732 pr_cont(", bud of jhead %s", 733 dbg_jhead(bud->jhead)); 734 } 735 } 736 if (lp->lnum == c->gc_lnum) 737 pr_cont(", GC LEB"); 738 pr_cont(")\n"); 739 } 740 741 void ubifs_dump_lprops(struct ubifs_info *c) 742 { 743 int lnum, err; 744 struct ubifs_lprops lp; 745 struct ubifs_lp_stats lst; 746 747 pr_err("(pid %d) start dumping LEB properties\n", current->pid); 748 ubifs_get_lp_stats(c, &lst); 749 ubifs_dump_lstats(&lst); 750 751 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) { 752 err = ubifs_read_one_lp(c, lnum, &lp); 753 if (err) { 754 ubifs_err(c, "cannot read lprops for LEB %d", lnum); 755 continue; 756 } 757 758 ubifs_dump_lprop(c, &lp); 759 } 760 pr_err("(pid %d) finish dumping LEB properties\n", current->pid); 761 } 762 763 void ubifs_dump_lpt_info(struct ubifs_info *c) 764 { 765 int i; 766 767 spin_lock(&dbg_lock); 768 pr_err("(pid %d) dumping LPT information\n", current->pid); 769 pr_err("\tlpt_sz: %lld\n", c->lpt_sz); 770 pr_err("\tpnode_sz: %d\n", c->pnode_sz); 771 pr_err("\tnnode_sz: %d\n", c->nnode_sz); 772 pr_err("\tltab_sz: %d\n", c->ltab_sz); 773 pr_err("\tlsave_sz: %d\n", c->lsave_sz); 774 pr_err("\tbig_lpt: %d\n", c->big_lpt); 775 pr_err("\tlpt_hght: %d\n", c->lpt_hght); 776 pr_err("\tpnode_cnt: %d\n", c->pnode_cnt); 777 pr_err("\tnnode_cnt: %d\n", c->nnode_cnt); 778 pr_err("\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt); 779 pr_err("\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt); 780 pr_err("\tlsave_cnt: %d\n", c->lsave_cnt); 781 pr_err("\tspace_bits: %d\n", c->space_bits); 782 pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits); 783 pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits); 784 pr_err("\tlpt_spc_bits: %d\n", c->lpt_spc_bits); 785 pr_err("\tpcnt_bits: %d\n", c->pcnt_bits); 786 pr_err("\tlnum_bits: %d\n", c->lnum_bits); 787 pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs); 788 pr_err("\tLPT head is at %d:%d\n", 789 c->nhead_lnum, c->nhead_offs); 790 pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs); 791 if (c->big_lpt) 792 pr_err("\tLPT lsave is at %d:%d\n", 793 c->lsave_lnum, c->lsave_offs); 794 for (i = 0; i < c->lpt_lebs; i++) 795 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n", 796 i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty, 797 c->ltab[i].tgc, c->ltab[i].cmt); 798 spin_unlock(&dbg_lock); 799 } 800 801 void ubifs_dump_sleb(const struct ubifs_info *c, 802 const struct ubifs_scan_leb *sleb, int offs) 803 { 804 struct ubifs_scan_node *snod; 805 806 pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n", 807 current->pid, sleb->lnum, offs); 808 809 list_for_each_entry(snod, &sleb->nodes, list) { 810 cond_resched(); 811 pr_err("Dumping node at LEB %d:%d len %d\n", 812 sleb->lnum, snod->offs, snod->len); 813 ubifs_dump_node(c, snod->node); 814 } 815 } 816 817 void ubifs_dump_leb(const struct ubifs_info *c, int lnum) 818 { 819 struct ubifs_scan_leb *sleb; 820 struct ubifs_scan_node *snod; 821 void *buf; 822 823 pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum); 824 825 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL); 826 if (!buf) { 827 ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum); 828 return; 829 } 830 831 sleb = ubifs_scan(c, lnum, 0, buf, 0); 832 if (IS_ERR(sleb)) { 833 ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb)); 834 goto out; 835 } 836 837 pr_err("LEB %d has %d nodes ending at %d\n", lnum, 838 sleb->nodes_cnt, sleb->endpt); 839 840 list_for_each_entry(snod, &sleb->nodes, list) { 841 cond_resched(); 842 pr_err("Dumping node at LEB %d:%d len %d\n", lnum, 843 snod->offs, snod->len); 844 ubifs_dump_node(c, snod->node); 845 } 846 847 pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum); 848 ubifs_scan_destroy(sleb); 849 850 out: 851 vfree(buf); 852 return; 853 } 854 855 void ubifs_dump_znode(const struct ubifs_info *c, 856 const struct ubifs_znode *znode) 857 { 858 int n; 859 const struct ubifs_zbranch *zbr; 860 char key_buf[DBG_KEY_BUF_LEN]; 861 862 spin_lock(&dbg_lock); 863 if (znode->parent) 864 zbr = &znode->parent->zbranch[znode->iip]; 865 else 866 zbr = &c->zroot; 867 868 pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n", 869 znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip, 870 znode->level, znode->child_cnt, znode->flags); 871 872 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 873 spin_unlock(&dbg_lock); 874 return; 875 } 876 877 pr_err("zbranches:\n"); 878 for (n = 0; n < znode->child_cnt; n++) { 879 zbr = &znode->zbranch[n]; 880 if (znode->level > 0) 881 pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n", 882 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len, 883 dbg_snprintf_key(c, &zbr->key, key_buf, 884 DBG_KEY_BUF_LEN)); 885 else 886 pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n", 887 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len, 888 dbg_snprintf_key(c, &zbr->key, key_buf, 889 DBG_KEY_BUF_LEN)); 890 } 891 spin_unlock(&dbg_lock); 892 } 893 894 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat) 895 { 896 int i; 897 898 pr_err("(pid %d) start dumping heap cat %d (%d elements)\n", 899 current->pid, cat, heap->cnt); 900 for (i = 0; i < heap->cnt; i++) { 901 struct ubifs_lprops *lprops = heap->arr[i]; 902 903 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n", 904 i, lprops->lnum, lprops->hpos, lprops->free, 905 lprops->dirty, lprops->flags); 906 } 907 pr_err("(pid %d) finish dumping heap\n", current->pid); 908 } 909 910 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode, 911 struct ubifs_nnode *parent, int iip) 912 { 913 int i; 914 915 pr_err("(pid %d) dumping pnode:\n", current->pid); 916 pr_err("\taddress %zx parent %zx cnext %zx\n", 917 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext); 918 pr_err("\tflags %lu iip %d level %d num %d\n", 919 pnode->flags, iip, pnode->level, pnode->num); 920 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 921 struct ubifs_lprops *lp = &pnode->lprops[i]; 922 923 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n", 924 i, lp->free, lp->dirty, lp->flags, lp->lnum); 925 } 926 } 927 928 void ubifs_dump_tnc(struct ubifs_info *c) 929 { 930 struct ubifs_znode *znode; 931 int level; 932 933 pr_err("\n"); 934 pr_err("(pid %d) start dumping TNC tree\n", current->pid); 935 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL); 936 level = znode->level; 937 pr_err("== Level %d ==\n", level); 938 while (znode) { 939 if (level != znode->level) { 940 level = znode->level; 941 pr_err("== Level %d ==\n", level); 942 } 943 ubifs_dump_znode(c, znode); 944 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode); 945 } 946 pr_err("(pid %d) finish dumping TNC tree\n", current->pid); 947 } 948 949 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode, 950 void *priv) 951 { 952 ubifs_dump_znode(c, znode); 953 return 0; 954 } 955 956 /** 957 * ubifs_dump_index - dump the on-flash index. 958 * @c: UBIFS file-system description object 959 * 960 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()' 961 * which dumps only in-memory znodes and does not read znodes which from flash. 962 */ 963 void ubifs_dump_index(struct ubifs_info *c) 964 { 965 dbg_walk_index(c, NULL, dump_znode, NULL); 966 } 967 968 #ifndef __UBOOT__ 969 /** 970 * dbg_save_space_info - save information about flash space. 971 * @c: UBIFS file-system description object 972 * 973 * This function saves information about UBIFS free space, dirty space, etc, in 974 * order to check it later. 975 */ 976 void dbg_save_space_info(struct ubifs_info *c) 977 { 978 struct ubifs_debug_info *d = c->dbg; 979 int freeable_cnt; 980 981 spin_lock(&c->space_lock); 982 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats)); 983 memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info)); 984 d->saved_idx_gc_cnt = c->idx_gc_cnt; 985 986 /* 987 * We use a dirty hack here and zero out @c->freeable_cnt, because it 988 * affects the free space calculations, and UBIFS might not know about 989 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks 990 * only when we read their lprops, and we do this only lazily, upon the 991 * need. So at any given point of time @c->freeable_cnt might be not 992 * exactly accurate. 993 * 994 * Just one example about the issue we hit when we did not zero 995 * @c->freeable_cnt. 996 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the 997 * amount of free space in @d->saved_free 998 * 2. We re-mount R/W, which makes UBIFS to read the "lsave" 999 * information from flash, where we cache LEBs from various 1000 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()' 1001 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()' 1002 * -> 'ubifs_get_pnode()' -> 'update_cats()' 1003 * -> 'ubifs_add_to_cat()'). 