xref: /openbmc/u-boot/fs/ubifs/debug.c (revision 3cfbcb58)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * SPDX-License-Identifier:	GPL-2.0+
7  *
8  * Authors: Artem Bityutskiy (Битюцкий Артём)
9  *          Adrian Hunter
10  */
11 
12 /*
13  * This file implements most of the debugging stuff which is compiled in only
14  * when it is enabled. But some debugging check functions are implemented in
15  * corresponding subsystem, just because they are closely related and utilize
16  * various local functions of those subsystems.
17  */
18 
19 #define __UBOOT__
20 #ifndef __UBOOT__
21 #include <linux/module.h>
22 #include <linux/debugfs.h>
23 #include <linux/math64.h>
24 #include <linux/uaccess.h>
25 #include <linux/random.h>
26 #else
27 #include <linux/compat.h>
28 #include <linux/err.h>
29 #endif
30 #include "ubifs.h"
31 
32 #ifndef __UBOOT__
33 static DEFINE_SPINLOCK(dbg_lock);
34 #endif
35 
36 static const char *get_key_fmt(int fmt)
37 {
38 	switch (fmt) {
39 	case UBIFS_SIMPLE_KEY_FMT:
40 		return "simple";
41 	default:
42 		return "unknown/invalid format";
43 	}
44 }
45 
46 static const char *get_key_hash(int hash)
47 {
48 	switch (hash) {
49 	case UBIFS_KEY_HASH_R5:
50 		return "R5";
51 	case UBIFS_KEY_HASH_TEST:
52 		return "test";
53 	default:
54 		return "unknown/invalid name hash";
55 	}
56 }
57 
58 static const char *get_key_type(int type)
59 {
60 	switch (type) {
61 	case UBIFS_INO_KEY:
62 		return "inode";
63 	case UBIFS_DENT_KEY:
64 		return "direntry";
65 	case UBIFS_XENT_KEY:
66 		return "xentry";
67 	case UBIFS_DATA_KEY:
68 		return "data";
69 	case UBIFS_TRUN_KEY:
70 		return "truncate";
71 	default:
72 		return "unknown/invalid key";
73 	}
74 }
75 
76 #ifndef __UBOOT__
77 static const char *get_dent_type(int type)
78 {
79 	switch (type) {
80 	case UBIFS_ITYPE_REG:
81 		return "file";
82 	case UBIFS_ITYPE_DIR:
83 		return "dir";
84 	case UBIFS_ITYPE_LNK:
85 		return "symlink";
86 	case UBIFS_ITYPE_BLK:
87 		return "blkdev";
88 	case UBIFS_ITYPE_CHR:
89 		return "char dev";
90 	case UBIFS_ITYPE_FIFO:
91 		return "fifo";
92 	case UBIFS_ITYPE_SOCK:
93 		return "socket";
94 	default:
95 		return "unknown/invalid type";
96 	}
97 }
98 #endif
99 
100 const char *dbg_snprintf_key(const struct ubifs_info *c,
101 			     const union ubifs_key *key, char *buffer, int len)
102 {
103 	char *p = buffer;
104 	int type = key_type(c, key);
105 
106 	if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
107 		switch (type) {
108 		case UBIFS_INO_KEY:
109 			len -= snprintf(p, len, "(%lu, %s)",
110 					(unsigned long)key_inum(c, key),
111 					get_key_type(type));
112 			break;
113 		case UBIFS_DENT_KEY:
114 		case UBIFS_XENT_KEY:
115 			len -= snprintf(p, len, "(%lu, %s, %#08x)",
116 					(unsigned long)key_inum(c, key),
117 					get_key_type(type), key_hash(c, key));
118 			break;
119 		case UBIFS_DATA_KEY:
120 			len -= snprintf(p, len, "(%lu, %s, %u)",
121 					(unsigned long)key_inum(c, key),
122 					get_key_type(type), key_block(c, key));
123 			break;
124 		case UBIFS_TRUN_KEY:
125 			len -= snprintf(p, len, "(%lu, %s)",
126 					(unsigned long)key_inum(c, key),
127 					get_key_type(type));
128 			break;
129 		default:
130 			len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
131 					key->u32[0], key->u32[1]);
132 		}
133 	} else
134 		len -= snprintf(p, len, "bad key format %d", c->key_fmt);
135 	ubifs_assert(len > 0);
136 	return p;
137 }
138 
139 const char *dbg_ntype(int type)
140 {
141 	switch (type) {
142 	case UBIFS_PAD_NODE:
143 		return "padding node";
144 	case UBIFS_SB_NODE:
145 		return "superblock node";
146 	case UBIFS_MST_NODE:
147 		return "master node";
148 	case UBIFS_REF_NODE:
149 		return "reference node";
150 	case UBIFS_INO_NODE:
151 		return "inode node";
152 	case UBIFS_DENT_NODE:
153 		return "direntry node";
154 	case UBIFS_XENT_NODE:
155 		return "xentry node";
156 	case UBIFS_DATA_NODE:
157 		return "data node";
158 	case UBIFS_TRUN_NODE:
159 		return "truncate node";
160 	case UBIFS_IDX_NODE:
161 		return "indexing node";
162 	case UBIFS_CS_NODE:
163 		return "commit start node";
164 	case UBIFS_ORPH_NODE:
165 		return "orphan node";
166 	default:
167 		return "unknown node";
168 	}
169 }
170 
171 static const char *dbg_gtype(int type)
172 {
173 	switch (type) {
174 	case UBIFS_NO_NODE_GROUP:
175 		return "no node group";
176 	case UBIFS_IN_NODE_GROUP:
177 		return "in node group";
178 	case UBIFS_LAST_OF_NODE_GROUP:
179 		return "last of node group";
180 	default:
181 		return "unknown";
182 	}
183 }
184 
185 const char *dbg_cstate(int cmt_state)
186 {
187 	switch (cmt_state) {
188 	case COMMIT_RESTING:
189 		return "commit resting";
190 	case COMMIT_BACKGROUND:
191 		return "background commit requested";
192 	case COMMIT_REQUIRED:
193 		return "commit required";
194 	case COMMIT_RUNNING_BACKGROUND:
195 		return "BACKGROUND commit running";
196 	case COMMIT_RUNNING_REQUIRED:
197 		return "commit running and required";
198 	case COMMIT_BROKEN:
199 		return "broken commit";
200 	default:
201 		return "unknown commit state";
202 	}
203 }
204 
205 const char *dbg_jhead(int jhead)
206 {
207 	switch (jhead) {
208 	case GCHD:
209 		return "0 (GC)";
210 	case BASEHD:
211 		return "1 (base)";
212 	case DATAHD:
213 		return "2 (data)";
214 	default:
215 		return "unknown journal head";
216 	}
217 }
218 
219 static void dump_ch(const struct ubifs_ch *ch)
220 {
221 	pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
222 	pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
223 	pr_err("\tnode_type      %d (%s)\n", ch->node_type,
224 	       dbg_ntype(ch->node_type));
225 	pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
226 	       dbg_gtype(ch->group_type));
227 	pr_err("\tsqnum          %llu\n",
228 	       (unsigned long long)le64_to_cpu(ch->sqnum));
229 	pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
230 }
231 
232 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
233 {
234 #ifndef __UBOOT__
235 	const struct ubifs_inode *ui = ubifs_inode(inode);
236 	struct qstr nm = { .name = NULL };
237 	union ubifs_key key;
238 	struct ubifs_dent_node *dent, *pdent = NULL;
239 	int count = 2;
240 
241 	pr_err("Dump in-memory inode:");
242 	pr_err("\tinode          %lu\n", inode->i_ino);
243 	pr_err("\tsize           %llu\n",
244 	       (unsigned long long)i_size_read(inode));
245 	pr_err("\tnlink          %u\n", inode->i_nlink);
246 	pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode));
247 	pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode));
248 	pr_err("\tatime          %u.%u\n",
249 	       (unsigned int)inode->i_atime.tv_sec,
250 	       (unsigned int)inode->i_atime.tv_nsec);
251 	pr_err("\tmtime          %u.%u\n",
252 	       (unsigned int)inode->i_mtime.tv_sec,
253 	       (unsigned int)inode->i_mtime.tv_nsec);
254 	pr_err("\tctime          %u.%u\n",
255 	       (unsigned int)inode->i_ctime.tv_sec,
256 	       (unsigned int)inode->i_ctime.tv_nsec);
257 	pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
258 	pr_err("\txattr_size     %u\n", ui->xattr_size);
259 	pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
260 	pr_err("\txattr_names    %u\n", ui->xattr_names);
261 	pr_err("\tdirty          %u\n", ui->dirty);
262 	pr_err("\txattr          %u\n", ui->xattr);
263 	pr_err("\tbulk_read      %u\n", ui->xattr);
264 	pr_err("\tsynced_i_size  %llu\n",
265 	       (unsigned long long)ui->synced_i_size);
266 	pr_err("\tui_size        %llu\n",
267 	       (unsigned long long)ui->ui_size);
268 	pr_err("\tflags          %d\n", ui->flags);
269 	pr_err("\tcompr_type     %d\n", ui->compr_type);
270 	pr_err("\tlast_page_read %lu\n", ui->last_page_read);
271 	pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
272 	pr_err("\tdata_len       %d\n", ui->data_len);
273 
274 	if (!S_ISDIR(inode->i_mode))
275 		return;
276 
277 	pr_err("List of directory entries:\n");
278 	ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
279 
280 	lowest_dent_key(c, &key, inode->i_ino);
281 	while (1) {
282 		dent = ubifs_tnc_next_ent(c, &key, &nm);
283 		if (IS_ERR(dent)) {
284 			if (PTR_ERR(dent) != -ENOENT)
285 				pr_err("error %ld\n", PTR_ERR(dent));
286 			break;
287 		}
288 
289 		pr_err("\t%d: %s (%s)\n",
290 		       count++, dent->name, get_dent_type(dent->type));
291 
292 		nm.name = dent->name;
293 		nm.len = le16_to_cpu(dent->nlen);
294 		kfree(pdent);
295 		pdent = dent;
296 		key_read(c, &dent->key, &key);
297 	}
298 	kfree(pdent);
299 #endif
300 }
301 
302 void ubifs_dump_node(const struct ubifs_info *c, const void *node)
303 {
304 	int i, n;
305 	union ubifs_key key;
306 	const struct ubifs_ch *ch = node;
307 	char key_buf[DBG_KEY_BUF_LEN];
308 
309 	/* If the magic is incorrect, just hexdump the first bytes */
310 	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
311 		pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
312 		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
313 			       (void *)node, UBIFS_CH_SZ, 1);
314 		return;
315 	}
316 
317 	spin_lock(&dbg_lock);
318 	dump_ch(node);
319 
320 	switch (ch->node_type) {
321 	case UBIFS_PAD_NODE:
322 	{
323 		const struct ubifs_pad_node *pad = node;
324 
325 		pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
326 		break;
327 	}
328 	case UBIFS_SB_NODE:
329 	{
330 		const struct ubifs_sb_node *sup = node;
331 		unsigned int sup_flags = le32_to_cpu(sup->flags);
332 
333 		pr_err("\tkey_hash       %d (%s)\n",
334 		       (int)sup->key_hash, get_key_hash(sup->key_hash));
335 		pr_err("\tkey_fmt        %d (%s)\n",
336 		       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
337 		pr_err("\tflags          %#x\n", sup_flags);
338 		pr_err("\t  big_lpt      %u\n",
339 		       !!(sup_flags & UBIFS_FLG_BIGLPT));
340 		pr_err("\t  space_fixup  %u\n",
341 		       !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
342 		pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
343 		pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
344 		pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
345 		pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
346 		pr_err("\tmax_bud_bytes  %llu\n",
347 		       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
348 		pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
349 		pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
350 		pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
351 		pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
352 		pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
353 		pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
354 		pr_err("\tdefault_compr  %u\n",
355 		       (int)le16_to_cpu(sup->default_compr));
356 		pr_err("\trp_size        %llu\n",
357 		       (unsigned long long)le64_to_cpu(sup->rp_size));
358 		pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
359 		pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
360 		pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
361 		pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
362 		pr_err("\tUUID           %pUB\n", sup->uuid);
363 		break;
364 	}
365 	case UBIFS_MST_NODE:
366 	{
367 		const struct ubifs_mst_node *mst = node;
368 
369 		pr_err("\thighest_inum   %llu\n",
370 		       (unsigned long long)le64_to_cpu(mst->highest_inum));
371 		pr_err("\tcommit number  %llu\n",
372 		       (unsigned long long)le64_to_cpu(mst->cmt_no));
373 		pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
374 		pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
375 		pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
376 		pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
377 		pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
378 		pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
379 		pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
380 		pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
381 		pr_err("\tindex_size     %llu\n",
382 		       (unsigned long long)le64_to_cpu(mst->index_size));
383 		pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
384 		pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
385 		pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
386 		pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
387 		pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
388 		pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
389 		pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
390 		pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
391 		pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
392 		pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
393 		pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
394 		pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
395 		pr_err("\ttotal_free     %llu\n",
396 		       (unsigned long long)le64_to_cpu(mst->total_free));
397 		pr_err("\ttotal_dirty    %llu\n",
398 		       (unsigned long long)le64_to_cpu(mst->total_dirty));
399 		pr_err("\ttotal_used     %llu\n",
400 		       (unsigned long long)le64_to_cpu(mst->total_used));
401 		pr_err("\ttotal_dead     %llu\n",
402 		       (unsigned long long)le64_to_cpu(mst->total_dead));
403 		pr_err("\ttotal_dark     %llu\n",
404 		       (unsigned long long)le64_to_cpu(mst->total_dark));
405 		break;
406 	}
407 	case UBIFS_REF_NODE:
408 	{
409 		const struct ubifs_ref_node *ref = node;
410 
411 		pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
412 		pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
413 		pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
414 		break;
415 	}
416 	case UBIFS_INO_NODE:
417 	{
418 		const struct ubifs_ino_node *ino = node;
419 
420 		key_read(c, &ino->key, &key);
421 		pr_err("\tkey            %s\n",
422 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
423 		pr_err("\tcreat_sqnum    %llu\n",
424 		       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
425 		pr_err("\tsize           %llu\n",
426 		       (unsigned long long)le64_to_cpu(ino->size));
427 		pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
428 		pr_err("\tatime          %lld.%u\n",
429 		       (long long)le64_to_cpu(ino->atime_sec),
430 		       le32_to_cpu(ino->atime_nsec));
431 		pr_err("\tmtime          %lld.%u\n",
432 		       (long long)le64_to_cpu(ino->mtime_sec),
433 		       le32_to_cpu(ino->mtime_nsec));
434 		pr_err("\tctime          %lld.%u\n",
435 		       (long long)le64_to_cpu(ino->ctime_sec),
436 		       le32_to_cpu(ino->ctime_nsec));
437 		pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
438 		pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
439 		pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
440 		pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
441 		pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
442 		pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
443 		pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
444 		pr_err("\tcompr_type     %#x\n",
445 		       (int)le16_to_cpu(ino->compr_type));
446 		pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
447 		break;
448 	}
449 	case UBIFS_DENT_NODE:
450 	case UBIFS_XENT_NODE:
451 	{
452 		const struct ubifs_dent_node *dent = node;
453 		int nlen = le16_to_cpu(dent->nlen);
454 
455 		key_read(c, &dent->key, &key);
456 		pr_err("\tkey            %s\n",
457 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
458 		pr_err("\tinum           %llu\n",
459 		       (unsigned long long)le64_to_cpu(dent->inum));
460 		pr_err("\ttype           %d\n", (int)dent->type);
461 		pr_err("\tnlen           %d\n", nlen);
462 		pr_err("\tname           ");
463 
464 		if (nlen > UBIFS_MAX_NLEN)
465 			pr_err("(bad name length, not printing, bad or corrupted node)");
466 		else {
467 			for (i = 0; i < nlen && dent->name[i]; i++)
468 				pr_cont("%c", dent->name[i]);
469 		}
470 		pr_cont("\n");
471 
472 		break;
473 	}
474 	case UBIFS_DATA_NODE:
475 	{
476 		const struct ubifs_data_node *dn = node;
477 		int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
478 
479 		key_read(c, &dn->key, &key);
480 		pr_err("\tkey            %s\n",
481 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
482 		pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
483 		pr_err("\tcompr_typ      %d\n",
484 		       (int)le16_to_cpu(dn->compr_type));
485 		pr_err("\tdata size      %d\n", dlen);
486 		pr_err("\tdata:\n");
487 		print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
488 			       (void *)&dn->data, dlen, 0);
489 		break;
490 	}
491 	case UBIFS_TRUN_NODE:
492 	{
493 		const struct ubifs_trun_node *trun = node;
494 
495 		pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
496 		pr_err("\told_size       %llu\n",
497 		       (unsigned long long)le64_to_cpu(trun->old_size));
498 		pr_err("\tnew_size       %llu\n",
499 		       (unsigned long long)le64_to_cpu(trun->new_size));
500 		break;
501 	}
502 	case UBIFS_IDX_NODE:
503 	{
504 		const struct ubifs_idx_node *idx = node;
505 
506 		n = le16_to_cpu(idx->child_cnt);
507 		pr_err("\tchild_cnt      %d\n", n);
508 		pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
509 		pr_err("\tBranches:\n");
510 
511 		for (i = 0; i < n && i < c->fanout - 1; i++) {
512 			const struct ubifs_branch *br;
513 
514 			br = ubifs_idx_branch(c, idx, i);
515 			key_read(c, &br->key, &key);
516 			pr_err("\t%d: LEB %d:%d len %d key %s\n",
517 			       i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
518 			       le32_to_cpu(br->len),
519 			       dbg_snprintf_key(c, &key, key_buf,
520 						DBG_KEY_BUF_LEN));
521 		}
522 		break;
523 	}
524 	case UBIFS_CS_NODE:
525 		break;
526 	case UBIFS_ORPH_NODE:
527 	{
528 		const struct ubifs_orph_node *orph = node;
529 
530 		pr_err("\tcommit number  %llu\n",
531 		       (unsigned long long)
532 				le64_to_cpu(orph->cmt_no) & LLONG_MAX);
533 		pr_err("\tlast node flag %llu\n",
534 		       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
535 		n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
536 		pr_err("\t%d orphan inode numbers:\n", n);
537 		for (i = 0; i < n; i++)
538 			pr_err("\t  ino %llu\n",
539 			       (unsigned long long)le64_to_cpu(orph->inos[i]));
540 		break;
541 	}
542 	default:
543 		pr_err("node type %d was not recognized\n",
544 		       (int)ch->node_type);
545 	}
546 	spin_unlock(&dbg_lock);
547 }
548 
549 void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
550 {
551 	spin_lock(&dbg_lock);
552 	pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
553 	       req->new_ino, req->dirtied_ino);
554 	pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
555 	       req->new_ino_d, req->dirtied_ino_d);
556 	pr_err("\tnew_page    %d, dirtied_page %d\n",
557 	       req->new_page, req->dirtied_page);
558 	pr_err("\tnew_dent    %d, mod_dent     %d\n",
559 	       req->new_dent, req->mod_dent);
560 	pr_err("\tidx_growth  %d\n", req->idx_growth);
561 	pr_err("\tdata_growth %d dd_growth     %d\n",
562 	       req->data_growth, req->dd_growth);
563 	spin_unlock(&dbg_lock);
564 }
565 
566 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
567 {
568 	spin_lock(&dbg_lock);
569 	pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
570 	       current->pid, lst->empty_lebs, lst->idx_lebs);
571 	pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
572 	       lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
573 	pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
574 	       lst->total_used, lst->total_dark, lst->total_dead);
575 	spin_unlock(&dbg_lock);
576 }
577 
578 #ifndef __UBOOT__
579 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
580 {
581 	int i;
582 	struct rb_node *rb;
583 	struct ubifs_bud *bud;
584 	struct ubifs_gced_idx_leb *idx_gc;
585 	long long available, outstanding, free;
586 
587 	spin_lock(&c->space_lock);
588 	spin_lock(&dbg_lock);
589 	pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
590 	       current->pid, bi->data_growth + bi->dd_growth,
591 	       bi->data_growth + bi->dd_growth + bi->idx_growth);
592 	pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
593 	       bi->data_growth, bi->dd_growth, bi->idx_growth);
594 	pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
595 	       bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
596 	pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
597 	       bi->page_budget, bi->inode_budget, bi->dent_budget);
598 	pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
599 	pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
600 	       c->dark_wm, c->dead_wm, c->max_idx_node_sz);
601 
602 	if (bi != &c->bi)
603 		/*
604 		 * If we are dumping saved budgeting data, do not print
605 		 * additional information which is about the current state, not
606 		 * the old one which corresponded to the saved budgeting data.
607 		 */
608 		goto out_unlock;
609 
610 	pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
611 	       c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
612 	pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
613 	       atomic_long_read(&c->dirty_pg_cnt),
614 	       atomic_long_read(&c->dirty_zn_cnt),
615 	       atomic_long_read(&c->clean_zn_cnt));
616 	pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
617 
618 	/* If we are in R/O mode, journal heads do not exist */
619 	if (c->jheads)
620 		for (i = 0; i < c->jhead_cnt; i++)
621 			pr_err("\tjhead %s\t LEB %d\n",
622 			       dbg_jhead(c->jheads[i].wbuf.jhead),
623 			       c->jheads[i].wbuf.lnum);
624 	for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
625 		bud = rb_entry(rb, struct ubifs_bud, rb);
626 		pr_err("\tbud LEB %d\n", bud->lnum);
627 	}
628 	list_for_each_entry(bud, &c->old_buds, list)
629 		pr_err("\told bud LEB %d\n", bud->lnum);
630 	list_for_each_entry(idx_gc, &c->idx_gc, list)
631 		pr_err("\tGC'ed idx LEB %d unmap %d\n",
632 		       idx_gc->lnum, idx_gc->unmap);
633 	pr_err("\tcommit state %d\n", c->cmt_state);
634 
635 	/* Print budgeting predictions */
636 	available = ubifs_calc_available(c, c->bi.min_idx_lebs);
637 	outstanding = c->bi.data_growth + c->bi.dd_growth;
638 	free = ubifs_get_free_space_nolock(c);
639 	pr_err("Budgeting predictions:\n");
640 	pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
641 	       available, outstanding, free);
642 out_unlock:
643 	spin_unlock(&dbg_lock);
644 	spin_unlock(&c->space_lock);
645 }
646 #else
647 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
648 {
649 }
650 #endif
651 
652 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
653 {
654 	int i, spc, dark = 0, dead = 0;
655 	struct rb_node *rb;
656 	struct ubifs_bud *bud;
657 
658 	spc = lp->free + lp->dirty;
659 	if (spc < c->dead_wm)
660 		dead = spc;
661 	else
662 		dark = ubifs_calc_dark(c, spc);
663 
664 	if (lp->flags & LPROPS_INDEX)
665 		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
666 		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
667 		       lp->flags);
668 	else
669 		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
670 		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
671 		       dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
672 
673 	if (lp->flags & LPROPS_TAKEN) {
674 		if (lp->flags & LPROPS_INDEX)
675 			pr_cont("index, taken");
676 		else
677 			pr_cont("taken");
678 	} else {
679 		const char *s;
680 
681 		if (lp->flags & LPROPS_INDEX) {
682 			switch (lp->flags & LPROPS_CAT_MASK) {
683 			case LPROPS_DIRTY_IDX:
684 				s = "dirty index";
685 				break;
686 			case LPROPS_FRDI_IDX:
687 				s = "freeable index";
688 				break;
689 			default:
690 				s = "index";
691 			}
692 		} else {
693 			switch (lp->flags & LPROPS_CAT_MASK) {
694 			case LPROPS_UNCAT:
695 				s = "not categorized";
696 				break;
697 			case LPROPS_DIRTY:
698 				s = "dirty";
699 				break;
700 			case LPROPS_FREE:
701 				s = "free";
702 				break;
703 			case LPROPS_EMPTY:
704 				s = "empty";
705 				break;
706 			case LPROPS_FREEABLE:
707 				s = "freeable";
708 				break;
709 			default:
710 				s = NULL;
711 				break;
712 			}
713 		}
714 		pr_cont("%s", s);
715 	}
716 
717 	for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
718 		bud = rb_entry(rb, struct ubifs_bud, rb);
719 		if (bud->lnum == lp->lnum) {
720 			int head = 0;
721 			for (i = 0; i < c->jhead_cnt; i++) {
722 				/*
723 				 * Note, if we are in R/O mode or in the middle
724 				 * of mounting/re-mounting, the write-buffers do
725 				 * not exist.