1004 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt 1005 * becomes %1. 1006 * 4. We calculate the amount of free space when the re-mount is 1007 * finished in 'dbg_check_space_info()' and it does not match 1008 * @d->saved_free. 1009 */ 1010 freeable_cnt = c->freeable_cnt; 1011 c->freeable_cnt = 0; 1012 d->saved_free = ubifs_get_free_space_nolock(c); 1013 c->freeable_cnt = freeable_cnt; 1014 spin_unlock(&c->space_lock); 1015 } 1016 1017 /** 1018 * dbg_check_space_info - check flash space information. 1019 * @c: UBIFS file-system description object 1020 * 1021 * This function compares current flash space information with the information 1022 * which was saved when the 'dbg_save_space_info()' function was called. 1023 * Returns zero if the information has not changed, and %-EINVAL it it has 1024 * changed. 1025 */ 1026 int dbg_check_space_info(struct ubifs_info *c) 1027 { 1028 struct ubifs_debug_info *d = c->dbg; 1029 struct ubifs_lp_stats lst; 1030 long long free; 1031 int freeable_cnt; 1032 1033 spin_lock(&c->space_lock); 1034 freeable_cnt = c->freeable_cnt; 1035 c->freeable_cnt = 0; 1036 free = ubifs_get_free_space_nolock(c); 1037 c->freeable_cnt = freeable_cnt; 1038 spin_unlock(&c->space_lock); 1039 1040 if (free != d->saved_free) { 1041 ubifs_err(c, "free space changed from %lld to %lld", 1042 d->saved_free, free); 1043 goto out; 1044 } 1045 1046 return 0; 1047 1048 out: 1049 ubifs_msg(c, "saved lprops statistics dump"); 1050 ubifs_dump_lstats(&d->saved_lst); 1051 ubifs_msg(c, "saved budgeting info dump"); 1052 ubifs_dump_budg(c, &d->saved_bi); 1053 ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt); 1054 ubifs_msg(c, "current lprops statistics dump"); 1055 ubifs_get_lp_stats(c, &lst); 1056 ubifs_dump_lstats(&lst); 1057 ubifs_msg(c, "current budgeting info dump"); 1058 ubifs_dump_budg(c, &c->bi); 1059 dump_stack(); 1060 return -EINVAL; 1061 } 1062 1063 /** 1064 * dbg_check_synced_i_size - check synchronized inode size. 1065 * @c: UBIFS file-system description object 1066 * @inode: inode to check 1067 * 1068 * If inode is clean, synchronized inode size has to be equivalent to current 1069 * inode size. This function has to be called only for locked inodes (@i_mutex 1070 * has to be locked). Returns %0 if synchronized inode size if correct, and 1071 * %-EINVAL if not. 1072 */ 1073 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode) 1074 { 1075 int err = 0; 1076 struct ubifs_inode *ui = ubifs_inode(inode); 1077 1078 if (!dbg_is_chk_gen(c)) 1079 return 0; 1080 if (!S_ISREG(inode->i_mode)) 1081 return 0; 1082 1083 mutex_lock(&ui->ui_mutex); 1084 spin_lock(&ui->ui_lock); 1085 if (ui->ui_size != ui->synced_i_size && !ui->dirty) { 1086 ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean", 1087 ui->ui_size, ui->synced_i_size); 1088 ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino, 1089 inode->i_mode, i_size_read(inode)); 1090 dump_stack(); 1091 err = -EINVAL; 1092 } 1093 spin_unlock(&ui->ui_lock); 1094 mutex_unlock(&ui->ui_mutex); 1095 return err; 1096 } 1097 1098 /* 1099 * dbg_check_dir - check directory inode size and link count. 1100 * @c: UBIFS file-system description object 1101 * @dir: the directory to calculate size for 1102 * @size: the result is returned here 1103 * 1104 * This function makes sure that directory size and link count are correct. 1105 * Returns zero in case of success and a negative error code in case of 1106 * failure. 1107 * 1108 * Note, it is good idea to make sure the @dir->i_mutex is locked before 1109 * calling this function. 1110 */ 1111 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir) 1112 { 1113 unsigned int nlink = 2; 1114 union ubifs_key key; 1115 struct ubifs_dent_node *dent, *pdent = NULL; 1116 struct qstr nm = { .name = NULL }; 1117 loff_t size = UBIFS_INO_NODE_SZ; 1118 1119 if (!dbg_is_chk_gen(c)) 1120 return 0; 1121 1122 if (!S_ISDIR(dir->i_mode)) 1123 return 0; 1124 1125 lowest_dent_key(c, &key, dir->i_ino); 1126 while (1) { 1127 int err; 1128 1129 dent = ubifs_tnc_next_ent(c, &key, &nm); 1130 if (IS_ERR(dent)) { 1131 err = PTR_ERR(dent); 1132 if (err == -ENOENT) 1133 break; 1134 return err; 1135 } 1136 1137 nm.name = dent->name; 1138 nm.len = le16_to_cpu(dent->nlen); 1139 size += CALC_DENT_SIZE(nm.len); 1140 if (dent->type == UBIFS_ITYPE_DIR) 1141 nlink += 1; 1142 kfree(pdent); 1143 pdent = dent; 1144 key_read(c, &dent->key, &key); 1145 } 1146 kfree(pdent); 1147 1148 if (i_size_read(dir) != size) { 1149 ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu", 1150 dir->i_ino, (unsigned long long)i_size_read(dir), 1151 (unsigned long long)size); 1152 ubifs_dump_inode(c, dir); 1153 dump_stack(); 1154 return -EINVAL; 1155 } 1156 if (dir->i_nlink != nlink) { 1157 ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u", 1158 dir->i_ino, dir->i_nlink, nlink); 1159 ubifs_dump_inode(c, dir); 1160 dump_stack(); 1161 return -EINVAL; 1162 } 1163 1164 return 0; 1165 } 1166 1167 /** 1168 * dbg_check_key_order - make sure that colliding keys are properly ordered. 1169 * @c: UBIFS file-system description object 1170 * @zbr1: first zbranch 1171 * @zbr2: following zbranch 1172 * 1173 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of 1174 * names of the direntries/xentries which are referred by the keys. This 1175 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes 1176 * sure the name of direntry/xentry referred by @zbr1 is less than 1177 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not, 1178 * and a negative error code in case of failure. 1179 */ 1180 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1, 1181 struct ubifs_zbranch *zbr2) 1182 { 1183 int err, nlen1, nlen2, cmp; 1184 struct ubifs_dent_node *dent1, *dent2; 1185 union ubifs_key key; 1186 char key_buf[DBG_KEY_BUF_LEN]; 1187 1188 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key)); 1189 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 1190 if (!dent1) 1191 return -ENOMEM; 1192 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 1193 if (!dent2) { 1194 err = -ENOMEM; 1195 goto out_free; 1196 } 1197 1198 err = ubifs_tnc_read_node(c, zbr1, dent1); 1199 if (err) 1200 goto out_free; 1201 err = ubifs_validate_entry(c, dent1); 1202 if (err) 1203 goto out_free; 1204 1205 err = ubifs_tnc_read_node(c, zbr2, dent2); 1206 if (err) 1207 goto out_free; 1208 err = ubifs_validate_entry(c, dent2); 1209 if (err) 1210 goto out_free; 1211 1212 /* Make sure node keys are the same as in zbranch */ 1213 err = 1; 1214 key_read(c, &dent1->key, &key); 1215 if (keys_cmp(c, &zbr1->key, &key)) { 1216 ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum, 1217 zbr1->offs, dbg_snprintf_key(c, &key, key_buf, 1218 DBG_KEY_BUF_LEN)); 1219 ubifs_err(c, "but it should have key %s according to tnc", 1220 dbg_snprintf_key(c, &zbr1->key, key_buf, 1221 DBG_KEY_BUF_LEN)); 1222 ubifs_dump_node(c, dent1); 1223 goto out_free; 1224 } 1225 1226 key_read(c, &dent2->key, &key); 1227 if (keys_cmp(c, &zbr2->key, &key)) { 1228 ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum, 1229 zbr1->offs, dbg_snprintf_key(c, &key, key_buf, 1230 DBG_KEY_BUF_LEN)); 1231 ubifs_err(c, "but it should have key %s according to tnc", 1232 dbg_snprintf_key(c, &zbr2->key, key_buf, 1233 DBG_KEY_BUF_LEN)); 1234 ubifs_dump_node(c, dent2); 1235 goto out_free; 1236 } 1237 1238 nlen1 = le16_to_cpu(dent1->nlen); 1239 nlen2 = le16_to_cpu(dent2->nlen); 1240 1241 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2)); 1242 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) { 1243 err = 0; 1244 goto out_free; 1245 } 1246 if (cmp == 0 && nlen1 == nlen2) 1247 ubifs_err(c, "2 xent/dent nodes with the same name"); 1248 else 1249 ubifs_err(c, "bad order of colliding key %s", 1250 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 1251 1252 ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs); 1253 ubifs_dump_node(c, dent1); 1254 ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs); 1255 ubifs_dump_node(c, dent2); 1256 1257 out_free: 1258 kfree(dent2); 1259 kfree(dent1); 1260 return err; 1261 } 1262 1263 /** 1264 * dbg_check_znode - check if znode is all right. 1265 * @c: UBIFS file-system description object 1266 * @zbr: zbranch which points to this znode 1267 * 1268 * This function makes sure that znode referred to by @zbr is all right. 