726 				 */
727 				if (c->jheads &&
728 				    lp->lnum == c->jheads[i].wbuf.lnum) {
729 					pr_cont(", jhead %s", dbg_jhead(i));
730 					head = 1;
731 				}
732 			}
733 			if (!head)
734 				pr_cont(", bud of jhead %s",
735 				       dbg_jhead(bud->jhead));
736 		}
737 	}
738 	if (lp->lnum == c->gc_lnum)
739 		pr_cont(", GC LEB");
740 	pr_cont(")\n");
741 }
742 
743 void ubifs_dump_lprops(struct ubifs_info *c)
744 {
745 	int lnum, err;
746 	struct ubifs_lprops lp;
747 	struct ubifs_lp_stats lst;
748 
749 	pr_err("(pid %d) start dumping LEB properties\n", current->pid);
750 	ubifs_get_lp_stats(c, &lst);
751 	ubifs_dump_lstats(&lst);
752 
753 	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
754 		err = ubifs_read_one_lp(c, lnum, &lp);
755 		if (err)
756 			ubifs_err("cannot read lprops for LEB %d", lnum);
757 
758 		ubifs_dump_lprop(c, &lp);
759 	}
760 	pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
761 }
762 
763 void ubifs_dump_lpt_info(struct ubifs_info *c)
764 {
765 	int i;
766 
767 	spin_lock(&dbg_lock);
768 	pr_err("(pid %d) dumping LPT information\n", current->pid);
769 	pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
770 	pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
771 	pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
772 	pr_err("\tltab_sz:       %d\n", c->ltab_sz);
773 	pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
774 	pr_err("\tbig_lpt:       %d\n", c->big_lpt);
775 	pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
776 	pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
777 	pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
778 	pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
779 	pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
780 	pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
781 	pr_err("\tspace_bits:    %d\n", c->space_bits);
782 	pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
783 	pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
784 	pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
785 	pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
786 	pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
787 	pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
788 	pr_err("\tLPT head is at %d:%d\n",
789 	       c->nhead_lnum, c->nhead_offs);
790 	pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
791 	if (c->big_lpt)
792 		pr_err("\tLPT lsave is at %d:%d\n",
793 		       c->lsave_lnum, c->lsave_offs);
794 	for (i = 0; i < c->lpt_lebs; i++)
795 		pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
796 		       i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
797 		       c->ltab[i].tgc, c->ltab[i].cmt);
798 	spin_unlock(&dbg_lock);
799 }
800 
801 void ubifs_dump_sleb(const struct ubifs_info *c,
802 		     const struct ubifs_scan_leb *sleb, int offs)
803 {
804 	struct ubifs_scan_node *snod;
805 
806 	pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
807 	       current->pid, sleb->lnum, offs);
808 
809 	list_for_each_entry(snod, &sleb->nodes, list) {
810 		cond_resched();
811 		pr_err("Dumping node at LEB %d:%d len %d\n",
812 		       sleb->lnum, snod->offs, snod->len);
813 		ubifs_dump_node(c, snod->node);
814 	}
815 }
816 
817 void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
818 {
819 	struct ubifs_scan_leb *sleb;
820 	struct ubifs_scan_node *snod;
821 	void *buf;
822 
823 	pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
824 
825 	buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
826 	if (!buf) {
827 		ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
828 		return;
829 	}
830 
831 	sleb = ubifs_scan(c, lnum, 0, buf, 0);
832 	if (IS_ERR(sleb)) {
833 		ubifs_err("scan error %d", (int)PTR_ERR(sleb));
834 		goto out;
835 	}
836 
837 	pr_err("LEB %d has %d nodes ending at %d\n", lnum,
838 	       sleb->nodes_cnt, sleb->endpt);
839 
840 	list_for_each_entry(snod, &sleb->nodes, list) {
841 		cond_resched();
842 		pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
843 		       snod->offs, snod->len);
844 		ubifs_dump_node(c, snod->node);
845 	}
846 
847 	pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
848 	ubifs_scan_destroy(sleb);
849 
850 out:
851 	vfree(buf);
852 	return;
853 }
854 
855 void ubifs_dump_znode(const struct ubifs_info *c,
856 		      const struct ubifs_znode *znode)
857 {
858 	int n;
859 	const struct ubifs_zbranch *zbr;
860 	char key_buf[DBG_KEY_BUF_LEN];
861 
862 	spin_lock(&dbg_lock);
863 	if (znode->parent)
864 		zbr = &znode->parent->zbranch[znode->iip];
865 	else
866 		zbr = &c->zroot;
867 
868 	pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
869 	       znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
870 	       znode->level, znode->child_cnt, znode->flags);
871 
872 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
873 		spin_unlock(&dbg_lock);
874 		return;
875 	}
876 
877 	pr_err("zbranches:\n");
878 	for (n = 0; n < znode->child_cnt; n++) {
879 		zbr = &znode->zbranch[n];
880 		if (znode->level > 0)
881 			pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
882 			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
883 			       dbg_snprintf_key(c, &zbr->key, key_buf,
884 						DBG_KEY_BUF_LEN));
885 		else
886 			pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
887 			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
888 			       dbg_snprintf_key(c, &zbr->key, key_buf,
889 						DBG_KEY_BUF_LEN));
890 	}
891 	spin_unlock(&dbg_lock);
892 }
893 
894 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
895 {
896 	int i;
897 
898 	pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
899 	       current->pid, cat, heap->cnt);
900 	for (i = 0; i < heap->cnt; i++) {
901 		struct ubifs_lprops *lprops = heap->arr[i];
902 
903 		pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
904 		       i, lprops->lnum, lprops->hpos, lprops->free,
905 		       lprops->dirty, lprops->flags);
906 	}
907 	pr_err("(pid %d) finish dumping heap\n", current->pid);
908 }
909 
910 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
911 		      struct ubifs_nnode *parent, int iip)
912 {
913 	int i;
914 
915 	pr_err("(pid %d) dumping pnode:\n", current->pid);
916 	pr_err("\taddress %zx parent %zx cnext %zx\n",
917 	       (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
918 	pr_err("\tflags %lu iip %d level %d num %d\n",
919 	       pnode->flags, iip, pnode->level, pnode->num);
920 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
921 		struct ubifs_lprops *lp = &pnode->lprops[i];
922 
923 		pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
924 		       i, lp->free, lp->dirty, lp->flags, lp->lnum);
925 	}
926 }
927 
928 void ubifs_dump_tnc(struct ubifs_info *c)
929 {
930 	struct ubifs_znode *znode;
931 	int level;
932 
933 	pr_err("\n");
934 	pr_err("(pid %d) start dumping TNC tree\n", current->pid);
935 	znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
936 	level = znode->level;
937 	pr_err("== Level %d ==\n", level);
938 	while (znode) {
939 		if (level != znode->level) {
940 			level = znode->level;
941 			pr_err("== Level %d ==\n", level);
942 		}
943 		ubifs_dump_znode(c, znode);
944 		znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
945 	}
946 	pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
947 }
948 
949 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
950 		      void *priv)
951 {
952 	ubifs_dump_znode(c, znode);
953 	return 0;
954 }
955 
956 /**
957  * ubifs_dump_index - dump the on-flash index.
958  * @c: UBIFS file-system description object
959  *
960  * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
961  * which dumps only in-memory znodes and does not read znodes which from flash.
962  */
963 void ubifs_dump_index(struct ubifs_info *c)
964 {
965 	dbg_walk_index(c, NULL, dump_znode, NULL);
966 }
967 
968 #ifndef __UBOOT__
969 /**
970  * dbg_save_space_info - save information about flash space.
971  * @c: UBIFS file-system description object
972  *
973  * This function saves information about UBIFS free space, dirty space, etc, in
974  * order to check it later.
975  */
976 void dbg_save_space_info(struct ubifs_info *c)
977 {
978 	struct ubifs_debug_info *d = c->dbg;
979 	int freeable_cnt;
980 
981 	spin_lock(&c->space_lock);
982 	memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
983 	memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
984 	d->saved_idx_gc_cnt = c->idx_gc_cnt;
985 
986 	/*
987 	 * We use a dirty hack here and zero out @c->freeable_cnt, because it
988 	 * affects the free space calculations, and UBIFS might not know about
989 	 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
990 	 * only when we read their lprops, and we do this only lazily, upon the
991 	 * need. So at any given point of time @c->freeable_cnt might be not
992 	 * exactly accurate.
993 	 *
994 	 * Just one example about the issue we hit when we did not zero
995 	 * @c->freeable_cnt.
996 	 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
997 	 *    amount of free space in @d->saved_free
998 	 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
999 	 *    information from flash, where we cache LEBs from various
1000 	 *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1001 	 *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1002 	 *    -> 'ubifs_get_pnode()' -> 'update_cats()'
1003 	 *    -> 'ubifs_add_to_cat()').
1004 	 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1005 	 *    becomes %1.
1006 	 * 4. We calculate the amount of free space when the re-mount is
1007 	 *    finished in 'dbg_check_space_info()' and it does not match
1008 	 *    @d->saved_free.
1009 	 */
1010 	freeable_cnt = c->freeable_cnt;
1011 	c->freeable_cnt = 0;
1012 	d->saved_free = ubifs_get_free_space_nolock(c);
1013 	c->freeable_cnt = freeable_cnt;
1014 	spin_unlock(&c->space_lock);
1015 }
1016 
1017 /**
1018  * dbg_check_space_info - check flash space information.
1019  * @c: UBIFS file-system description object
1020  *
1021  * This function compares current flash space information with the information
1022  * which was saved when the 'dbg_save_space_info()' function was called.
1023  * Returns zero if the information has not changed, and %-EINVAL it it has
1024  * changed.
1025  */
1026 int dbg_check_space_info(struct ubifs_info *c)
1027 {
1028 	struct ubifs_debug_info *d = c->dbg;
1029 	struct ubifs_lp_stats lst;
1030 	long long free;
1031 	int freeable_cnt;
1032 
1033 	spin_lock(&c->space_lock);
1034 	freeable_cnt = c->freeable_cnt;
1035 	c->freeable_cnt = 0;
1036 	free = ubifs_get_free_space_nolock(c);
1037 	c->freeable_cnt = freeable_cnt;
1038 	spin_unlock(&c->space_lock);
1039 
1040 	if (free != d->saved_free) {
1041 		ubifs_err("free space changed from %lld to %lld",
1042 			  d->saved_free, free);
1043 		goto out;
1044 	}
1045 
1046 	return 0;
1047 
1048 out:
1049 	ubifs_msg("saved lprops statistics dump");
1050 	ubifs_dump_lstats(&d->saved_lst);
1051 	ubifs_msg("saved budgeting info dump");
1052 	ubifs_dump_budg(c, &d->saved_bi);
1053 	ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1054 	ubifs_msg("current lprops statistics dump");
1055 	ubifs_get_lp_stats(c, &lst);
1056 	ubifs_dump_lstats(&lst);
1057 	ubifs_msg("current budgeting info dump");
1058 	ubifs_dump_budg(c, &c->bi);
1059 	dump_stack();
1060 	return -EINVAL;
1061 }
1062 
1063 /**
1064  * dbg_check_synced_i_size - check synchronized inode size.
1065  * @c: UBIFS file-system description object
1066  * @inode: inode to check
1067  *
1068  * If inode is clean, synchronized inode size has to be equivalent to current
1069  * inode size. This function has to be called only for locked inodes (@i_mutex
1070  * has to be locked). Returns %0 if synchronized inode size if correct, and
1071  * %-EINVAL if not.
1072  */
1073 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1074 {
1075 	int err = 0;
1076 	struct ubifs_inode *ui = ubifs_inode(inode);
1077 
1078 	if (!dbg_is_chk_gen(c))
1079 		return 0;
1080 	if (!S_ISREG(inode->i_mode))
1081 		return 0;
1082 
1083 	mutex_lock(&ui->ui_mutex);
1084 	spin_lock(&ui->ui_lock);
1085 	if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1086 		ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode is clean",
1087 			  ui->ui_size, ui->synced_i_size);
1088 		ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1089 			  inode->i_mode, i_size_read(inode));
1090 		dump_stack();
1091 		err = -EINVAL;
1092 	}
1093 	spin_unlock(&ui->ui_lock);
1094 	mutex_unlock(&ui->ui_mutex);
1095 	return err;
1096 }
1097 
1098 /*
1099  * dbg_check_dir - check directory inode size and link count.
1100  * @c: UBIFS file-system description object
1101  * @dir: the directory to calculate size for
1102  * @size: the result is returned here
1103  *
1104  * This function makes sure that directory size and link count are correct.
1105  * Returns zero in case of success and a negative error code in case of
1106  * failure.
1107  *
1108  * Note, it is good idea to make sure the @dir->i_mutex is locked before
1109  * calling this function.
1110  */
1111 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1112 {
1113 	unsigned int nlink = 2;
1114 	union ubifs_key key;
1115 	struct ubifs_dent_node *dent, *pdent = NULL;
1116 	struct qstr nm = { .name = NULL };
1117 	loff_t size = UBIFS_INO_NODE_SZ;
1118 
1119 	if (!dbg_is_chk_gen(c))
1120 		return 0;
1121 
1122 	if (!S_ISDIR(dir->i_mode))
1123 		return 0;
1124 
1125 	lowest_dent_key(c, &key, dir->i_ino);
1126 	while (1) {
1127 		int err;
1128 
1129 		dent = ubifs_tnc_next_ent(c, &key, &nm);
1130 		if (IS_ERR(dent)) {
1131 			err = PTR_ERR(dent);
1132 			if (err == -ENOENT)
1133 				break;
1134 			return err;
1135 		}
1136 
1137 		nm.name = dent->name;
1138 		nm.len = le16_to_cpu(dent->nlen);
1139 		size += CALC_DENT_SIZE(nm.len);
1140 		if (dent->type == UBIFS_ITYPE_DIR)
1141 			nlink += 1;
1142 		kfree(pdent);
1143 		pdent = dent;
1144 		key_read(c, &dent->key, &key);
1145 	}
1146 	kfree(pdent);
1147 
1148 	if (i_size_read(dir) != size) {
1149 		ubifs_err("directory inode %lu has size %llu, but calculated size is %llu",
1150 			  dir->i_ino, (unsigned long long)i_size_read(dir),
1151 			  (unsigned long long)size);
1152 		ubifs_dump_inode(c, dir);
1153 		dump_stack();
1154 		return -EINVAL;
1155 	}
1156 	if (dir->i_nlink != nlink) {
1157 		ubifs_err("directory inode %lu has nlink %u, but calculated nlink is %u",
1158 			  dir->i_ino, dir->i_nlink, nlink);
1159 		ubifs_dump_inode(c, dir);
1160 		dump_stack();
1161 		return -EINVAL;
1162 	}
1163 
1164 	return 0;
1165 }
1166 
1167 /**
1168  * dbg_check_key_order - make sure that colliding keys are properly ordered.