1269 * Returns zero if it is, and %-EINVAL if it is not. 1270 */ 1271 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr) 1272 { 1273 struct ubifs_znode *znode = zbr->znode; 1274 struct ubifs_znode *zp = znode->parent; 1275 int n, err, cmp; 1276 1277 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 1278 err = 1; 1279 goto out; 1280 } 1281 if (znode->level < 0) { 1282 err = 2; 1283 goto out; 1284 } 1285 if (znode->iip < 0 || znode->iip >= c->fanout) { 1286 err = 3; 1287 goto out; 1288 } 1289 1290 if (zbr->len == 0) 1291 /* Only dirty zbranch may have no on-flash nodes */ 1292 if (!ubifs_zn_dirty(znode)) { 1293 err = 4; 1294 goto out; 1295 } 1296 1297 if (ubifs_zn_dirty(znode)) { 1298 /* 1299 * If znode is dirty, its parent has to be dirty as well. The 1300 * order of the operation is important, so we have to have 1301 * memory barriers. 1302 */ 1303 smp_mb(); 1304 if (zp && !ubifs_zn_dirty(zp)) { 1305 /* 1306 * The dirty flag is atomic and is cleared outside the 1307 * TNC mutex, so znode's dirty flag may now have 1308 * been cleared. The child is always cleared before the 1309 * parent, so we just need to check again. 1310 */ 1311 smp_mb(); 1312 if (ubifs_zn_dirty(znode)) { 1313 err = 5; 1314 goto out; 1315 } 1316 } 1317 } 1318 1319 if (zp) { 1320 const union ubifs_key *min, *max; 1321 1322 if (znode->level != zp->level - 1) { 1323 err = 6; 1324 goto out; 1325 } 1326 1327 /* Make sure the 'parent' pointer in our znode is correct */ 1328 err = ubifs_search_zbranch(c, zp, &zbr->key, &n); 1329 if (!err) { 1330 /* This zbranch does not exist in the parent */ 1331 err = 7; 1332 goto out; 1333 } 1334 1335 if (znode->iip >= zp->child_cnt) { 1336 err = 8; 1337 goto out; 1338 } 1339 1340 if (znode->iip != n) { 1341 /* This may happen only in case of collisions */ 1342 if (keys_cmp(c, &zp->zbranch[n].key, 1343 &zp->zbranch[znode->iip].key)) { 1344 err = 9; 1345 goto out; 1346 } 1347 n = znode->iip; 1348 } 1349 1350 /* 1351 * Make sure that the first key in our znode is greater than or 1352 * equal to the key in the pointing zbranch. 1353 */ 1354 min = &zbr->key; 1355 cmp = keys_cmp(c, min, &znode->zbranch[0].key); 1356 if (cmp == 1) { 1357 err = 10; 1358 goto out; 1359 } 1360 1361 if (n + 1 < zp->child_cnt) { 1362 max = &zp->zbranch[n + 1].key; 1363 1364 /* 1365 * Make sure the last key in our znode is less or 1366 * equivalent than the key in the zbranch which goes 1367 * after our pointing zbranch. 1368 */ 1369 cmp = keys_cmp(c, max, 1370 &znode->zbranch[znode->child_cnt - 1].key); 1371 if (cmp == -1) { 1372 err = 11; 1373 goto out; 1374 } 1375 } 1376 } else { 1377 /* This may only be root znode */ 1378 if (zbr != &c->zroot) { 1379 err = 12; 1380 goto out; 1381 } 1382 } 1383 1384 /* 1385 * Make sure that next key is greater or equivalent then the previous 1386 * one. 1387 */ 1388 for (n = 1; n < znode->child_cnt; n++) { 1389 cmp = keys_cmp(c, &znode->zbranch[n - 1].key, 1390 &znode->zbranch[n].key); 1391 if (cmp > 0) { 1392 err = 13; 1393 goto out; 1394 } 1395 if (cmp == 0) { 1396 /* This can only be keys with colliding hash */ 1397 if (!is_hash_key(c, &znode->zbranch[n].key)) { 1398 err = 14; 1399 goto out; 1400 } 1401 1402 if (znode->level != 0 || c->replaying) 1403 continue; 1404 1405 /* 1406 * Colliding keys should follow binary order of 1407 * corresponding xentry/dentry names. 1408 */ 1409 err = dbg_check_key_order(c, &znode->zbranch[n - 1], 1410 &znode->zbranch[n]); 1411 if (err < 0) 1412 return err; 1413 if (err) { 1414 err = 15; 1415 goto out; 1416 } 1417 } 1418 } 1419 1420 for (n = 0; n < znode->child_cnt; n++) { 1421 if (!znode->zbranch[n].znode && 1422 (znode->zbranch[n].lnum == 0 || 1423 znode->zbranch[n].len == 0)) { 1424 err = 16; 1425 goto out; 1426 } 1427 1428 if (znode->zbranch[n].lnum != 0 && 1429 znode->zbranch[n].len == 0) { 1430 err = 17; 1431 goto out; 1432 } 1433 1434 if (znode->zbranch[n].lnum == 0 && 1435 znode->zbranch[n].len != 0) { 1436 err = 18; 1437 goto out; 1438 } 1439 1440 if (znode->zbranch[n].lnum == 0 && 1441 znode->zbranch[n].offs != 0) { 1442 err = 19; 1443 goto out; 1444 } 1445 1446 if (znode->level != 0 && znode->zbranch[n].znode) 1447 if (znode->zbranch[n].znode->parent != znode) { 1448 err = 20; 1449 goto out; 1450 } 1451 } 1452 1453 return 0; 1454 1455 out: 1456 ubifs_err(c, "failed, error %d", err); 1457 ubifs_msg(c, "dump of the znode"); 1458 ubifs_dump_znode(c, znode); 1459 if (zp) { 1460 ubifs_msg(c, "dump of the parent znode"); 1461 ubifs_dump_znode(c, zp); 1462 } 1463 dump_stack(); 1464 return -EINVAL; 1465 } 1466 #else 1467 1468 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir) 1469 { 1470 return 0; 1471 } 1472 1473 void dbg_debugfs_exit_fs(struct ubifs_info *c) 1474 { 1475 return; 1476 } 1477 1478 int ubifs_debugging_init(struct ubifs_info *c) 1479 { 1480 return 0; 1481 } 1482 void ubifs_debugging_exit(struct ubifs_info *c) 1483 { 1484 } 1485 int dbg_check_filesystem(struct ubifs_info *c) 1486 { 1487 return 0; 1488 } 1489 int dbg_debugfs_init_fs(struct ubifs_info *c) 1490 { 1491 return 0; 1492 } 1493 #endif 1494 1495 #ifndef __UBOOT__ 1496 /** 1497 * dbg_check_tnc - check TNC tree. 1498 * @c: UBIFS file-system description object 1499 * @extra: do extra checks that are possible at start commit 1500 * 1501 * This function traverses whole TNC tree and checks every znode. Returns zero 1502 * if everything is all right and %-EINVAL if something is wrong with TNC. 1503 */ 1504 int dbg_check_tnc(struct ubifs_info *c, int extra) 1505 { 1506 struct ubifs_znode *znode; 1507 long clean_cnt = 0, dirty_cnt = 0; 1508 int err, last; 1509 1510 if (!dbg_is_chk_index(c)) 1511 return 0; 1512 1513 ubifs_assert(mutex_is_locked(&c->tnc_mutex)); 1514 if (!c->zroot.znode) 1515 return 0; 1516 1517 znode = ubifs_tnc_postorder_first(c->zroot.znode); 1518 while (1) { 1519 struct ubifs_znode *prev; 1520 struct ubifs_zbranch *zbr; 1521 1522 if (!znode->parent) 1523 zbr = &c->zroot; 1524 else 1525 zbr = &znode->parent->zbranch[znode->iip]; 1526 1527 err = dbg_check_znode(c, zbr); 1528 if (err) 1529 return err; 1530 1531 if (extra) { 1532 if (ubifs_zn_dirty(znode)) 1533 dirty_cnt += 1; 1534 else 1535 clean_cnt += 1; 1536 } 1537 1538 prev = znode; 1539 znode = ubifs_tnc_postorder_next(znode); 1540 if (!znode) 1541 break; 1542 1543 /* 1544 * If the last key of this znode is equivalent to the first key 1545 * of the next znode (collision), then check order of the keys. 1546 */ 1547 last = prev->child_cnt - 1; 1548 if (prev->level == 0 && znode->level == 0 && !c->replaying && 1549 !keys_cmp(c, &prev->zbranch[last].key, 1550 &znode->zbranch[0].key)) { 1551 err = dbg_check_key_order(c, &prev->zbranch[last], 1552 &znode->zbranch[0]); 1553 if (err < 0) 1554 return err; 1555 if (err) { 1556 ubifs_msg(c, "first znode"); 1557 ubifs_dump_znode(c, prev); 1558 ubifs_msg(c, "second znode"); 1559 ubifs_dump_znode(c, znode); 1560 return -EINVAL; 1561 } 1562 } 1563 } 1564 1565 if (extra) { 1566 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) { 1567 ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld", 1568 atomic_long_read(&c->clean_zn_cnt), 1569 clean_cnt); 1570 return -EINVAL; 1571 } 1572 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) { 1573 ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld", 1574 atomic_long_read(&c->dirty_zn_cnt), 1575 dirty_cnt); 1576 return -EINVAL; 1577 } 1578 } 1579 1580 return 0; 1581 } 1582 #else 1583 int dbg_check_tnc(struct ubifs_info *c, int extra) 1584 { 1585 return 0; 1586 } 1587 #endif 1588 1589 /** 1590 * dbg_walk_index - walk the on-flash index. 1591 * @c: UBIFS file-system description object 1592 * @leaf_cb: called for each leaf node 1593 * @znode_cb: called for each indexing node 1594 * @priv: private data which is passed to callbacks 1595 * 1596 * This function walks the UBIFS index and calls the @leaf_cb for each leaf 1597 * node and @znode_cb for each indexing node. Returns zero in case of success 1598 * and a negative error code in case of failure. 1599 * 1600 * It would be better if this function removed every znode it pulled to into 1601 * the TNC, so that the behavior more closely matched the non-debugging 1602 * behavior. 1603 */ 1604 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb, 1605 dbg_znode_callback znode_cb, void *priv) 1606 { 1607 int err; 1608 struct ubifs_zbranch *zbr; 1609 struct ubifs_znode *znode, *child; 1610 1611 mutex_lock(&c->tnc_mutex); 1612 /* If the root indexing node is not in TNC - pull it */ 1613 if (!c->zroot.znode) { 1614 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1615 if (IS_ERR(c->zroot.znode)) { 1616 err = PTR_ERR(c->zroot.znode); 1617 c->zroot.znode = NULL; 1618 goto out_unlock; 1619 } 1620 } 1621 1622 /* 1623 * We are going to traverse the indexing tree in the postorder manner. 1624 * Go down and find the leftmost indexing node where we are going to 1625 * start from. 1626 */ 1627 znode = c->zroot.znode; 1628 while (znode->level > 0) { 1629 zbr = &znode->zbranch[0]; 1630 child = zbr->znode; 1631 if (!child) { 1632 child = ubifs_load_znode(c, zbr, znode, 0); 1633 if (IS_ERR(child)) { 1634 err = PTR_ERR(child); 1635 goto out_unlock; 1636 } 1637 zbr->znode = child; 1638 } 1639 1640 znode = child; 1641 } 1642 1643 /* Iterate over all indexing nodes */ 1644 while (1) { 1645 int idx; 1646 1647 cond_resched(); 1648 1649 if (znode_cb) { 1650 err = znode_cb(c, znode, priv); 1651 if (err) { 1652 ubifs_err(c, "znode checking function returned error %d", 1653 err); 1654 ubifs_dump_znode(c, znode); 1655 goto out_dump; 1656 } 1657 } 1658 if (leaf_cb && znode->level == 0) { 1659 for (idx = 0; idx < znode->child_cnt; idx++) { 1660 zbr = &znode->zbranch[idx]; 1661 err = leaf_cb(c, zbr, priv); 1662 if (err) { 1663 ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d", 1664 err, zbr->lnum, zbr->offs); 1665 goto out_dump; 1666 } 1667 } 1668 } 1669 1670 if (!znode->parent) 1671 break; 1672 1673 idx = znode->iip + 1; 1674 znode = znode->parent; 1675 if (idx < znode->child_cnt) { 1676 /* Switch to the next index in the parent */ 1677 zbr = &znode->zbranch[idx]; 1678 child = zbr->znode; 1679 if (!child) { 1680 child = ubifs_load_znode(c, zbr, znode, idx); 1681 if (IS_ERR(child)) { 1682 err = PTR_ERR(child); 1683 goto out_unlock; 1684 } 1685 zbr->znode = child; 1686 } 1687 znode = child; 1688 } else 1689 /* 1690 * This is the last child, switch to the parent and 1691 * continue. 1692 */ 1693 continue; 1694 1695 /* Go to the lowest leftmost znode in the new sub-tree */ 1696 while (znode->level > 0) { 1697 zbr = &znode->zbranch[0]; 1698 child = zbr->znode; 1699 if (!child) { 1700 child = ubifs_load_znode(c, zbr, znode, 0); 1701 if (IS_ERR(child)) { 1702 err = PTR_ERR(child); 1703 goto out_unlock; 1704 } 1705 zbr->znode = child; 1706 } 1707 znode = child; 1708 } 1709 } 1710 1711 mutex_unlock(&c->tnc_mutex); 1712 return 0; 1713 1714 out_dump: 1715 if (znode->parent) 1716 zbr = &znode->parent->zbranch[znode->iip]; 1717 else 1718 zbr = &c->zroot; 1719 ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs); 1720 ubifs_dump_znode(c, znode); 1721 out_unlock: 1722 mutex_unlock(&c->tnc_mutex); 1723 return err; 1724 } 1725 1726 /** 1727 * add_size - add znode size to partially calculated index size. 1728 * @c: UBIFS file-system description object 1729 * @znode: znode to add size for 1730 * @priv: partially calculated index size 1731 * 1732 * This is a helper function for 'dbg_check_idx_size()' which is called for 1733 * every indexing node and adds its size to the 'long long' variable pointed to 1734 * by @priv. 1735 */ 1736 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv) 1737 { 1738 long long *idx_size = priv; 1739 int add; 1740 1741 add = ubifs_idx_node_sz(c, znode->child_cnt); 1742 add = ALIGN(add, 8); 1743 *idx_size += add; 1744 return 0; 1745 } 1746 1747 /** 1748 * dbg_check_idx_size - check index size. 1749 * @c: UBIFS file-system description object 1750 * @idx_size: size to check 1751 * 1752 * This function walks the UBIFS index, calculates its size and checks that the 1753 * size is equivalent to @idx_size. Returns zero in case of success and a 1754 * negative error code in case of failure. 1755 */ 1756 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size) 1757 { 1758 int err; 1759 long long calc = 0; 1760 1761 if (!dbg_is_chk_index(c)) 1762 return 0; 1763 1764 err = dbg_walk_index(c, NULL, add_size, &calc); 1765 if (err) { 1766 ubifs_err(c, "error %d while walking the index", err); 1767 return err; 1768 } 1769 1770 if (calc != idx_size) { 1771 ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld", 1772 calc, idx_size); 1773 dump_stack(); 1774 return -EINVAL; 1775 } 1776 1777 return 0; 1778 } 1779 1780 #ifndef __UBOOT__ 1781 /** 1782 * struct fsck_inode - information about an inode used when checking the file-system. 1783 * @rb: link in the RB-tree of inodes 1784 * @inum: inode number 1785 * @mode: inode type, permissions, etc 1786 * @nlink: inode link count 1787 * @xattr_cnt: count of extended attributes 1788 * @references: how many directory/xattr entries refer this inode (calculated 1789 * while walking the index) 1790 * @calc_cnt: for directory inode count of child directories 1791 * @size: inode size (read from on-flash inode) 1792 * @xattr_sz: summary size of all extended attributes (read from on-flash 1793 * inode) 1794 * @calc_sz: for directories calculated directory size 1795 * @calc_xcnt: count of extended attributes 1796 * @calc_xsz: calculated summary size of all extended attributes 1797 * @xattr_nms: sum of lengths of all extended attribute names belonging to this 1798 * inode (read from on-flash inode) 1799 * @calc_xnms: calculated sum of lengths of all extended attribute names 1800 */ 1801 struct fsck_inode { 1802 struct rb_node rb; 1803 ino_t inum; 1804 umode_t mode; 1805 unsigned int nlink; 1806 unsigned int xattr_cnt; 1807 int references; 1808 int calc_cnt; 1809 long long size; 1810 unsigned int xattr_sz; 1811 long long calc_sz; 1812 long long calc_xcnt; 1813 long long calc_xsz; 1814 unsigned int xattr_nms; 1815 long long calc_xnms; 1816 }; 1817 1818 /** 1819 * struct fsck_data - private FS checking information. 1820 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects) 1821 */ 1822 struct fsck_data { 1823 struct rb_root inodes; 1824 }; 1825 1826 /** 1827 * add_inode - add inode information to RB-tree of inodes. 1828 * @c: UBIFS file-system description object 1829 * @fsckd: FS checking information 1830 * @ino: raw UBIFS inode to add 1831 * 1832 * This is a helper function for 'check_leaf()' which adds information about 1833 * inode @ino to the RB-tree of inodes. Returns inode information pointer in 1834 * case of success and a negative error code in case of failure. 1835 */ 1836 static struct fsck_inode *add_inode(struct ubifs_info *c, 1837 struct fsck_data *fsckd, 1838 struct ubifs_ino_node *ino) 1839 { 1840 struct rb_node **p, *parent = NULL; 1841 struct fsck_inode *fscki; 1842 ino_t inum = key_inum_flash(c, &ino->key); 1843 struct inode *inode; 1844 struct ubifs_inode *ui; 1845 1846 p = &fsckd->inodes.rb_node; 1847 while (*p) { 1848 parent = *p; 1849 fscki = rb_entry(parent, struct fsck_inode, rb); 1850 if (inum < fscki->inum) 1851 p = &(*p)->rb_left; 1852 else if (inum > fscki->inum) 1853 p = &(*p)->rb_right; 1854 else 1855 return fscki; 1856 } 1857 1858 if (inum > c->highest_inum) { 1859 ubifs_err(c, "too high inode number, max. is %lu", 1860 (unsigned long)c->highest_inum); 1861 return ERR_PTR(-EINVAL); 1862 } 1863 1864 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS); 1865 if (!fscki) 1866 return ERR_PTR(-ENOMEM); 1867 1868 inode = ilookup(c->vfs_sb, inum); 1869 1870 fscki->inum = inum; 1871 /* 1872 * If the inode is present in the VFS inode cache, use it instead of 1873 * the on-flash inode which might be out-of-date. E.g., the size might 1874 * be out-of-date. If we do not do this, the following may happen, for 1875 * example: 1876 * 1. A power cut happens 1877 * 2. We mount the file-system R/O, the replay process fixes up the 1878 * inode size in the VFS cache, but on on-flash. 1879 * 3. 'check_leaf()' fails because it hits a data node beyond inode 1880 * size. 1881 */ 1882 if (!inode) { 1883 fscki->nlink = le32_to_cpu(ino->nlink); 1884 fscki->size = le64_to_cpu(ino->size); 1885 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 1886 fscki->xattr_sz = le32_to_cpu(ino->xattr_size); 1887 fscki->xattr_nms = le32_to_cpu(ino->xattr_names); 1888 fscki->mode = le32_to_cpu(ino->mode); 1889 } else { 1890 ui = ubifs_inode(inode); 1891 fscki->nlink = inode->i_nlink; 1892 fscki->size = inode->i_size; 1893 fscki->xattr_cnt = ui->xattr_cnt; 1894 fscki->xattr_sz = ui->xattr_size; 1895 fscki->xattr_nms = ui->xattr_names; 1896 fscki->mode = inode->i_mode; 1897 iput(inode); 1898 } 1899 1900 if (S_ISDIR(fscki->mode)) { 1901 fscki->calc_sz = UBIFS_INO_NODE_SZ; 1902 fscki->calc_cnt = 2; 1903 } 1904 1905 rb_link_node(&fscki->rb, parent, p); 1906 rb_insert_color(&fscki->rb, &fsckd->inodes); 1907 1908 return fscki; 1909 } 1910 1911 /** 1912 * search_inode - search inode in the RB-tree of inodes. 1913 * @fsckd: FS checking information 1914 * @inum: inode number to search 1915 * 1916 * This is a helper function for 'check_leaf()' which searches inode @inum in 1917 * the RB-tree of inodes and returns an inode information pointer or %NULL if 1918 * the inode was not found. 1919 */ 1920 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum) 1921 { 1922 struct rb_node *p; 1923 struct fsck_inode *fscki; 1924 1925 p = fsckd->inodes.rb_node; 1926 while (p) { 1927 fscki = rb_entry(p, struct fsck_inode, rb); 1928 if (inum < fscki->inum) 1929 p = p->rb_left; 1930 else if (inum > fscki->inum) 1931 p = p->rb_right; 1932 else 1933 return fscki; 1934 } 1935 return NULL; 1936 } 1937 1938 /** 1939 * read_add_inode - read inode node and add it to RB-tree of inodes. 