1169  * @c: UBIFS file-system description object
1170  * @zbr1: first zbranch
1171  * @zbr2: following zbranch
1172  *
1173  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1174  * names of the direntries/xentries which are referred by the keys. This
1175  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1176  * sure the name of direntry/xentry referred by @zbr1 is less than
1177  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1178  * and a negative error code in case of failure.
1179  */
1180 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1181 			       struct ubifs_zbranch *zbr2)
1182 {
1183 	int err, nlen1, nlen2, cmp;
1184 	struct ubifs_dent_node *dent1, *dent2;
1185 	union ubifs_key key;
1186 	char key_buf[DBG_KEY_BUF_LEN];
1187 
1188 	ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1189 	dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1190 	if (!dent1)
1191 		return -ENOMEM;
1192 	dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1193 	if (!dent2) {
1194 		err = -ENOMEM;
1195 		goto out_free;
1196 	}
1197 
1198 	err = ubifs_tnc_read_node(c, zbr1, dent1);
1199 	if (err)
1200 		goto out_free;
1201 	err = ubifs_validate_entry(c, dent1);
1202 	if (err)
1203 		goto out_free;
1204 
1205 	err = ubifs_tnc_read_node(c, zbr2, dent2);
1206 	if (err)
1207 		goto out_free;
1208 	err = ubifs_validate_entry(c, dent2);
1209 	if (err)
1210 		goto out_free;
1211 
1212 	/* Make sure node keys are the same as in zbranch */
1213 	err = 1;
1214 	key_read(c, &dent1->key, &key);
1215 	if (keys_cmp(c, &zbr1->key, &key)) {
1216 		ubifs_err("1st entry at %d:%d has key %s", zbr1->lnum,
1217 			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1218 						       DBG_KEY_BUF_LEN));
1219 		ubifs_err("but it should have key %s according to tnc",
1220 			  dbg_snprintf_key(c, &zbr1->key, key_buf,
1221 					   DBG_KEY_BUF_LEN));
1222 		ubifs_dump_node(c, dent1);
1223 		goto out_free;
1224 	}
1225 
1226 	key_read(c, &dent2->key, &key);
1227 	if (keys_cmp(c, &zbr2->key, &key)) {
1228 		ubifs_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1229 			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1230 						       DBG_KEY_BUF_LEN));
1231 		ubifs_err("but it should have key %s according to tnc",
1232 			  dbg_snprintf_key(c, &zbr2->key, key_buf,
1233 					   DBG_KEY_BUF_LEN));
1234 		ubifs_dump_node(c, dent2);
1235 		goto out_free;
1236 	}
1237 
1238 	nlen1 = le16_to_cpu(dent1->nlen);
1239 	nlen2 = le16_to_cpu(dent2->nlen);
1240 
1241 	cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1242 	if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1243 		err = 0;
1244 		goto out_free;
1245 	}
1246 	if (cmp == 0 && nlen1 == nlen2)
1247 		ubifs_err("2 xent/dent nodes with the same name");
1248 	else
1249 		ubifs_err("bad order of colliding key %s",
1250 			  dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1251 
1252 	ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1253 	ubifs_dump_node(c, dent1);
1254 	ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1255 	ubifs_dump_node(c, dent2);
1256 
1257 out_free:
1258 	kfree(dent2);
1259 	kfree(dent1);
1260 	return err;
1261 }
1262 
1263 /**
1264  * dbg_check_znode - check if znode is all right.
1265  * @c: UBIFS file-system description object
1266  * @zbr: zbranch which points to this znode
1267  *
1268  * This function makes sure that znode referred to by @zbr is all right.
1269  * Returns zero if it is, and %-EINVAL if it is not.
1270  */
1271 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1272 {
1273 	struct ubifs_znode *znode = zbr->znode;
1274 	struct ubifs_znode *zp = znode->parent;
1275 	int n, err, cmp;
1276 
1277 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1278 		err = 1;
1279 		goto out;
1280 	}
1281 	if (znode->level < 0) {
1282 		err = 2;
1283 		goto out;
1284 	}
1285 	if (znode->iip < 0 || znode->iip >= c->fanout) {
1286 		err = 3;
1287 		goto out;
1288 	}
1289 
1290 	if (zbr->len == 0)
1291 		/* Only dirty zbranch may have no on-flash nodes */
1292 		if (!ubifs_zn_dirty(znode)) {
1293 			err = 4;
1294 			goto out;
1295 		}
1296 
1297 	if (ubifs_zn_dirty(znode)) {
1298 		/*
1299 		 * If znode is dirty, its parent has to be dirty as well. The
1300 		 * order of the operation is important, so we have to have
1301 		 * memory barriers.
1302 		 */
1303 		smp_mb();
1304 		if (zp && !ubifs_zn_dirty(zp)) {
1305 			/*
1306 			 * The dirty flag is atomic and is cleared outside the
1307 			 * TNC mutex, so znode's dirty flag may now have
1308 			 * been cleared. The child is always cleared before the
1309 			 * parent, so we just need to check again.
1310 			 */
1311 			smp_mb();
1312 			if (ubifs_zn_dirty(znode)) {
1313 				err = 5;
1314 				goto out;
1315 			}
1316 		}
1317 	}
1318 
1319 	if (zp) {
1320 		const union ubifs_key *min, *max;
1321 
1322 		if (znode->level != zp->level - 1) {
1323 			err = 6;
1324 			goto out;
1325 		}
1326 
1327 		/* Make sure the 'parent' pointer in our znode is correct */
1328 		err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1329 		if (!err) {
1330 			/* This zbranch does not exist in the parent */
1331 			err = 7;
1332 			goto out;
1333 		}
1334 
1335 		if (znode->iip >= zp->child_cnt) {
1336 			err = 8;
1337 			goto out;
1338 		}
1339 
1340 		if (znode->iip != n) {
1341 			/* This may happen only in case of collisions */
1342 			if (keys_cmp(c, &zp->zbranch[n].key,
1343 				     &zp->zbranch[znode->iip].key)) {
1344 				err = 9;
1345 				goto out;
1346 			}
1347 			n = znode->iip;
1348 		}
1349 
1350 		/*
1351 		 * Make sure that the first key in our znode is greater than or
1352 		 * equal to the key in the pointing zbranch.
1353 		 */
1354 		min = &zbr->key;
1355 		cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1356 		if (cmp == 1) {
1357 			err = 10;
1358 			goto out;
1359 		}
1360 
1361 		if (n + 1 < zp->child_cnt) {
1362 			max = &zp->zbranch[n + 1].key;
1363 
1364 			/*
1365 			 * Make sure the last key in our znode is less or
1366 			 * equivalent than the key in the zbranch which goes
1367 			 * after our pointing zbranch.
1368 			 */
1369 			cmp = keys_cmp(c, max,
1370 				&znode->zbranch[znode->child_cnt - 1].key);
1371 			if (cmp == -1) {
1372 				err = 11;
1373 				goto out;
1374 			}
1375 		}
1376 	} else {
1377 		/* This may only be root znode */
1378 		if (zbr != &c->zroot) {
1379 			err = 12;
1380 			goto out;
1381 		}
1382 	}
1383 
1384 	/*
1385 	 * Make sure that next key is greater or equivalent then the previous
1386 	 * one.
1387 	 */
1388 	for (n = 1; n < znode->child_cnt; n++) {
1389 		cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1390 			       &znode->zbranch[n].key);
1391 		if (cmp > 0) {
1392 			err = 13;
1393 			goto out;
1394 		}
1395 		if (cmp == 0) {
1396 			/* This can only be keys with colliding hash */
1397 			if (!is_hash_key(c, &znode->zbranch[n].key)) {
1398 				err = 14;
1399 				goto out;
1400 			}
1401 
1402 			if (znode->level != 0 || c->replaying)
1403 				continue;
1404 
1405 			/*
1406 			 * Colliding keys should follow binary order of
1407 			 * corresponding xentry/dentry names.
1408 			 */
1409 			err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1410 						  &znode->zbranch[n]);
1411 			if (err < 0)
1412 				return err;
1413 			if (err) {
1414 				err = 15;
1415 				goto out;
1416 			}
1417 		}
1418 	}
1419 
1420 	for (n = 0; n < znode->child_cnt; n++) {
1421 		if (!znode->zbranch[n].znode &&
1422 		    (znode->zbranch[n].lnum == 0 ||
1423 		     znode->zbranch[n].len == 0)) {
1424 			err = 16;
1425 			goto out;
1426 		}
1427 
1428 		if (znode->zbranch[n].lnum != 0 &&
1429 		    znode->zbranch[n].len == 0) {
1430 			err = 17;
1431 			goto out;
1432 		}
1433 
1434 		if (znode->zbranch[n].lnum == 0 &&
1435 		    znode->zbranch[n].len != 0) {
1436 			err = 18;
1437 			goto out;
1438 		}
1439 
1440 		if (znode->zbranch[n].lnum == 0 &&
1441 		    znode->zbranch[n].offs != 0) {
1442 			err = 19;
1443 			goto out;
1444 		}
1445 
1446 		if (znode->level != 0 && znode->zbranch[n].znode)
1447 			if (znode->zbranch[n].znode->parent != znode) {
1448 				err = 20;
1449 				goto out;
1450 			}
1451 	}
1452 
1453 	return 0;
1454 
1455 out:
1456 	ubifs_err("failed, error %d", err);
1457 	ubifs_msg("dump of the znode");
1458 	ubifs_dump_znode(c, znode);
1459 	if (zp) {
1460 		ubifs_msg("dump of the parent znode");
1461 		ubifs_dump_znode(c, zp);
1462 	}
1463 	dump_stack();
1464 	return -EINVAL;
1465 }
1466 #else
1467 
1468 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1469 {
1470 	return 0;
1471 }
1472 
1473 void dbg_debugfs_exit_fs(struct ubifs_info *c)
1474 {
1475 	return;
1476 }
1477 
1478 int ubifs_debugging_init(struct ubifs_info *c)
1479 {
1480 	return 0;
1481 }
1482 void ubifs_debugging_exit(struct ubifs_info *c)
1483 {
1484 }
1485 int dbg_check_filesystem(struct ubifs_info *c)
1486 {
1487 	return 0;
1488 }
1489 int dbg_debugfs_init_fs(struct ubifs_info *c)
1490 {
1491 	return 0;
1492 }
1493 #endif
1494 
1495 #ifndef __UBOOT__
1496 /**
1497  * dbg_check_tnc - check TNC tree.
1498  * @c: UBIFS file-system description object
1499  * @extra: do extra checks that are possible at start commit
1500  *
1501  * This function traverses whole TNC tree and checks every znode. Returns zero
1502  * if everything is all right and %-EINVAL if something is wrong with TNC.
1503  */
1504 int dbg_check_tnc(struct ubifs_info *c, int extra)
1505 {
1506 	struct ubifs_znode *znode;
1507 	long clean_cnt = 0, dirty_cnt = 0;
1508 	int err, last;
1509 
1510 	if (!dbg_is_chk_index(c))
1511 		return 0;
1512 
1513 	ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1514 	if (!c->zroot.znode)
1515 		return 0;
1516 
1517 	znode = ubifs_tnc_postorder_first(c->zroot.znode);
1518 	while (1) {
1519 		struct ubifs_znode *prev;
1520 		struct ubifs_zbranch *zbr;
1521 
1522 		if (!znode->parent)
1523 			zbr = &c->zroot;
1524 		else
1525 			zbr = &znode->parent->zbranch[znode->iip];
1526 
1527 		err = dbg_check_znode(c, zbr);
1528 		if (err)
1529 			return err;
1530 
1531 		if (extra) {
1532 			if (ubifs_zn_dirty(znode))
1533 				dirty_cnt += 1;
1534 			else
1535 				clean_cnt += 1;
1536 		}
1537 
1538 		prev = znode;
1539 		znode = ubifs_tnc_postorder_next(znode);
1540 		if (!znode)
1541 			break;
1542 
1543 		/*
1544 		 * If the last key of this znode is equivalent to the first key
1545 		 * of the next znode (collision), then check order of the keys.
1546 		 */
1547 		last = prev->child_cnt - 1;
1548 		if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1549 		    !keys_cmp(c, &prev->zbranch[last].key,
1550 			      &znode->zbranch[0].key)) {
1551 			err = dbg_check_key_order(c, &prev->zbranch[last],
1552 						  &znode->zbranch[0]);
1553 			if (err < 0)
1554 				return err;
1555 			if (err) {
1556 				ubifs_msg("first znode");
1557 				ubifs_dump_znode(c, prev);
1558 				ubifs_msg("second znode");
1559 				ubifs_dump_znode(c, znode);
1560 				return -EINVAL;
1561 			}
1562 		}
1563 	}
1564 
1565 	if (extra) {
1566 		if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1567 			ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1568 				  atomic_long_read(&c->clean_zn_cnt),
1569 				  clean_cnt);
1570 			return -EINVAL;
1571 		}
1572 		if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1573 			ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1574 				  atomic_long_read(&c->dirty_zn_cnt),
1575 				  dirty_cnt);
1576 			return -EINVAL;
1577 		}
1578 	}
1579 
1580 	return 0;
1581 }
1582 #else
1583 int dbg_check_tnc(struct ubifs_info *c, int extra)
1584 {
1585 	return 0;
1586 }
1587 #endif
1588 
1589 /**
1590  * dbg_walk_index - walk the on-flash index.