1940 * @c: UBIFS file-system description object 1941 * @fsckd: FS checking information 1942 * @inum: inode number to read 1943 * 1944 * This is a helper function for 'check_leaf()' which finds inode node @inum in 1945 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode 1946 * information pointer in case of success and a negative error code in case of 1947 * failure. 1948 */ 1949 static struct fsck_inode *read_add_inode(struct ubifs_info *c, 1950 struct fsck_data *fsckd, ino_t inum) 1951 { 1952 int n, err; 1953 union ubifs_key key; 1954 struct ubifs_znode *znode; 1955 struct ubifs_zbranch *zbr; 1956 struct ubifs_ino_node *ino; 1957 struct fsck_inode *fscki; 1958 1959 fscki = search_inode(fsckd, inum); 1960 if (fscki) 1961 return fscki; 1962 1963 ino_key_init(c, &key, inum); 1964 err = ubifs_lookup_level0(c, &key, &znode, &n); 1965 if (!err) { 1966 ubifs_err(c, "inode %lu not found in index", (unsigned long)inum); 1967 return ERR_PTR(-ENOENT); 1968 } else if (err < 0) { 1969 ubifs_err(c, "error %d while looking up inode %lu", 1970 err, (unsigned long)inum); 1971 return ERR_PTR(err); 1972 } 1973 1974 zbr = &znode->zbranch[n]; 1975 if (zbr->len < UBIFS_INO_NODE_SZ) { 1976 ubifs_err(c, "bad node %lu node length %d", 1977 (unsigned long)inum, zbr->len); 1978 return ERR_PTR(-EINVAL); 1979 } 1980 1981 ino = kmalloc(zbr->len, GFP_NOFS); 1982 if (!ino) 1983 return ERR_PTR(-ENOMEM); 1984 1985 err = ubifs_tnc_read_node(c, zbr, ino); 1986 if (err) { 1987 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d", 1988 zbr->lnum, zbr->offs, err); 1989 kfree(ino); 1990 return ERR_PTR(err); 1991 } 1992 1993 fscki = add_inode(c, fsckd, ino); 1994 kfree(ino); 1995 if (IS_ERR(fscki)) { 1996 ubifs_err(c, "error %ld while adding inode %lu node", 1997 PTR_ERR(fscki), (unsigned long)inum); 1998 return fscki; 1999 } 2000 2001 return fscki; 2002 } 2003 2004 /** 2005 * check_leaf - check leaf node. 2006 * @c: UBIFS file-system description object 2007 * @zbr: zbranch of the leaf node to check 2008 * @priv: FS checking information 2009 * 2010 * This is a helper function for 'dbg_check_filesystem()' which is called for 2011 * every single leaf node while walking the indexing tree. It checks that the 2012 * leaf node referred from the indexing tree exists, has correct CRC, and does 2013 * some other basic validation. This function is also responsible for building 2014 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also 2015 * calculates reference count, size, etc for each inode in order to later 2016 * compare them to the information stored inside the inodes and detect possible 2017 * inconsistencies. Returns zero in case of success and a negative error code 2018 * in case of failure. 2019 */ 2020 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr, 2021 void *priv) 2022 { 2023 ino_t inum; 2024 void *node; 2025 struct ubifs_ch *ch; 2026 int err, type = key_type(c, &zbr->key); 2027 struct fsck_inode *fscki; 2028 2029 if (zbr->len < UBIFS_CH_SZ) { 2030 ubifs_err(c, "bad leaf length %d (LEB %d:%d)", 2031 zbr->len, zbr->lnum, zbr->offs); 2032 return -EINVAL; 2033 } 2034 2035 node = kmalloc(zbr->len, GFP_NOFS); 2036 if (!node) 2037 return -ENOMEM; 2038 2039 err = ubifs_tnc_read_node(c, zbr, node); 2040 if (err) { 2041 ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d", 2042 zbr->lnum, zbr->offs, err); 2043 goto out_free; 2044 } 2045 2046 /* If this is an inode node, add it to RB-tree of inodes */ 2047 if (type == UBIFS_INO_KEY) { 2048 fscki = add_inode(c, priv, node); 2049 if (IS_ERR(fscki)) { 2050 err = PTR_ERR(fscki); 2051 ubifs_err(c, "error %d while adding inode node", err); 2052 goto out_dump; 2053 } 2054 goto out; 2055 } 2056 2057 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY && 2058 type != UBIFS_DATA_KEY) { 2059 ubifs_err(c, "unexpected node type %d at LEB %d:%d", 2060 type, zbr->lnum, zbr->offs); 2061 err = -EINVAL; 2062 goto out_free; 2063 } 2064 2065 ch = node; 2066 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) { 2067 ubifs_err(c, "too high sequence number, max. is %llu", 2068 c->max_sqnum); 2069 err = -EINVAL; 2070 goto out_dump; 2071 } 2072 2073 if (type == UBIFS_DATA_KEY) { 2074 long long blk_offs; 2075 struct ubifs_data_node *dn = node; 2076 2077 ubifs_assert(zbr->len >= UBIFS_DATA_NODE_SZ); 2078 2079 /* 2080 * Search the inode node this data node belongs to and insert 2081 * it to the RB-tree of inodes. 2082 */ 2083 inum = key_inum_flash(c, &dn->key); 2084 fscki = read_add_inode(c, priv, inum); 2085 if (IS_ERR(fscki)) { 2086 err = PTR_ERR(fscki); 2087 ubifs_err(c, "error %d while processing data node and trying to find inode node %lu", 2088 err, (unsigned long)inum); 2089 goto out_dump; 2090 } 2091 2092 /* Make sure the data node is within inode size */ 2093 blk_offs = key_block_flash(c, &dn->key); 2094 blk_offs <<= UBIFS_BLOCK_SHIFT; 2095 blk_offs += le32_to_cpu(dn->size); 2096 if (blk_offs > fscki->size) { 2097 ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld", 2098 zbr->lnum, zbr->offs, fscki->size); 2099 err = -EINVAL; 2100 goto out_dump; 2101 } 2102 } else { 2103 int nlen; 2104 struct ubifs_dent_node *dent = node; 2105 struct fsck_inode *fscki1; 2106 2107 ubifs_assert(zbr->len >= UBIFS_DENT_NODE_SZ); 2108 2109 err = ubifs_validate_entry(c, dent); 2110 if (err) 2111 goto out_dump; 2112 2113 /* 2114 * Search the inode node this entry refers to and the parent 2115 * inode node and insert them to the RB-tree of inodes. 2116 */ 2117 inum = le64_to_cpu(dent->inum); 2118 fscki = read_add_inode(c, priv, inum); 2119 if (IS_ERR(fscki)) { 2120 err = PTR_ERR(fscki); 2121 ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu", 2122 err, (unsigned long)inum); 2123 goto out_dump; 2124 } 2125 2126 /* Count how many direntries or xentries refers this inode */ 2127 fscki->references += 1; 2128 2129 inum = key_inum_flash(c, &dent->key); 2130 fscki1 = read_add_inode(c, priv, inum); 2131 if (IS_ERR(fscki1)) { 2132 err = PTR_ERR(fscki1); 2133 ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu", 2134 err, (unsigned long)inum); 2135 goto out_dump; 2136 } 2137 2138 nlen = le16_to_cpu(dent->nlen); 2139 if (type == UBIFS_XENT_KEY) { 2140 fscki1->calc_xcnt += 1; 2141 fscki1->calc_xsz += CALC_DENT_SIZE(nlen); 2142 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size); 2143 fscki1->calc_xnms += nlen; 2144 } else { 2145 fscki1->calc_sz += CALC_DENT_SIZE(nlen); 2146 if (dent->type == UBIFS_ITYPE_DIR) 2147 fscki1->calc_cnt += 1; 2148 } 2149 } 2150 2151 out: 2152 kfree(node); 2153 return 0; 2154 2155 out_dump: 2156 ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs); 2157 ubifs_dump_node(c, node); 2158 out_free: 2159 kfree(node); 2160 return err; 2161 } 2162 2163 /** 2164 * free_inodes - free RB-tree of inodes. 2165 * @fsckd: FS checking information 2166 */ 2167 static void free_inodes(struct fsck_data *fsckd) 2168 { 2169 struct fsck_inode *fscki, *n; 2170 2171 rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb) 2172 kfree(fscki); 2173 } 2174 2175 /** 2176 * check_inodes - checks all inodes. 2177 * @c: UBIFS file-system description object 2178 * @fsckd: FS checking information 2179 * 2180 * This is a helper function for 'dbg_check_filesystem()' which walks the 2181 * RB-tree of inodes after the index scan has been finished, and checks that 2182 * inode nlink, size, etc are correct. Returns zero if inodes are fine, 2183 * %-EINVAL if not, and a negative error code in case of failure. 2184 */ 2185 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd) 2186 { 2187 int n, err; 2188 union ubifs_key key; 2189 struct ubifs_znode *znode; 2190 struct ubifs_zbranch *zbr; 2191 struct ubifs_ino_node *ino; 2192 struct fsck_inode *fscki; 2193 struct rb_node *this = rb_first(&fsckd->inodes); 2194 2195 while (this) { 2196 fscki = rb_entry(this, struct fsck_inode, rb); 2197 this = rb_next(this); 2198 2199 if (S_ISDIR(fscki->mode)) { 2200 /* 2201 * Directories have to have exactly one reference (they 2202 * cannot have hardlinks), although root inode is an 2203 * exception. 2204 */ 2205 if (fscki->inum != UBIFS_ROOT_INO && 2206 fscki->references != 1) { 2207 ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1", 2208 (unsigned long)fscki->inum, 2209 fscki->references); 2210 goto out_dump; 2211 } 2212 if (fscki->inum == UBIFS_ROOT_INO && 2213 fscki->references != 0) { 2214 ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it", 2215 (unsigned long)fscki->inum, 2216 fscki->references); 2217 goto out_dump; 2218 } 2219 if (fscki->calc_sz != fscki->size) { 2220 ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld", 2221 (unsigned long)fscki->inum, 2222 fscki->size, fscki->calc_sz); 2223 goto out_dump; 2224 } 2225 if (fscki->calc_cnt != fscki->nlink) { 2226 ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d", 2227 (unsigned long)fscki->inum, 2228 fscki->nlink, fscki->calc_cnt); 2229 goto out_dump; 2230 } 2231 } else { 2232 if (fscki->references != fscki->nlink) { 2233 ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d", 2234 (unsigned long)fscki->inum, 2235 fscki->nlink, fscki->references); 2236 goto out_dump; 2237 } 2238 } 2239 if (fscki->xattr_sz != fscki->calc_xsz) { 2240 ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld", 2241 (unsigned long)fscki->inum, fscki->xattr_sz, 2242 fscki->calc_xsz); 2243 goto out_dump; 2244 } 2245 if (fscki->xattr_cnt != fscki->calc_xcnt) { 2246 ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld", 2247 (unsigned long)fscki->inum, 2248 fscki->xattr_cnt, fscki->calc_xcnt); 2249 goto out_dump; 2250 } 2251 if (fscki->xattr_nms != fscki->calc_xnms) { 2252 ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld", 2253 (unsigned long)fscki->inum, fscki->xattr_nms, 2254 fscki->calc_xnms); 2255 goto out_dump; 2256 } 2257 } 2258 2259 return 0; 2260 2261 out_dump: 2262 /* Read the bad inode and dump it */ 2263 ino_key_init(c, &key, fscki->inum); 2264 err = ubifs_lookup_level0(c, &key, &znode, &n); 2265 if (!err) { 2266 ubifs_err(c, "inode %lu not found in index", 2267 (unsigned long)fscki->inum); 2268 return -ENOENT; 2269 } else if (err < 0) { 2270 ubifs_err(c, "error %d while looking up inode %lu", 2271 err, (unsigned long)fscki->inum); 2272 return err; 2273 } 2274 2275 zbr = &znode->zbranch[n]; 2276 ino = kmalloc(zbr->len, GFP_NOFS); 2277 if (!ino) 2278 return -ENOMEM; 2279 2280 err = ubifs_tnc_read_node(c, zbr, ino); 2281 if (err) { 2282 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d", 2283 zbr->lnum, zbr->offs, err); 2284 kfree(ino); 2285 return err; 2286 } 2287 2288 ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d", 2289 (unsigned long)fscki->inum, zbr->lnum, zbr->offs); 2290 ubifs_dump_node(c, ino); 2291 kfree(ino); 2292 return -EINVAL; 2293 } 2294 2295 /** 2296 * dbg_check_filesystem - check the file-system. 2297 * @c: UBIFS file-system description object 2298 * 2299 * This function checks the file system, namely: 2300 * o makes sure that all leaf nodes exist and their CRCs are correct; 2301 * o makes sure inode nlink, size, xattr size/count are correct (for all 2302 * inodes). 2303 * 2304 * The function reads whole indexing tree and all nodes, so it is pretty 2305 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if 2306 * not, and a negative error code in case of failure. 2307 */ 2308 int dbg_check_filesystem(struct ubifs_info *c) 2309 { 2310 int err; 2311 struct fsck_data fsckd; 2312 2313 if (!dbg_is_chk_fs(c)) 2314 return 0; 2315 2316 fsckd.inodes = RB_ROOT; 2317 err = dbg_walk_index(c, check_leaf, NULL, &fsckd); 2318 if (err) 2319 goto out_free; 2320 2321 err = check_inodes(c, &fsckd); 2322 if (err) 2323 goto out_free; 2324 2325 free_inodes(&fsckd); 2326 return 0; 2327 2328 out_free: 2329 ubifs_err(c, "file-system check failed with error %d", err); 2330 dump_stack(); 2331 free_inodes(&fsckd); 2332 return err; 2333 } 2334 2335 /** 2336 * dbg_check_data_nodes_order - check that list of data nodes is sorted. 2337 * @c: UBIFS file-system description object 2338 * @head: the list of nodes ('struct ubifs_scan_node' objects) 2339 * 2340 * This function returns zero if the list of data nodes is sorted correctly, 2341 * and %-EINVAL if not. 2342 */ 2343 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head) 2344 { 2345 struct list_head *cur; 2346 struct ubifs_scan_node *sa, *sb; 2347 2348 if (!dbg_is_chk_gen(c)) 2349 return 0; 2350 2351 for (cur = head->next; cur->next != head; cur = cur->next) { 2352 ino_t inuma, inumb; 2353 uint32_t blka, blkb; 2354 2355 cond_resched(); 2356 sa = container_of(cur, struct ubifs_scan_node, list); 2357 sb = container_of(cur->next, struct ubifs_scan_node, list); 2358 2359 if (sa->type != UBIFS_DATA_NODE) { 2360 ubifs_err(c, "bad node type %d", sa->type); 2361 ubifs_dump_node(c, sa->node); 2362 return -EINVAL; 2363 } 2364 if (sb->type != UBIFS_DATA_NODE) { 2365 ubifs_err(c, "bad node type %d", sb->type); 2366 ubifs_dump_node(c, sb->node); 2367 return -EINVAL; 2368 } 2369 2370 inuma = key_inum(c, &sa->key); 2371 inumb = key_inum(c, &sb->key); 2372 2373 if (inuma < inumb) 2374 continue; 2375 if (inuma > inumb) { 2376 ubifs_err(c, "larger inum %lu goes before inum %lu", 2377 (unsigned long)inuma, (unsigned long)inumb); 2378 goto error_dump; 2379 } 2380 2381 blka = key_block(c, &sa->key); 2382 blkb = key_block(c, &sb->key); 2383 2384 if (blka > blkb) { 2385 ubifs_err(c, "larger block %u goes before %u", blka, blkb); 2386 goto error_dump; 2387 } 2388 if (blka == blkb) { 2389 ubifs_err(c, "two data nodes for the same block"); 2390 goto error_dump; 2391 } 2392 } 2393 2394 return 0; 2395 2396 error_dump: 2397 ubifs_dump_node(c, sa->node); 2398 ubifs_dump_node(c, sb->node); 2399 return -EINVAL; 2400 } 2401 2402 /** 2403 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted. 2404 * @c: UBIFS file-system description object 2405 * @head: the list of nodes ('struct ubifs_scan_node' objects) 2406 * 2407 * This function returns zero if the list of non-data nodes is sorted correctly, 2408 * and %-EINVAL if not. 2409 */ 2410 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head) 2411 { 2412 struct list_head *cur; 2413 struct ubifs_scan_node *sa, *sb; 2414 2415 if (!dbg_is_chk_gen(c)) 2416 return 0; 2417 2418 for (cur = head->next; cur->next != head; cur = cur->next) { 2419 ino_t inuma, inumb; 2420 uint32_t hasha, hashb; 2421 2422 cond_resched(); 2423 sa = container_of(cur, struct ubifs_scan_node, list); 2424 sb = container_of(cur->next, struct ubifs_scan_node, list); 2425 2426 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE && 2427 sa->type != UBIFS_XENT_NODE) { 2428 ubifs_err(c, "bad node type %d", sa->type); 2429 ubifs_dump_node(c, sa->node); 2430 return -EINVAL; 2431 } 2432 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE && 2433 sa->type != UBIFS_XENT_NODE) { 2434 ubifs_err(c, "bad node type %d", sb->type); 2435 ubifs_dump_node(c, sb->node); 2436 return -EINVAL; 2437 } 2438 2439 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { 2440 ubifs_err(c, "non-inode node goes before inode node"); 2441 goto error_dump; 2442 } 2443 2444 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE) 2445 continue; 2446 2447 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { 2448 /* Inode nodes are sorted in descending size order */ 2449 if (sa->len < sb->len) { 2450 ubifs_err(c, "smaller inode node goes first"); 2451 goto error_dump; 2452 } 2453 continue; 2454 } 2455 2456 /* 2457 * This is either a dentry or xentry, which should be sorted in 2458 * ascending (parent ino, hash) order. 2459 */ 2460 inuma = key_inum(c, &sa->key); 2461 inumb = key_inum(c, &sb->key); 2462 2463 if (inuma < inumb) 2464 continue; 2465 if (inuma > inumb) { 2466 ubifs_err(c, "larger inum %lu goes before inum %lu", 2467 (unsigned long)inuma, (unsigned long)inumb); 2468 goto error_dump; 2469 } 2470 2471 hasha = key_block(c, &sa->key); 2472 hashb = key_block(c, &sb->key); 2473 2474 if (hasha > hashb) { 2475 ubifs_err(c, "larger hash %u goes before %u", 2476 hasha, hashb); 2477 goto error_dump; 2478 } 2479 } 2480 2481 return 0; 2482 2483 error_dump: 2484 ubifs_msg(c, "dumping first node"); 2485 ubifs_dump_node(c, sa->node); 2486 ubifs_msg(c, "dumping second node"); 2487 ubifs_dump_node(c, sb->node); 2488 return -EINVAL; 2489 return 0; 2490 } 2491 2492 static inline int chance(unsigned int n, unsigned int out_of) 2493 { 2494 return !!