1591  * @c: UBIFS file-system description object
1592  * @leaf_cb: called for each leaf node
1593  * @znode_cb: called for each indexing node
1594  * @priv: private data which is passed to callbacks
1595  *
1596  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1597  * node and @znode_cb for each indexing node. Returns zero in case of success
1598  * and a negative error code in case of failure.
1599  *
1600  * It would be better if this function removed every znode it pulled to into
1601  * the TNC, so that the behavior more closely matched the non-debugging
1602  * behavior.
1603  */
1604 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1605 		   dbg_znode_callback znode_cb, void *priv)
1606 {
1607 	int err;
1608 	struct ubifs_zbranch *zbr;
1609 	struct ubifs_znode *znode, *child;
1610 
1611 	mutex_lock(&c->tnc_mutex);
1612 	/* If the root indexing node is not in TNC - pull it */
1613 	if (!c->zroot.znode) {
1614 		c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1615 		if (IS_ERR(c->zroot.znode)) {
1616 			err = PTR_ERR(c->zroot.znode);
1617 			c->zroot.znode = NULL;
1618 			goto out_unlock;
1619 		}
1620 	}
1621 
1622 	/*
1623 	 * We are going to traverse the indexing tree in the postorder manner.
1624 	 * Go down and find the leftmost indexing node where we are going to
1625 	 * start from.
1626 	 */
1627 	znode = c->zroot.znode;
1628 	while (znode->level > 0) {
1629 		zbr = &znode->zbranch[0];
1630 		child = zbr->znode;
1631 		if (!child) {
1632 			child = ubifs_load_znode(c, zbr, znode, 0);
1633 			if (IS_ERR(child)) {
1634 				err = PTR_ERR(child);
1635 				goto out_unlock;
1636 			}
1637 			zbr->znode = child;
1638 		}
1639 
1640 		znode = child;
1641 	}
1642 
1643 	/* Iterate over all indexing nodes */
1644 	while (1) {
1645 		int idx;
1646 
1647 		cond_resched();
1648 
1649 		if (znode_cb) {
1650 			err = znode_cb(c, znode, priv);
1651 			if (err) {
1652 				ubifs_err("znode checking function returned error %d",
1653 					  err);
1654 				ubifs_dump_znode(c, znode);
1655 				goto out_dump;
1656 			}
1657 		}
1658 		if (leaf_cb && znode->level == 0) {
1659 			for (idx = 0; idx < znode->child_cnt; idx++) {
1660 				zbr = &znode->zbranch[idx];
1661 				err = leaf_cb(c, zbr, priv);
1662 				if (err) {
1663 					ubifs_err("leaf checking function returned error %d, for leaf at LEB %d:%d",
1664 						  err, zbr->lnum, zbr->offs);
1665 					goto out_dump;
1666 				}
1667 			}
1668 		}
1669 
1670 		if (!znode->parent)
1671 			break;
1672 
1673 		idx = znode->iip + 1;
1674 		znode = znode->parent;
1675 		if (idx < znode->child_cnt) {
1676 			/* Switch to the next index in the parent */
1677 			zbr = &znode->zbranch[idx];
1678 			child = zbr->znode;
1679 			if (!child) {
1680 				child = ubifs_load_znode(c, zbr, znode, idx);
1681 				if (IS_ERR(child)) {
1682 					err = PTR_ERR(child);
1683 					goto out_unlock;
1684 				}
1685 				zbr->znode = child;
1686 			}
1687 			znode = child;
1688 		} else
1689 			/*
1690 			 * This is the last child, switch to the parent and
1691 			 * continue.
1692 			 */
1693 			continue;
1694 
1695 		/* Go to the lowest leftmost znode in the new sub-tree */
1696 		while (znode->level > 0) {
1697 			zbr = &znode->zbranch[0];
1698 			child = zbr->znode;
1699 			if (!child) {
1700 				child = ubifs_load_znode(c, zbr, znode, 0);
1701 				if (IS_ERR(child)) {
1702 					err = PTR_ERR(child);
1703 					goto out_unlock;
1704 				}
1705 				zbr->znode = child;
1706 			}
1707 			znode = child;
1708 		}
1709 	}
1710 
1711 	mutex_unlock(&c->tnc_mutex);
1712 	return 0;
1713 
1714 out_dump:
1715 	if (znode->parent)
1716 		zbr = &znode->parent->zbranch[znode->iip];
1717 	else
1718 		zbr = &c->zroot;
1719 	ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1720 	ubifs_dump_znode(c, znode);
1721 out_unlock:
1722 	mutex_unlock(&c->tnc_mutex);
1723 	return err;
1724 }
1725 
1726 /**
1727  * add_size - add znode size to partially calculated index size.
1728  * @c: UBIFS file-system description object
1729  * @znode: znode to add size for
1730  * @priv: partially calculated index size
1731  *
1732  * This is a helper function for 'dbg_check_idx_size()' which is called for
1733  * every indexing node and adds its size to the 'long long' variable pointed to
1734  * by @priv.
1735  */
1736 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1737 {
1738 	long long *idx_size = priv;
1739 	int add;
1740 
1741 	add = ubifs_idx_node_sz(c, znode->child_cnt);
1742 	add = ALIGN(add, 8);
1743 	*idx_size += add;
1744 	return 0;
1745 }
1746 
1747 /**
1748  * dbg_check_idx_size - check index size.
1749  * @c: UBIFS file-system description object
1750  * @idx_size: size to check
1751  *
1752  * This function walks the UBIFS index, calculates its size and checks that the
1753  * size is equivalent to @idx_size. Returns zero in case of success and a
1754  * negative error code in case of failure.
1755  */
1756 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1757 {
1758 	int err;
1759 	long long calc = 0;
1760 
1761 	if (!dbg_is_chk_index(c))
1762 		return 0;
1763 
1764 	err = dbg_walk_index(c, NULL, add_size, &calc);
1765 	if (err) {
1766 		ubifs_err("error %d while walking the index", err);
1767 		return err;
1768 	}
1769 
1770 	if (calc != idx_size) {
1771 		ubifs_err("index size check failed: calculated size is %lld, should be %lld",
1772 			  calc, idx_size);
1773 		dump_stack();
1774 		return -EINVAL;
1775 	}
1776 
1777 	return 0;
1778 }
1779 
1780 #ifndef __UBOOT__
1781 /**
1782  * struct fsck_inode - information about an inode used when checking the file-system.
1783  * @rb: link in the RB-tree of inodes
1784  * @inum: inode number
1785  * @mode: inode type, permissions, etc
1786  * @nlink: inode link count
1787  * @xattr_cnt: count of extended attributes
1788  * @references: how many directory/xattr entries refer this inode (calculated
1789  *              while walking the index)
1790  * @calc_cnt: for directory inode count of child directories
1791  * @size: inode size (read from on-flash inode)
1792  * @xattr_sz: summary size of all extended attributes (read from on-flash
1793  *            inode)
1794  * @calc_sz: for directories calculated directory size
1795  * @calc_xcnt: count of extended attributes
1796  * @calc_xsz: calculated summary size of all extended attributes
1797  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1798  *             inode (read from on-flash inode)
1799  * @calc_xnms: calculated sum of lengths of all extended attribute names
1800  */
1801 struct fsck_inode {
1802 	struct rb_node rb;
1803 	ino_t inum;
1804 	umode_t mode;
1805 	unsigned int nlink;
1806 	unsigned int xattr_cnt;
1807 	int references;
1808 	int calc_cnt;
1809 	long long size;
1810 	unsigned int xattr_sz;
1811 	long long calc_sz;
1812 	long long calc_xcnt;
1813 	long long calc_xsz;
1814 	unsigned int xattr_nms;
1815 	long long calc_xnms;
1816 };
1817 
1818 /**
1819  * struct fsck_data - private FS checking information.
1820  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1821  */
1822 struct fsck_data {
1823 	struct rb_root inodes;
1824 };
1825 
1826 /**
1827  * add_inode - add inode information to RB-tree of inodes.
1828  * @c: UBIFS file-system description object
1829  * @fsckd: FS checking information
1830  * @ino: raw UBIFS inode to add
1831  *
1832  * This is a helper function for 'check_leaf()' which adds information about
1833  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1834  * case of success and a negative error code in case of failure.
1835  */
1836 static struct fsck_inode *add_inode(struct ubifs_info *c,
1837 				    struct fsck_data *fsckd,
1838 				    struct ubifs_ino_node *ino)
1839 {
1840 	struct rb_node **p, *parent = NULL;
1841 	struct fsck_inode *fscki;
1842 	ino_t inum = key_inum_flash(c, &ino->key);
1843 	struct inode *inode;
1844 	struct ubifs_inode *ui;
1845 
1846 	p = &fsckd->inodes.rb_node;
1847 	while (*p) {
1848 		parent = *p;
1849 		fscki = rb_entry(parent, struct fsck_inode, rb);
1850 		if (inum < fscki->inum)
1851 			p = &(*p)->rb_left;
1852 		else if (inum > fscki->inum)
1853 			p = &(*p)->rb_right;
1854 		else
1855 			return fscki;
1856 	}
1857 
1858 	if (inum > c->highest_inum) {
1859 		ubifs_err("too high inode number, max. is %lu",
1860 			  (unsigned long)c->highest_inum);
1861 		return ERR_PTR(-EINVAL);
1862 	}
1863 
1864 	fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1865 	if (!fscki)
1866 		return ERR_PTR(-ENOMEM);
1867 
1868 	inode = ilookup(c->vfs_sb, inum);
1869 
1870 	fscki->inum = inum;
1871 	/*
1872 	 * If the inode is present in the VFS inode cache, use it instead of
1873 	 * the on-flash inode which might be out-of-date. E.g., the size might
1874 	 * be out-of-date. If we do not do this, the following may happen, for
1875 	 * example:
1876 	 *   1. A power cut happens
1877 	 *   2. We mount the file-system R/O, the replay process fixes up the
1878 	 *      inode size in the VFS cache, but on on-flash.
1879 	 *   3. 'check_leaf()' fails because it hits a data node beyond inode
1880 	 *      size.
1881 	 */
1882 	if (!inode) {
1883 		fscki->nlink = le32_to_cpu(ino->nlink);
1884 		fscki->size = le64_to_cpu(ino->size);
1885 		fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1886 		fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1887 		fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1888 		fscki->mode = le32_to_cpu(ino->mode);
1889 	} else {
1890 		ui = ubifs_inode(inode);
1891 		fscki->nlink = inode->i_nlink;
1892 		fscki->size = inode->i_size;
1893 		fscki->xattr_cnt = ui->xattr_cnt;
1894 		fscki->xattr_sz = ui->xattr_size;
1895 		fscki->xattr_nms = ui->xattr_names;
1896 		fscki->mode = inode->i_mode;
1897 		iput(inode);
1898 	}
1899 
1900 	if (S_ISDIR(fscki->mode)) {
1901 		fscki->calc_sz = UBIFS_INO_NODE_SZ;
1902 		fscki->calc_cnt = 2;
1903 	}
1904 
1905 	rb_link_node(&fscki->rb, parent, p);
1906 	rb_insert_color(&fscki->rb, &fsckd->inodes);
1907 
1908 	return fscki;
1909 }
1910 
1911 /**
1912  * search_inode - search inode in the RB-tree of inodes.
1913  * @fsckd: FS checking information
1914  * @inum: inode number to search
1915  *
1916  * This is a helper function for 'check_leaf()' which searches inode @inum in
1917  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1918  * the inode was not found.
1919  */
1920 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1921 {
1922 	struct rb_node *p;
1923 	struct fsck_inode *fscki;
1924 
1925 	p = fsckd->inodes.rb_node;
1926 	while (p) {
1927 		fscki = rb_entry(p, struct fsck_inode, rb);
1928 		if (inum < fscki->inum)
1929 			p = p->rb_left;
1930 		else if (inum > fscki->inum)
1931 			p = p->rb_right;
1932 		else
1933 			return fscki;
1934 	}
1935 	return NULL;
1936 }
1937 
1938 /**
1939  * read_add_inode - read inode node and add it to RB-tree of inodes.
1940  * @c: UBIFS file-system description object
1941  * @fsckd: FS checking information
1942  * @inum: inode number to read
1943  *
1944  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1945  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1946  * information pointer in case of success and a negative error code in case of
1947  * failure.
1948  */
1949 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1950 					 struct fsck_data *fsckd, ino_t inum)
1951 {
1952 	int n, err;
1953 	union ubifs_key key;
1954 	struct ubifs_znode *znode;
1955 	struct ubifs_zbranch *zbr;
1956 	struct ubifs_ino_node *ino;
1957 	struct fsck_inode *fscki;
1958 
1959 	fscki = search_inode(fsckd, inum);
1960 	if (fscki)
1961 		return fscki;
1962 
1963 	ino_key_init(c, &key, inum);
1964 	err = ubifs_lookup_level0(c, &key, &znode, &n);
1965 	if (!err) {
1966 		ubifs_err("inode %lu not found in index", (unsigned long)inum);
1967 		return ERR_PTR(-ENOENT);
1968 	} else if (err < 0) {
1969 		ubifs_err("error %d while looking up inode %lu",
1970 			  err, (unsigned long)inum);
1971 		return ERR_PTR(err);
1972 	}
1973 
1974 	zbr = &znode->zbranch[n];
1975 	if (zbr->len < UBIFS_INO_NODE_SZ) {
1976 		ubifs_err("bad node %lu node length %d",
1977 			  (unsigned long)inum, zbr->len);
1978 		return ERR_PTR(-EINVAL);
1979 	}
1980 
1981 	ino = kmalloc(zbr->len, GFP_NOFS);
1982 	if (!ino)
1983 		return ERR_PTR(-ENOMEM);
1984 
1985 	err = ubifs_tnc_read_node(c, zbr, ino);
1986 	if (err) {
1987 		ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1988 			  zbr->lnum, zbr->offs, err);
1989 		kfree(ino);
1990 		return ERR_PTR(err);
1991 	}
1992 
1993 	fscki = add_inode(c, fsckd, ino);
1994 	kfree(ino);
1995 	if (IS_ERR(fscki)) {
1996 		ubifs_err("error %ld while adding inode %lu node",
1997 			  PTR_ERR(fscki), (unsigned long)inum);
1998 		return fscki;
1999 	}
2000 
2001 	return fscki;
2002 }
2003 
2004 /**
2005  * check_leaf - check leaf node.
2006  * @c: UBIFS file-system description object
2007  * @zbr: zbranch of the leaf node to check
2008  * @priv: FS checking information
2009  *
2010  * This is a helper function for 'dbg_check_filesystem()' which is called for
2011  * every single leaf node while walking the indexing tree. It checks that the
2012  * leaf node referred from the indexing tree exists, has correct CRC, and does
2013  * some other basic validation. This function is also responsible for building
2014  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2015  * calculates reference count, size, etc for each inode in order to later
2016  * compare them to the information stored inside the inodes and detect possible
2017  * inconsistencies. Returns zero in case of success and a negative error code
2018  * in case of failure.
2019  */
2020 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2021 		      void *priv)
2022 {
2023 	ino_t inum;
2024 	void *node;
2025 	struct ubifs_ch *ch;
2026 	int err, type = key_type(c, &zbr->key);
2027 	struct fsck_inode *fscki;
2028 
2029 	if (zbr->len < UBIFS_CH_SZ) {
2030 		ubifs_err("bad leaf length %d (LEB %d:%d)",
2031 			  zbr->len, zbr->lnum, zbr->offs);
2032 		return -EINVAL;
2033 	}
2034 
2035 	node = kmalloc(zbr->len, GFP_NOFS);
2036 	if (!node)
2037 		return -ENOMEM;
2038 
2039 	err = ubifs_tnc_read_node(c, zbr, node);
2040 	if (err) {
2041 		ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
2042 			  zbr->lnum, zbr->offs, err);
2043 		goto out_free;
2044 	}
2045 
2046 	/* If this is an inode node, add it to RB-tree of inodes */
2047 	if (type == UBIFS_INO_KEY) {
2048 		fscki = add_inode(c, priv, node);
2049 		if (IS_ERR(fscki)) {
2050 			err = PTR_ERR(fscki);
2051 			ubifs_err("error %d while adding inode node", err);
2052 			goto out_dump;
2053 		}
2054 		goto out;
2055 	}
2056 
2057 	if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2058 	    type != UBIFS_DATA_KEY) {
2059 		ubifs_err("unexpected node type %d at LEB %d:%d",
2060 			  type, zbr->lnum, zbr->offs);
2061 		err = -EINVAL;
2062 		goto out_free;
2063 	}
2064 
2065 	ch = node;
2066 	if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2067 		ubifs_err("too high sequence number, max. is %llu",
2068 			  c->max_sqnum);
2069 		err = -EINVAL;
2070 		goto out_dump;
2071 	}
2072 
2073 	if (type == UBIFS_DATA_KEY) {
2074 		long long blk_offs;
2075 		struct ubifs_data_node *dn = node;
2076 
2077 		/*
2078 		 * Search the inode node this data node belongs to and insert
2079 		 * it to the RB-tree of inodes.
2080 		 */
2081 		inum = key_inum_flash(c, &dn->key);
2082 		fscki = read_add_inode(c, priv, inum);
2083 		if (IS_ERR(fscki)) {
2084 			err = PTR_ERR(fscki);
2085 			ubifs_err("error %d while processing data node and trying to find inode node %lu",
2086 				  err, (unsigned long)inum);
2087 			goto out_dump;
2088 		}
2089 
2090 		/* Make sure the data node is within inode size */
2091 		blk_offs = key_block_flash(c, &dn->key);
2092 		blk_offs <<= UBIFS_BLOCK_SHIFT;
2093 		blk_offs += le32_to_cpu(dn->size);
2094 		if (blk_offs > fscki->size) {
2095 			ubifs_err("data node at LEB %d:%d is not within inode size %lld",
2096 				  zbr->lnum, zbr->offs, fscki->size);
2097 			err = -EINVAL;
2098 			goto out_dump;
2099 		}
2100 	} else {
2101 		int nlen;
2102 		struct ubifs_dent_node *dent = node;
2103 		struct fsck_inode *fscki1;
2104 
2105 		err = ubifs_validate_entry(c, dent);
2106 		if (err)
2107 			goto out_dump;
2108 
2109 		/*
2110 		 * Search the inode node this entry refers to and the parent
2111 		 * inode node and insert them to the RB-tree of inodes.
2112 		 */
2113 		inum = le64_to_cpu(dent->inum);
2114 		fscki = read_add_inode(c, priv, inum);
2115 		if (IS_ERR(fscki)) {
2116 			err = PTR_ERR(fscki);
2117 			ubifs_err("error %d while processing entry node and trying to find inode node %lu",
2118 				  err, (unsigned long)inum);
2119 			goto out_dump;
2120 		}
2121 
2122 		/* Count how many direntries or xentries refers this inode */
2123 		fscki->references += 1;
2124 
2125 		inum = key_inum_flash(c, &dent->key);
2126 		fscki1 = read_add_inode(c, priv, inum);
2127 		if (IS_ERR(fscki1)) {
2128 			err = PTR_ERR(fscki1);
2129 			ubifs_err("error %d while processing entry node and trying to find parent inode node %lu",
2130 				  err, (unsigned long)inum);
2131 			goto out_dump;
2132 		}
2133 
2134 		nlen = le16_to_cpu(dent->nlen);
2135 		if (type == UBIFS_XENT_KEY) {
2136 			fscki1->calc_xcnt += 1;
2137 			fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2138 			fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2139 			fscki1->calc_xnms += nlen;
2140 		} else {
2141 			fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2142 			if (dent->type == UBIFS_ITYPE_DIR)
2143 				fscki1->calc_cnt += 1;
2144 		}
2145 	}
2146 
2147 out:
2148 	kfree(node);
2149 	return 0;
2150 
2151 out_dump:
2152 	ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2153 	ubifs_dump_node(c, node);
2154 out_free:
2155 	kfree(node);
2156 	return err;
2157 }
2158 
2159 /**
2160  * free_inodes - free RB-tree of inodes.
2161  * @fsckd: FS checking information
2162  */
2163 static void free_inodes(struct fsck_data *fsckd)
2164 {
2165 	struct fsck_inode *fscki, *n;
2166 
2167 	rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2168 		kfree(fscki);
2169 }
2170 
2171 /**
2172  * check_inodes - checks all inodes.
2173  * @c: UBIFS file-system description object
2174  * @fsckd: FS checking information
2175  *
2176  * This is a helper function for 'dbg_check_filesystem()' which walks the
2177  * RB-tree of inodes after the index scan has been finished, and checks that
2178  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2179  * %-EINVAL if not, and a negative error code in case of failure.
2180  */
2181 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2182 {
2183 	int n, err;
2184 	union ubifs_key key;
2185 	struct ubifs_znode *znode;
2186 	struct ubifs_zbranch *zbr;
2187 	struct ubifs_ino_node *ino;
2188 	struct fsck_inode *fscki;
2189 	struct rb_node *this = rb_first(&fsckd->inodes);
2190 
2191 	while (this) {
2192 		fscki = rb_entry(this, struct fsck_inode, rb);
2193 		this = rb_next(this);
2194 
2195 		if (S_ISDIR(fscki->mode)) {
2196 			/*
2197 			 * Directories have to have exactly one reference (they
2198 			 * cannot have hardlinks), although root inode is an
2199 			 * exception.
2200 			 */
2201 			if (fscki->inum != UBIFS_ROOT_INO &&
2202 			    fscki->references != 1) {
2203 				ubifs_err("directory inode %lu has %d direntries which refer it, but should be 1",
2204 					  (unsigned long)fscki->inum,
2205 					  fscki->references);
2206 				goto out_dump;
2207 			}
2208 			if (fscki->inum == UBIFS_ROOT_INO &&
2209 			    fscki->references != 0) {
2210 				ubifs_err("root inode %lu has non-zero (%d) direntries which refer it",
2211 					  (unsigned long)fscki->inum,
2212 					  fscki->references);
2213 				goto out_dump;
2214 			}
2215 			if (fscki->calc_sz != fscki->size) {
2216 				ubifs_err("directory inode %lu size is %lld, but calculated size is %lld",
2217 					  (unsigned long)fscki->inum,
2218 					  fscki->size, fscki->calc_sz);
2219 				goto out_dump;
2220 			}
2221 			if (fscki->calc_cnt != fscki->nlink) {
2222 				ubifs_err("directory inode %lu nlink is %d, but calculated nlink is %d",
2223 					  (unsigned long)fscki->inum,
2224 					  fscki->nlink, fscki->calc_cnt);
2225 				goto out_dump;
2226 			}
2227 		} else {
2228 			if (fscki->references != fscki->nlink) {
2229 				ubifs_err("inode %lu nlink is %d, but calculated nlink is %d",
2230 					  (unsigned long)fscki->inum,
2231 					  fscki->nlink, fscki->references);
2232 				goto out_dump;
2233 			}
2234 		}
2235 		if (fscki->xattr_sz != fscki->calc_xsz) {
2236 			ubifs_err("inode %lu has xattr size %u, but calculated size is %lld",
2237 				  (unsigned long)fscki->inum, fscki->xattr_sz,
2238 				  fscki->calc_xsz);
2239 			goto out_dump;
2240 		}
2241 		if (fscki->xattr_cnt != fscki->calc_xcnt) {
2242 			ubifs_err("inode %lu has %u xattrs, but calculated count is %lld",
2243 				  (unsigned long)fscki->inum,
2244 				  fscki->xattr_cnt, fscki->calc_xcnt);
2245 			goto out_dump;
2246 		}
2247 		if (fscki->xattr_nms != fscki->calc_xnms) {
2248 			ubifs_err("inode %lu has xattr names' size %u, but calculated names' size is %lld",
2249 				  (unsigned long)fscki->inum, fscki->xattr_nms,
2250 				  fscki->calc_xnms);
2251 			goto out_dump;
2252 		}
2253 	}
2254 
2255 	return 0;
2256 
2257 out_dump:
2258 	/* Read the bad inode and dump it */
2259 	ino_key_init(c, &key, fscki->inum);
2260 	err = ubifs_lookup_level0(c, &key, &znode, &n);
2261 	if (!err) {
2262 		ubifs_err("inode %lu not found in index",
2263 			  (unsigned long)fscki->inum);
2264 		return -ENOENT;
2265 	} else if (err < 0) {
2266 		ubifs_err("error %d while looking up inode %lu",
2267 			  err, (unsigned long)fscki->inum);
2268 		return err;
2269 	}
2270 
2271 	zbr = &znode->zbranch[n];
2272 	ino = kmalloc(zbr->len, GFP_NOFS);
2273 	if (!ino)
2274 		return -ENOMEM;
2275 
2276 	err = ubifs_tnc_read_node(c, zbr, ino);
2277 	if (err) {
2278 		ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2279 			  zbr->lnum, zbr->offs, err);
2280 		kfree(ino);
2281 		return err;
2282 	}
2283 
2284 	ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2285 		  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2286 	ubifs_dump_node(c, ino);
2287 	kfree(ino);
2288 	return -EINVAL;
2289 }
2290 
2291 /**
2292  * dbg_check_filesystem - check the file-system.
2293  * @c: UBIFS file-system description object
2294  *
2295  * This function checks the file system, namely:
2296  * o makes sure that all leaf nodes exist and their CRCs are correct;
2297  * o makes sure inode nlink, size, xattr size/count are correct (for all
2298  *   inodes).
2299  *
2300  * The function reads whole indexing tree and all nodes, so it is pretty
2301  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2302  * not, and a negative error code in case of failure.
2303  */
2304 int dbg_check_filesystem(struct ubifs_info *c)
2305 {
2306 	int err;
2307 	struct fsck_data fsckd;
2308 
2309 	if (!dbg_is_chk_fs(c))
2310 		return 0;
2311 
2312 	fsckd.inodes = RB_ROOT;
2313 	err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2314 	if (err)
2315 		goto out_free;
2316 
2317 	err = check_inodes(c, &fsckd);
2318 	if (err)
2319 		goto out_free;
2320 
2321 	free_inodes(&fsckd);
2322 	return 0;
2323 
2324 out_free:
2325 	ubifs_err("file-system check failed with error %d", err);
2326 	dump_stack();
2327 	free_inodes(&fsckd);
2328 	return err;
2329 }
2330 
2331 /**
2332  * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2333  * @c: UBIFS file-system description object
2334  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2335  *
2336  * This function returns zero if the list of data nodes is sorted correctly,
2337  * and %-EINVAL if not.