((prandom_u32() % out_of) + 1 <= n); 2495 2496 } 2497 2498 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write) 2499 { 2500 struct ubifs_debug_info *d = c->dbg; 2501 2502 ubifs_assert(dbg_is_tst_rcvry(c)); 2503 2504 if (!d->pc_cnt) { 2505 /* First call - decide delay to the power cut */ 2506 if (chance(1, 2)) { 2507 unsigned long delay; 2508 2509 if (chance(1, 2)) { 2510 d->pc_delay = 1; 2511 /* Fail within 1 minute */ 2512 delay = prandom_u32() % 60000; 2513 d->pc_timeout = jiffies; 2514 d->pc_timeout += msecs_to_jiffies(delay); 2515 ubifs_warn(c, "failing after %lums", delay); 2516 } else { 2517 d->pc_delay = 2; 2518 delay = prandom_u32() % 10000; 2519 /* Fail within 10000 operations */ 2520 d->pc_cnt_max = delay; 2521 ubifs_warn(c, "failing after %lu calls", delay); 2522 } 2523 } 2524 2525 d->pc_cnt += 1; 2526 } 2527 2528 /* Determine if failure delay has expired */ 2529 if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout)) 2530 return 0; 2531 if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max) 2532 return 0; 2533 2534 if (lnum == UBIFS_SB_LNUM) { 2535 if (write && chance(1, 2)) 2536 return 0; 2537 if (chance(19, 20)) 2538 return 0; 2539 ubifs_warn(c, "failing in super block LEB %d", lnum); 2540 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) { 2541 if (chance(19, 20)) 2542 return 0; 2543 ubifs_warn(c, "failing in master LEB %d", lnum); 2544 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) { 2545 if (write && chance(99, 100)) 2546 return 0; 2547 if (chance(399, 400)) 2548 return 0; 2549 ubifs_warn(c, "failing in log LEB %d", lnum); 2550 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) { 2551 if (write && chance(7, 8)) 2552 return 0; 2553 if (chance(19, 20)) 2554 return 0; 2555 ubifs_warn(c, "failing in LPT LEB %d", lnum); 2556 } else if (lnum >= c->orph_first && lnum <= c->orph_last) { 2557 if (write && chance(1, 2)) 2558 return 0; 2559 if (chance(9, 10)) 2560 return 0; 2561 ubifs_warn(c, "failing in orphan LEB %d", lnum); 2562 } else if (lnum == c->ihead_lnum) { 2563 if (chance(99, 100)) 2564 return 0; 2565 ubifs_warn(c, "failing in index head LEB %d", lnum); 2566 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) { 2567 if (chance(9, 10)) 2568 return 0; 2569 ubifs_warn(c, "failing in GC head LEB %d", lnum); 2570 } else if (write && !RB_EMPTY_ROOT(&c->buds) && 2571 !ubifs_search_bud(c, lnum)) { 2572 if (chance(19, 20)) 2573 return 0; 2574 ubifs_warn(c, "failing in non-bud LEB %d", lnum); 2575 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND || 2576 c->cmt_state == COMMIT_RUNNING_REQUIRED) { 2577 if (chance(999, 1000)) 2578 return 0; 2579 ubifs_warn(c, "failing in bud LEB %d commit running", lnum); 2580 } else { 2581 if (chance(9999, 10000)) 2582 return 0; 2583 ubifs_warn(c, "failing in bud LEB %d commit not running", lnum); 2584 } 2585 2586 d->pc_happened = 1; 2587 ubifs_warn(c, "========== Power cut emulated =========="); 2588 dump_stack(); 2589 return 1; 2590 } 2591 2592 static int corrupt_data(const struct ubifs_info *c, const void *buf, 2593 unsigned int len) 2594 { 2595 unsigned int from, to, ffs = chance(1, 2); 2596 unsigned char *p = (void *)buf; 2597 2598 from = prandom_u32() % len; 2599 /* Corruption span max to end of write unit */ 2600 to = min(len, ALIGN(from + 1, c->max_write_size)); 2601 2602 ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1, 2603 ffs ? "0xFFs" : "random data"); 2604 2605 if (ffs) 2606 memset(p + from, 0xFF, to - from); 2607 else 2608 prandom_bytes(p + from, to - from); 2609 2610 return to; 2611 } 2612 2613 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf, 2614 int offs, int len) 2615 { 2616 int err, failing; 2617 2618 if (c->dbg->pc_happened) 2619 return -EROFS; 2620 2621 failing = power_cut_emulated(c, lnum, 1); 2622 if (failing) { 2623 len = corrupt_data(c, buf, len); 2624 ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)", 2625 len, lnum, offs); 2626 } 2627 err = ubi_leb_write(c->ubi, lnum, buf, offs, len); 2628 if (err) 2629 return err; 2630 if (failing) 2631 return -EROFS; 2632 return 0; 2633 } 2634 2635 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf, 2636 int len) 2637 { 2638 int err; 2639 2640 if (c->dbg->pc_happened) 2641 return -EROFS; 2642 if (power_cut_emulated(c, lnum, 1)) 2643 return -EROFS; 2644 err = ubi_leb_change(c->ubi, lnum, buf, len); 2645 if (err) 2646 return err; 2647 if (power_cut_emulated(c, lnum, 1)) 2648 return -EROFS; 2649 return 0; 2650 } 2651 2652 int dbg_leb_unmap(struct ubifs_info *c, int lnum) 2653 { 2654 int err; 2655 2656 if (c->dbg->pc_happened) 2657 return -EROFS; 2658 if (power_cut_emulated(c, lnum, 0)) 2659 return -EROFS; 2660 err = ubi_leb_unmap(c->ubi, lnum); 2661 if (err) 2662 return err; 2663 if (power_cut_emulated(c, lnum, 0)) 2664 return -EROFS; 2665 return 0; 2666 } 2667 2668 int dbg_leb_map(struct ubifs_info *c, int lnum) 2669 { 2670 int err; 2671 2672 if (c->dbg->pc_happened) 2673 return -EROFS; 2674 if (power_cut_emulated(c, lnum, 0)) 2675 return -EROFS; 2676 err = ubi_leb_map(c->ubi, lnum); 2677 if (err) 2678 return err; 2679 if (power_cut_emulated(c, lnum, 0)) 2680 return -EROFS; 2681 return 0; 2682 } 2683 2684 /* 2685 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which 2686 * contain the stuff specific to particular file-system mounts. 2687 */ 2688 static struct dentry *dfs_rootdir; 2689 2690 static int dfs_file_open(struct inode *inode, struct file *file) 2691 { 2692 file->private_data = inode->i_private; 2693 return nonseekable_open(inode, file); 2694 } 2695 2696 /** 2697 * provide_user_output - provide output to the user reading a debugfs file. 2698 * @val: boolean value for the answer 2699 * @u: the buffer to store the answer at 2700 * @count: size of the buffer 2701 * @ppos: position in the @u output buffer 2702 * 2703 * This is a simple helper function which stores @val boolean value in the user 2704 * buffer when the user reads one of UBIFS debugfs files. Returns amount of 2705 * bytes written to @u in case of success and a negative error code in case of 2706 * failure. 2707 */ 2708 static int provide_user_output(int val, char __user *u, size_t count, 2709 loff_t *ppos) 2710 { 2711 char buf[3]; 2712 2713 if (val) 2714 buf[0] = '1'; 2715 else 2716 buf[0] = '0'; 2717 buf[1] = '\n'; 2718 buf[2] = 0x00; 2719 2720 return simple_read_from_buffer(u, count, ppos, buf, 2); 2721 } 2722 2723 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count, 2724 loff_t *ppos) 2725 { 2726 struct dentry *dent = file->f_path.dentry; 2727 struct ubifs_info *c = file->private_data; 2728 struct ubifs_debug_info *d = c->dbg; 2729 int val; 2730 2731 if (dent == d->dfs_chk_gen) 2732 val = d->chk_gen; 2733 else if (dent == d->dfs_chk_index) 2734 val = d->chk_index; 2735 else if (dent == d->dfs_chk_orph) 2736 val = d->chk_orph; 2737 else if (dent == d->dfs_chk_lprops) 2738 val = d->chk_lprops; 2739 else if (dent == d->dfs_chk_fs) 2740 val = d->chk_fs; 2741 else if (dent == d->dfs_tst_rcvry) 2742 val = d->tst_rcvry; 2743 else if (dent == d->dfs_ro_error) 2744 val = c->ro_error; 2745 else 2746 return -EINVAL; 2747 2748 return provide_user_output(val, u, count, ppos); 2749 } 2750 2751 /** 2752 * interpret_user_input - interpret user debugfs file input. 2753 * @u: user-provided buffer with the input 2754 * @count: buffer size 2755 * 2756 * This is a helper function which interpret user input to a boolean UBIFS 2757 * debugfs file. Returns %0 or %1 in case of success and a negative error code 2758 * in case of failure. 2759 */ 2760 static int interpret_user_input(const char __user *u, size_t count) 2761 { 2762 size_t buf_size; 2763 char buf[8]; 2764 2765 buf_size = min_t(size_t, count, (sizeof(buf) - 1)); 2766 if (copy_from_user(buf, u, buf_size)) 2767 return -EFAULT; 2768 2769 if (buf[0] == '1') 2770 return 1; 2771 else if (buf[0] == '0') 2772 return 0; 2773 2774 return -EINVAL; 2775 } 2776 2777 static ssize_t dfs_file_write(struct file *file, const char __user *u, 2778 size_t count, loff_t *ppos) 2779 { 2780 struct ubifs_info *c = file->private_data; 2781 struct ubifs_debug_info *d = c->dbg; 2782 struct dentry *dent = file->f_path.dentry; 2783 int val; 2784 2785 /* 2786 * TODO: this is racy - the file-system might have already been 2787 * unmounted and we'd oops in this case. The plan is to fix it with 2788 * help of 'iterate_supers_type()' which we should have in v3.0: when 2789 * a debugfs opened, we rember FS's UUID in file->private_data. Then 2790 * whenever we access the FS via a debugfs file, we iterate all UBIFS 2791 * superblocks and fine the one with the same UUID, and take the 2792 * locking right. 2793 * 2794 * The other way to go suggested by Al Viro is to create a separate 2795 * 'ubifs-debug' file-system instead. 2796 */ 2797 if (file->f_path.dentry == d->dfs_dump_lprops) { 2798 ubifs_dump_lprops(c); 2799 return count; 2800 } 2801 if (file->f_path.dentry == d->dfs_dump_budg) { 2802 ubifs_dump_budg(c, &c->bi); 2803 return count; 2804 } 2805 if (file->f_path.dentry == d->dfs_dump_tnc) { 2806 mutex_lock(&c->tnc_mutex); 2807 ubifs_dump_tnc(c); 2808 mutex_unlock(&c->tnc_mutex); 2809 return count; 2810 } 2811 2812 val = interpret_user_input(u, count); 2813 if (val < 0) 2814 return val; 2815 2816 if (dent == d->dfs_chk_gen) 2817 d->chk_gen = val; 2818 else if (dent == d->dfs_chk_index) 2819 d->chk_index = val; 2820 else if (dent == d->dfs_chk_orph) 2821 d->chk_orph = val; 2822 else if (dent == d->dfs_chk_lprops) 2823 d->chk_lprops = val; 2824 else if (dent == d->dfs_chk_fs) 2825 d->chk_fs = val; 2826 else if (dent == d->dfs_tst_rcvry) 2827 d->tst_rcvry = val; 2828 else if (dent == d->dfs_ro_error) 2829 c->ro_error = !!val; 2830 else 2831 return -EINVAL; 2832 2833 return count; 2834 } 2835 2836 static const struct file_operations dfs_fops = { 2837 .open = dfs_file_open, 2838 .read = dfs_file_read, 2839 .write = dfs_file_write, 2840 .owner = THIS_MODULE, 2841 .llseek = no_llseek, 2842 }; 2843 2844 /** 2845 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance. 2846 * @c: UBIFS file-system description object 2847 * 2848 * This function creates all debugfs files for this instance of UBIFS. Returns 2849 * zero in case of success and a negative error code in case of failure. 