2338  */
2339 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2340 {
2341 	struct list_head *cur;
2342 	struct ubifs_scan_node *sa, *sb;
2343 
2344 	if (!dbg_is_chk_gen(c))
2345 		return 0;
2346 
2347 	for (cur = head->next; cur->next != head; cur = cur->next) {
2348 		ino_t inuma, inumb;
2349 		uint32_t blka, blkb;
2350 
2351 		cond_resched();
2352 		sa = container_of(cur, struct ubifs_scan_node, list);
2353 		sb = container_of(cur->next, struct ubifs_scan_node, list);
2354 
2355 		if (sa->type != UBIFS_DATA_NODE) {
2356 			ubifs_err("bad node type %d", sa->type);
2357 			ubifs_dump_node(c, sa->node);
2358 			return -EINVAL;
2359 		}
2360 		if (sb->type != UBIFS_DATA_NODE) {
2361 			ubifs_err("bad node type %d", sb->type);
2362 			ubifs_dump_node(c, sb->node);
2363 			return -EINVAL;
2364 		}
2365 
2366 		inuma = key_inum(c, &sa->key);
2367 		inumb = key_inum(c, &sb->key);
2368 
2369 		if (inuma < inumb)
2370 			continue;
2371 		if (inuma > inumb) {
2372 			ubifs_err("larger inum %lu goes before inum %lu",
2373 				  (unsigned long)inuma, (unsigned long)inumb);
2374 			goto error_dump;
2375 		}
2376 
2377 		blka = key_block(c, &sa->key);
2378 		blkb = key_block(c, &sb->key);
2379 
2380 		if (blka > blkb) {
2381 			ubifs_err("larger block %u goes before %u", blka, blkb);
2382 			goto error_dump;
2383 		}
2384 		if (blka == blkb) {
2385 			ubifs_err("two data nodes for the same block");
2386 			goto error_dump;
2387 		}
2388 	}
2389 
2390 	return 0;
2391 
2392 error_dump:
2393 	ubifs_dump_node(c, sa->node);
2394 	ubifs_dump_node(c, sb->node);
2395 	return -EINVAL;
2396 }
2397 
2398 /**
2399  * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2400  * @c: UBIFS file-system description object
2401  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2402  *
2403  * This function returns zero if the list of non-data nodes is sorted correctly,
2404  * and %-EINVAL if not.
2405  */
2406 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2407 {
2408 	struct list_head *cur;
2409 	struct ubifs_scan_node *sa, *sb;
2410 
2411 	if (!dbg_is_chk_gen(c))
2412 		return 0;
2413 
2414 	for (cur = head->next; cur->next != head; cur = cur->next) {
2415 		ino_t inuma, inumb;
2416 		uint32_t hasha, hashb;
2417 
2418 		cond_resched();
2419 		sa = container_of(cur, struct ubifs_scan_node, list);
2420 		sb = container_of(cur->next, struct ubifs_scan_node, list);
2421 
2422 		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2423 		    sa->type != UBIFS_XENT_NODE) {
2424 			ubifs_err("bad node type %d", sa->type);
2425 			ubifs_dump_node(c, sa->node);
2426 			return -EINVAL;
2427 		}
2428 		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2429 		    sa->type != UBIFS_XENT_NODE) {
2430 			ubifs_err("bad node type %d", sb->type);
2431 			ubifs_dump_node(c, sb->node);
2432 			return -EINVAL;
2433 		}
2434 
2435 		if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2436 			ubifs_err("non-inode node goes before inode node");
2437 			goto error_dump;
2438 		}
2439 
2440 		if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2441 			continue;
2442 
2443 		if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2444 			/* Inode nodes are sorted in descending size order */
2445 			if (sa->len < sb->len) {
2446 				ubifs_err("smaller inode node goes first");
2447 				goto error_dump;
2448 			}
2449 			continue;
2450 		}
2451 
2452 		/*
2453 		 * This is either a dentry or xentry, which should be sorted in
2454 		 * ascending (parent ino, hash) order.
2455 		 */
2456 		inuma = key_inum(c, &sa->key);
2457 		inumb = key_inum(c, &sb->key);
2458 
2459 		if (inuma < inumb)
2460 			continue;
2461 		if (inuma > inumb) {
2462 			ubifs_err("larger inum %lu goes before inum %lu",
2463 				  (unsigned long)inuma, (unsigned long)inumb);
2464 			goto error_dump;
2465 		}
2466 
2467 		hasha = key_block(c, &sa->key);
2468 		hashb = key_block(c, &sb->key);
2469 
2470 		if (hasha > hashb) {
2471 			ubifs_err("larger hash %u goes before %u",
2472 				  hasha, hashb);
2473 			goto error_dump;
2474 		}
2475 	}
2476 
2477 	return 0;
2478 
2479 error_dump:
2480 	ubifs_msg("dumping first node");
2481 	ubifs_dump_node(c, sa->node);
2482 	ubifs_msg("dumping second node");
2483 	ubifs_dump_node(c, sb->node);
2484 	return -EINVAL;
2485 	return 0;
2486 }
2487 
2488 static inline int chance(unsigned int n, unsigned int out_of)
2489 {
2490 	return !!((prandom_u32() % out_of) + 1 <= n);
2491 
2492 }
2493 
2494 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2495 {
2496 	struct ubifs_debug_info *d = c->dbg;
2497 
2498 	ubifs_assert(dbg_is_tst_rcvry(c));
2499 
2500 	if (!d->pc_cnt) {
2501 		/* First call - decide delay to the power cut */
2502 		if (chance(1, 2)) {
2503 			unsigned long delay;
2504 
2505 			if (chance(1, 2)) {
2506 				d->pc_delay = 1;
2507 				/* Fail withing 1 minute */
2508 				delay = prandom_u32() % 60000;
2509 				d->pc_timeout = jiffies;
2510 				d->pc_timeout += msecs_to_jiffies(delay);
2511 				ubifs_warn("failing after %lums", delay);
2512 			} else {
2513 				d->pc_delay = 2;
2514 				delay = prandom_u32() % 10000;
2515 				/* Fail within 10000 operations */
2516 				d->pc_cnt_max = delay;
2517 				ubifs_warn("failing after %lu calls", delay);
2518 			}
2519 		}
2520 
2521 		d->pc_cnt += 1;
2522 	}
2523 
2524 	/* Determine if failure delay has expired */
2525 	if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2526 			return 0;
2527 	if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2528 			return 0;
2529 
2530 	if (lnum == UBIFS_SB_LNUM) {
2531 		if (write && chance(1, 2))
2532 			return 0;
2533 		if (chance(19, 20))
2534 			return 0;
2535 		ubifs_warn("failing in super block LEB %d", lnum);
2536 	} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2537 		if (chance(19, 20))
2538 			return 0;
2539 		ubifs_warn("failing in master LEB %d", lnum);
2540 	} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2541 		if (write && chance(99, 100))
2542 			return 0;
2543 		if (chance(399, 400))
2544 			return 0;
2545 		ubifs_warn("failing in log LEB %d", lnum);
2546 	} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2547 		if (write && chance(7, 8))
2548 			return 0;
2549 		if (chance(19, 20))
2550 			return 0;
2551 		ubifs_warn("failing in LPT LEB %d", lnum);
2552 	} else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2553 		if (write && chance(1, 2))
2554 			return 0;
2555 		if (chance(9, 10))
2556 			return 0;
2557 		ubifs_warn("failing in orphan LEB %d", lnum);
2558 	} else if (lnum == c->ihead_lnum) {
2559 		if (chance(99, 100))
2560 			return 0;
2561 		ubifs_warn("failing in index head LEB %d", lnum);
2562 	} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2563 		if (chance(9, 10))
2564 			return 0;
2565 		ubifs_warn("failing in GC head LEB %d", lnum);
2566 	} else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2567 		   !ubifs_search_bud(c, lnum)) {
2568 		if (chance(19, 20))
2569 			return 0;
2570 		ubifs_warn("failing in non-bud LEB %d", lnum);
2571 	} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2572 		   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2573 		if (chance(999, 1000))
2574 			return 0;
2575 		ubifs_warn("failing in bud LEB %d commit running", lnum);
2576 	} else {
2577 		if (chance(9999, 10000))
2578 			return 0;
2579 		ubifs_warn("failing in bud LEB %d commit not running", lnum);
2580 	}
2581 
2582 	d->pc_happened = 1;
2583 	ubifs_warn("========== Power cut emulated ==========");
2584 	dump_stack();
2585 	return 1;
2586 }
2587 
2588 static int corrupt_data(const struct ubifs_info *c, const void *buf,
2589 			unsigned int len)
2590 {
2591 	unsigned int from, to, ffs = chance(1, 2);
2592 	unsigned char *p = (void *)buf;
2593 
2594 	from = prandom_u32() % len;
2595 	/* Corruption span max to end of write unit */
2596 	to = min(len, ALIGN(from + 1, c->max_write_size));
2597 
2598 	ubifs_warn("filled bytes %u-%u with %s", from, to - 1,
2599 		   ffs ? "0xFFs" : "random data");
2600 
2601 	if (ffs)
2602 		memset(p + from, 0xFF, to - from);
2603 	else
2604 		prandom_bytes(p + from, to - from);
2605 
2606 	return to;
2607 }
2608 
2609 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2610 		  int offs, int len)
2611 {
2612 	int err, failing;
2613 
2614 	if (c->dbg->pc_happened)
2615 		return -EROFS;
2616 
2617 	failing = power_cut_emulated(c, lnum, 1);
2618 	if (failing) {
2619 		len = corrupt_data(c, buf, len);
2620 		ubifs_warn("actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2621 			   len, lnum, offs);
2622 	}
2623 	err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2624 	if (err)
2625 		return err;
2626 	if (failing)
2627 		return -EROFS;
2628 	return 0;
2629 }
2630 
2631 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2632 		   int len)
2633 {
2634 	int err;
2635 
2636 	if (c->dbg->pc_happened)
2637 		return -EROFS;
2638 	if (power_cut_emulated(c, lnum, 1))
2639 		return -EROFS;
2640 	err = ubi_leb_change(c->ubi, lnum, buf, len);
2641 	if (err)
2642 		return err;
2643 	if (power_cut_emulated(c, lnum, 1))
2644 		return -EROFS;
2645 	return 0;
2646 }
2647 
2648 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2649 {
2650 	int err;
2651 
2652 	if (c->dbg->pc_happened)
2653 		return -EROFS;
2654 	if (power_cut_emulated(c, lnum, 0))
2655 		return -EROFS;
2656 	err = ubi_leb_unmap(c->ubi, lnum);
2657 	if (err)
2658 		return err;
2659 	if (power_cut_emulated(c, lnum, 0))
2660 		return -EROFS;
2661 	return 0;
2662 }
2663 
2664 int dbg_leb_map(struct ubifs_info *c, int lnum)
2665 {
2666 	int err;
2667 
2668 	if (c->dbg->pc_happened)
2669 		return -EROFS;
2670 	if (power_cut_emulated(c, lnum, 0))
2671 		return -EROFS;
2672 	err = ubi_leb_map(c->ubi, lnum);
2673 	if (err)
2674 		return err;
2675 	if (power_cut_emulated(c, lnum, 0))
2676 		return -EROFS;
2677 	return 0;
2678 }
2679 
2680 /*
2681  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2682  * contain the stuff specific to particular file-system mounts.
2683  */
2684 static struct dentry *dfs_rootdir;
2685 
2686 static int dfs_file_open(struct inode *inode, struct file *file)
2687 {
2688 	file->private_data = inode->i_private;
2689 	return nonseekable_open(inode, file);
2690 }
2691 
2692 /**
2693  * provide_user_output - provide output to the user reading a debugfs file.
2694  * @val: boolean value for the answer
2695  * @u: the buffer to store the answer at
2696  * @count: size of the buffer
2697  * @ppos: position in the @u output buffer
2698  *
2699  * This is a simple helper function which stores @val boolean value in the user
2700  * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2701  * bytes written to @u in case of success and a negative error code in case of
2702  * failure.
2703  */
2704 static int provide_user_output(int val, char __user *u, size_t count,
2705 			       loff_t *ppos)
2706 {
2707 	char buf[3];
2708 
2709 	if (val)
2710 		buf[0] = '1';
2711 	else
2712 		buf[0] = '0';
2713 	buf[1] = '\n';
2714 	buf[2] = 0x00;
2715 
2716 	return simple_read_from_buffer(u, count, ppos, buf, 2);
2717 }
2718 
2719 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2720 			     loff_t *ppos)
2721 {
2722 	struct dentry *dent = file->f_path.dentry;
2723 	struct ubifs_info *c = file->private_data;
2724 	struct ubifs_debug_info *d = c->dbg;
2725 	int val;
2726 
2727 	if (dent == d->dfs_chk_gen)
2728 		val = d->chk_gen;
2729 	else if (dent == d->dfs_chk_index)
2730 		val = d->chk_index;
2731 	else if (dent == d->dfs_chk_orph)
2732 		val = d->chk_orph;
2733 	else if (dent == d->dfs_chk_lprops)
2734 		val = d->chk_lprops;
2735 	else if (dent == d->dfs_chk_fs)
2736 		val = d->chk_fs;
2737 	else if (dent == d->dfs_tst_rcvry)
2738 		val = d->tst_rcvry;
2739 	else if (dent == d->dfs_ro_error)
2740 		val = c->ro_error;
2741 	else
2742 		return -EINVAL;
2743 
2744 	return provide_user_output(val, u, count, ppos);
2745 }
2746 
2747 /**
2748  * interpret_user_input - interpret user debugfs file input.