2850 * 2851 * Note, the only reason we have not merged this function with the 2852 * 'ubifs_debugging_init()' function is because it is better to initialize 2853 * debugfs interfaces at the very end of the mount process, and remove them at 2854 * the very beginning of the mount process. 2855 */ 2856 int dbg_debugfs_init_fs(struct ubifs_info *c) 2857 { 2858 int err, n; 2859 const char *fname; 2860 struct dentry *dent; 2861 struct ubifs_debug_info *d = c->dbg; 2862 2863 if (!IS_ENABLED(CONFIG_DEBUG_FS)) 2864 return 0; 2865 2866 n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME, 2867 c->vi.ubi_num, c->vi.vol_id); 2868 if (n == UBIFS_DFS_DIR_LEN) { 2869 /* The array size is too small */ 2870 fname = UBIFS_DFS_DIR_NAME; 2871 dent = ERR_PTR(-EINVAL); 2872 goto out; 2873 } 2874 2875 fname = d->dfs_dir_name; 2876 dent = debugfs_create_dir(fname, dfs_rootdir); 2877 if (IS_ERR_OR_NULL(dent)) 2878 goto out; 2879 d->dfs_dir = dent; 2880 2881 fname = "dump_lprops"; 2882 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); 2883 if (IS_ERR_OR_NULL(dent)) 2884 goto out_remove; 2885 d->dfs_dump_lprops = dent; 2886 2887 fname = "dump_budg"; 2888 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); 2889 if (IS_ERR_OR_NULL(dent)) 2890 goto out_remove; 2891 d->dfs_dump_budg = dent; 2892 2893 fname = "dump_tnc"; 2894 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); 2895 if (IS_ERR_OR_NULL(dent)) 2896 goto out_remove; 2897 d->dfs_dump_tnc = dent; 2898 2899 fname = "chk_general"; 2900 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2901 &dfs_fops); 2902 if (IS_ERR_OR_NULL(dent)) 2903 goto out_remove; 2904 d->dfs_chk_gen = dent; 2905 2906 fname = "chk_index"; 2907 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2908 &dfs_fops); 2909 if (IS_ERR_OR_NULL(dent)) 2910 goto out_remove; 2911 d->dfs_chk_index = dent; 2912 2913 fname = "chk_orphans"; 2914 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2915 &dfs_fops); 2916 if (IS_ERR_OR_NULL(dent)) 2917 goto out_remove; 2918 d->dfs_chk_orph = dent; 2919 2920 fname = "chk_lprops"; 2921 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2922 &dfs_fops); 2923 if (IS_ERR_OR_NULL(dent)) 2924 goto out_remove; 2925 d->dfs_chk_lprops = dent; 2926 2927 fname = "chk_fs"; 2928 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2929 &dfs_fops); 2930 if (IS_ERR_OR_NULL(dent)) 2931 goto out_remove; 2932 d->dfs_chk_fs = dent; 2933 2934 fname = "tst_recovery"; 2935 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2936 &dfs_fops); 2937 if (IS_ERR_OR_NULL(dent)) 2938 goto out_remove; 2939 d->dfs_tst_rcvry = dent; 2940 2941 fname = "ro_error"; 2942 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2943 &dfs_fops); 2944 if (IS_ERR_OR_NULL(dent)) 2945 goto out_remove; 2946 d->dfs_ro_error = dent; 2947 2948 return 0; 2949 2950 out_remove: 2951 debugfs_remove_recursive(d->dfs_dir); 2952 out: 2953 err = dent ? PTR_ERR(dent) : -ENODEV; 2954 ubifs_err(c, "cannot create \"%s\" debugfs file or directory, error %d\n", 2955 fname, err); 2956 return err; 2957 } 2958 2959 /** 2960 * dbg_debugfs_exit_fs - remove all debugfs files. 2961 * @c: UBIFS file-system description object 2962 */ 2963 void dbg_debugfs_exit_fs(struct ubifs_info *c) 2964 { 2965 if (IS_ENABLED(CONFIG_DEBUG_FS)) 2966 debugfs_remove_recursive(c->dbg->dfs_dir); 2967 } 2968 2969 struct ubifs_global_debug_info ubifs_dbg; 2970 2971 static struct dentry *dfs_chk_gen; 2972 static struct dentry *dfs_chk_index; 2973 static struct dentry *dfs_chk_orph; 2974 static struct dentry *dfs_chk_lprops; 2975 static struct dentry *dfs_chk_fs; 2976 static struct dentry *dfs_tst_rcvry; 2977 2978 static ssize_t dfs_global_file_read(struct file *file, char __user *u, 2979 size_t count, loff_t *ppos) 2980 { 2981 struct dentry *dent = file->f_path.dentry; 2982 int val; 2983 2984 if (dent == dfs_chk_gen) 2985 val = ubifs_dbg.chk_gen; 2986 else if (dent == dfs_chk_index) 2987 val = ubifs_dbg.chk_index; 2988 else if (dent == dfs_chk_orph) 2989 val = ubifs_dbg.chk_orph; 2990 else if (dent == dfs_chk_lprops) 2991 val = ubifs_dbg.chk_lprops; 2992 else if (dent == dfs_chk_fs) 2993 val = ubifs_dbg.chk_fs; 2994 else if (dent == dfs_tst_rcvry) 2995 val = ubifs_dbg.tst_rcvry; 2996 else 2997 return -EINVAL; 2998 2999 return provide_user_output(val, u, count, ppos); 3000 } 3001 3002 static ssize_t dfs_global_file_write(struct file *file, const char __user *u, 3003 size_t count, loff_t *ppos) 3004 { 3005 struct dentry *dent = file->f_path.dentry; 3006 int val; 3007 3008 val = interpret_user_input(u, count); 3009 if (val < 0) 3010 return val; 3011 3012 if (dent == dfs_chk_gen) 3013 ubifs_dbg.chk_gen = val; 3014 else if (dent == dfs_chk_index) 3015 ubifs_dbg.chk_index = val; 3016 else if (dent == dfs_chk_orph) 3017 ubifs_dbg.chk_orph = val; 3018 else if (dent == dfs_chk_lprops) 3019 ubifs_dbg.chk_lprops = val; 3020 else if (dent == dfs_chk_fs) 3021 ubifs_dbg.chk_fs = val; 3022 else if (dent == dfs_tst_rcvry) 3023 ubifs_dbg.tst_rcvry = val; 3024 else 3025 return -EINVAL; 3026 3027 return count; 3028 } 3029 3030 static const struct file_operations dfs_global_fops = { 3031 .read = dfs_global_file_read, 3032 .write = dfs_global_file_write, 3033 .owner = THIS_MODULE, 3034 .llseek = no_llseek, 3035 }; 3036 3037 /** 3038 * dbg_debugfs_init - initialize debugfs file-system. 3039 * 3040 * UBIFS uses debugfs file-system to expose various debugging knobs to 3041 * user-space. This function creates "ubifs" directory in the debugfs 3042 * file-system. Returns zero in case of success and a negative error code in 3043 * case of failure. 3044 */ 3045 int dbg_debugfs_init(void) 3046 { 3047 int err; 3048 const char *fname; 3049 struct dentry *dent; 3050 3051 if (!IS_ENABLED(CONFIG_DEBUG_FS)) 3052 return 0; 3053 3054 fname = "ubifs"; 3055 dent = debugfs_create_dir(fname, NULL); 3056 if (IS_ERR_OR_NULL(dent)) 3057 goto out; 3058 dfs_rootdir = dent; 3059 3060 fname = "chk_general"; 3061 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3062 &dfs_global_fops); 3063 if (IS_ERR_OR_NULL(dent)) 3064 goto out_remove; 3065 dfs_chk_gen = dent; 3066 3067 fname = "chk_index"; 3068 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3069 &dfs_global_fops); 3070 if (IS_ERR_OR_NULL(dent)) 3071 goto out_remove; 3072 dfs_chk_index = dent; 3073 3074 fname = "chk_orphans"; 3075 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3076 &dfs_global_fops); 3077 if (IS_ERR_OR_NULL(dent)) 3078 goto out_remove; 3079 dfs_chk_orph = dent; 3080 3081 fname = "chk_lprops"; 3082 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3083 &dfs_global_fops); 3084 if (IS_ERR_OR_NULL(dent)) 3085 goto out_remove; 3086 dfs_chk_lprops = dent; 3087 3088 fname = "chk_fs"; 3089 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3090 &dfs_global_fops); 3091 if (IS_ERR_OR_NULL(dent)) 3092 goto out_remove; 3093 dfs_chk_fs = dent; 3094 3095 fname = "tst_recovery"; 3096 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3097 &dfs_global_fops); 3098 if (IS_ERR_OR_NULL(dent)) 3099 goto out_remove; 3100 dfs_tst_rcvry = dent; 3101 3102 return 0; 3103 3104 out_remove: 3105 debugfs_remove_recursive(dfs_rootdir); 3106 out: 3107 err = dent ? PTR_ERR(dent) : -ENODEV; 3108 pr_err("UBIFS error (pid %d): cannot create \"%s\" debugfs file or directory, error %d\n", 3109 current->pid, fname, err); 3110 return err; 3111 } 3112 3113 /** 3114 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system. 3115 */ 3116 void dbg_debugfs_exit(void) 3117 { 3118 if (IS_ENABLED(CONFIG_DEBUG_FS)) 3119 debugfs_remove_recursive(dfs_rootdir); 3120 } 3121 3122 /** 3123 * ubifs_debugging_init - initialize UBIFS debugging. 3124 * @c: UBIFS file-system description object 3125 * 3126 * This function initializes debugging-related data for the file system. 3127 * Returns zero in case of success and a negative error code in case of 3128 * failure. 3129 */ 3130 int ubifs_debugging_init(struct ubifs_info *c) 3131 { 3132 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL); 3133 if (!c->dbg) 3134 return -ENOMEM; 3135 3136 return 0; 3137 } 3138 3139 /** 3140 * ubifs_debugging_exit - free debugging data. 3141 * @c: UBIFS file-system description object 3142 */ 3143 void ubifs_debugging_exit(struct ubifs_info *c) 3144 { 3145 kfree(c->dbg); 3146 } 3147 #endif 3148