2749  * @u: user-provided buffer with the input
2750  * @count: buffer size
2751  *
2752  * This is a helper function which interpret user input to a boolean UBIFS
2753  * debugfs file. Returns %0 or %1 in case of success and a negative error code
2754  * in case of failure.
2755  */
2756 static int interpret_user_input(const char __user *u, size_t count)
2757 {
2758 	size_t buf_size;
2759 	char buf[8];
2760 
2761 	buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2762 	if (copy_from_user(buf, u, buf_size))
2763 		return -EFAULT;
2764 
2765 	if (buf[0] == '1')
2766 		return 1;
2767 	else if (buf[0] == '0')
2768 		return 0;
2769 
2770 	return -EINVAL;
2771 }
2772 
2773 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2774 			      size_t count, loff_t *ppos)
2775 {
2776 	struct ubifs_info *c = file->private_data;
2777 	struct ubifs_debug_info *d = c->dbg;
2778 	struct dentry *dent = file->f_path.dentry;
2779 	int val;
2780 
2781 	/*
2782 	 * TODO: this is racy - the file-system might have already been
2783 	 * unmounted and we'd oops in this case. The plan is to fix it with
2784 	 * help of 'iterate_supers_type()' which we should have in v3.0: when
2785 	 * a debugfs opened, we rember FS's UUID in file->private_data. Then
2786 	 * whenever we access the FS via a debugfs file, we iterate all UBIFS
2787 	 * superblocks and fine the one with the same UUID, and take the
2788 	 * locking right.
2789 	 *
2790 	 * The other way to go suggested by Al Viro is to create a separate
2791 	 * 'ubifs-debug' file-system instead.
2792 	 */
2793 	if (file->f_path.dentry == d->dfs_dump_lprops) {
2794 		ubifs_dump_lprops(c);
2795 		return count;
2796 	}
2797 	if (file->f_path.dentry == d->dfs_dump_budg) {
2798 		ubifs_dump_budg(c, &c->bi);
2799 		return count;
2800 	}
2801 	if (file->f_path.dentry == d->dfs_dump_tnc) {
2802 		mutex_lock(&c->tnc_mutex);
2803 		ubifs_dump_tnc(c);
2804 		mutex_unlock(&c->tnc_mutex);
2805 		return count;
2806 	}
2807 
2808 	val = interpret_user_input(u, count);
2809 	if (val < 0)
2810 		return val;
2811 
2812 	if (dent == d->dfs_chk_gen)
2813 		d->chk_gen = val;
2814 	else if (dent == d->dfs_chk_index)
2815 		d->chk_index = val;
2816 	else if (dent == d->dfs_chk_orph)
2817 		d->chk_orph = val;
2818 	else if (dent == d->dfs_chk_lprops)
2819 		d->chk_lprops = val;
2820 	else if (dent == d->dfs_chk_fs)
2821 		d->chk_fs = val;
2822 	else if (dent == d->dfs_tst_rcvry)
2823 		d->tst_rcvry = val;
2824 	else if (dent == d->dfs_ro_error)
2825 		c->ro_error = !!val;
2826 	else
2827 		return -EINVAL;
2828 
2829 	return count;
2830 }
2831 
2832 static const struct file_operations dfs_fops = {
2833 	.open = dfs_file_open,
2834 	.read = dfs_file_read,
2835 	.write = dfs_file_write,
2836 	.owner = THIS_MODULE,
2837 	.llseek = no_llseek,
2838 };
2839 
2840 /**
2841  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2842  * @c: UBIFS file-system description object
2843  *
2844  * This function creates all debugfs files for this instance of UBIFS. Returns
2845  * zero in case of success and a negative error code in case of failure.
2846  *
2847  * Note, the only reason we have not merged this function with the
2848  * 'ubifs_debugging_init()' function is because it is better to initialize
2849  * debugfs interfaces at the very end of the mount process, and remove them at
2850  * the very beginning of the mount process.
2851  */
2852 int dbg_debugfs_init_fs(struct ubifs_info *c)
2853 {
2854 	int err, n;
2855 	const char *fname;
2856 	struct dentry *dent;
2857 	struct ubifs_debug_info *d = c->dbg;
2858 
2859 	if (!IS_ENABLED(CONFIG_DEBUG_FS))
2860 		return 0;
2861 
2862 	n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2863 		     c->vi.ubi_num, c->vi.vol_id);
2864 	if (n == UBIFS_DFS_DIR_LEN) {
2865 		/* The array size is too small */
2866 		fname = UBIFS_DFS_DIR_NAME;
2867 		dent = ERR_PTR(-EINVAL);
2868 		goto out;
2869 	}
2870 
2871 	fname = d->dfs_dir_name;
2872 	dent = debugfs_create_dir(fname, dfs_rootdir);
2873 	if (IS_ERR_OR_NULL(dent))
2874 		goto out;
2875 	d->dfs_dir = dent;
2876 
2877 	fname = "dump_lprops";
2878 	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2879 	if (IS_ERR_OR_NULL(dent))
2880 		goto out_remove;
2881 	d->dfs_dump_lprops = dent;
2882 
2883 	fname = "dump_budg";
2884 	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2885 	if (IS_ERR_OR_NULL(dent))
2886 		goto out_remove;
2887 	d->dfs_dump_budg = dent;
2888 
2889 	fname = "dump_tnc";
2890 	dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2891 	if (IS_ERR_OR_NULL(dent))
2892 		goto out_remove;
2893 	d->dfs_dump_tnc = dent;
2894 
2895 	fname = "chk_general";
2896 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2897 				   &dfs_fops);
2898 	if (IS_ERR_OR_NULL(dent))
2899 		goto out_remove;
2900 	d->dfs_chk_gen = dent;
2901 
2902 	fname = "chk_index";
2903 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2904 				   &dfs_fops);
2905 	if (IS_ERR_OR_NULL(dent))
2906 		goto out_remove;
2907 	d->dfs_chk_index = dent;
2908 
2909 	fname = "chk_orphans";
2910 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2911 				   &dfs_fops);
2912 	if (IS_ERR_OR_NULL(dent))
2913 		goto out_remove;
2914 	d->dfs_chk_orph = dent;
2915 
2916 	fname = "chk_lprops";
2917 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2918 				   &dfs_fops);
2919 	if (IS_ERR_OR_NULL(dent))
2920 		goto out_remove;
2921 	d->dfs_chk_lprops = dent;
2922 
2923 	fname = "chk_fs";
2924 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2925 				   &dfs_fops);
2926 	if (IS_ERR_OR_NULL(dent))
2927 		goto out_remove;
2928 	d->dfs_chk_fs = dent;
2929 
2930 	fname = "tst_recovery";
2931 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2932 				   &dfs_fops);
2933 	if (IS_ERR_OR_NULL(dent))
2934 		goto out_remove;
2935 	d->dfs_tst_rcvry = dent;
2936 
2937 	fname = "ro_error";
2938 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2939 				   &dfs_fops);
2940 	if (IS_ERR_OR_NULL(dent))
2941 		goto out_remove;
2942 	d->dfs_ro_error = dent;
2943 
2944 	return 0;
2945 
2946 out_remove:
2947 	debugfs_remove_recursive(d->dfs_dir);
2948 out:
2949 	err = dent ? PTR_ERR(dent) : -ENODEV;
2950 	ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
2951 		  fname, err);
2952 	return err;
2953 }
2954 
2955 /**
2956  * dbg_debugfs_exit_fs - remove all debugfs files.
2957  * @c: UBIFS file-system description object
2958  */
2959 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2960 {
2961 	if (IS_ENABLED(CONFIG_DEBUG_FS))
2962 		debugfs_remove_recursive(c->dbg->dfs_dir);
2963 }
2964 
2965 struct ubifs_global_debug_info ubifs_dbg;
2966 
2967 static struct dentry *dfs_chk_gen;
2968 static struct dentry *dfs_chk_index;
2969 static struct dentry *dfs_chk_orph;
2970 static struct dentry *dfs_chk_lprops;
2971 static struct dentry *dfs_chk_fs;
2972 static struct dentry *dfs_tst_rcvry;
2973 
2974 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2975 				    size_t count, loff_t *ppos)
2976 {
2977 	struct dentry *dent = file->f_path.dentry;
2978 	int val;
2979 
2980 	if (dent == dfs_chk_gen)
2981 		val = ubifs_dbg.chk_gen;
2982 	else if (dent == dfs_chk_index)
2983 		val = ubifs_dbg.chk_index;
2984 	else if (dent == dfs_chk_orph)
2985 		val = ubifs_dbg.chk_orph;
2986 	else if (dent == dfs_chk_lprops)
2987 		val = ubifs_dbg.chk_lprops;
2988 	else if (dent == dfs_chk_fs)
2989 		val = ubifs_dbg.chk_fs;
2990 	else if (dent == dfs_tst_rcvry)
2991 		val = ubifs_dbg.tst_rcvry;
2992 	else
2993 		return -EINVAL;
2994 
2995 	return provide_user_output(val, u, count, ppos);
2996 }
2997 
2998 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2999 				     size_t count, loff_t *ppos)
3000 {
3001 	struct dentry *dent = file->f_path.dentry;
3002 	int val;
3003 
3004 	val = interpret_user_input(u, count);
3005 	if (val < 0)
3006 		return val;
3007 
3008 	if (dent == dfs_chk_gen)
3009 		ubifs_dbg.chk_gen = val;
3010 	else if (dent == dfs_chk_index)
3011 		ubifs_dbg.chk_index = val;
3012 	else if (dent == dfs_chk_orph)
3013 		ubifs_dbg.chk_orph = val;
3014 	else if (dent == dfs_chk_lprops)
3015 		ubifs_dbg.chk_lprops = val;
3016 	else if (dent == dfs_chk_fs)
3017 		ubifs_dbg.chk_fs = val;
3018 	else if (dent == dfs_tst_rcvry)
3019 		ubifs_dbg.tst_rcvry = val;
3020 	else
3021 		return -EINVAL;
3022 
3023 	return count;
3024 }
3025 
3026 static const struct file_operations dfs_global_fops = {
3027 	.read = dfs_global_file_read,
3028 	.write = dfs_global_file_write,
3029 	.owner = THIS_MODULE,
3030 	.llseek = no_llseek,
3031 };
3032 
3033 /**
3034  * dbg_debugfs_init - initialize debugfs file-system.
3035  *
3036  * UBIFS uses debugfs file-system to expose various debugging knobs to
3037  * user-space. This function creates "ubifs" directory in the debugfs
3038  * file-system. Returns zero in case of success and a negative error code in
3039  * case of failure.
3040  */
3041 int dbg_debugfs_init(void)
3042 {
3043 	int err;
3044 	const char *fname;
3045 	struct dentry *dent;
3046 
3047 	if (!IS_ENABLED(CONFIG_DEBUG_FS))
3048 		return 0;
3049 
3050 	fname = "ubifs";
3051 	dent = debugfs_create_dir(fname, NULL);
3052 	if (IS_ERR_OR_NULL(dent))
3053 		goto out;
3054 	dfs_rootdir = dent;
3055 
3056 	fname = "chk_general";
3057 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3058 				   &dfs_global_fops);
3059 	if (IS_ERR_OR_NULL(dent))
3060 		goto out_remove;
3061 	dfs_chk_gen = dent;
3062 
3063 	fname = "chk_index";
3064 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3065 				   &dfs_global_fops);
3066 	if (IS_ERR_OR_NULL(dent))
3067 		goto out_remove;
3068 	dfs_chk_index = dent;
3069 
3070 	fname = "chk_orphans";
3071 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3072 				   &dfs_global_fops);
3073 	if (IS_ERR_OR_NULL(dent))
3074 		goto out_remove;
3075 	dfs_chk_orph = dent;
3076 
3077 	fname = "chk_lprops";
3078 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3079 				   &dfs_global_fops);
3080 	if (IS_ERR_OR_NULL(dent))
3081 		goto out_remove;
3082 	dfs_chk_lprops = dent;
3083 
3084 	fname = "chk_fs";
3085 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3086 				   &dfs_global_fops);
3087 	if (IS_ERR_OR_NULL(dent))
3088 		goto out_remove;
3089 	dfs_chk_fs = dent;
3090 
3091 	fname = "tst_recovery";
3092 	dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3093 				   &dfs_global_fops);
3094 	if (IS_ERR_OR_NULL(dent))
3095 		goto out_remove;
3096 	dfs_tst_rcvry = dent;
3097 
3098 	return 0;
3099 
3100 out_remove:
3101 	debugfs_remove_recursive(dfs_rootdir);
3102 out:
3103 	err = dent ? PTR_ERR(dent) : -ENODEV;
3104 	ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3105 		  fname, err);
3106 	return err;
3107 }
3108 
3109 /**
3110  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3111  */
3112 void dbg_debugfs_exit(void)
3113 {
3114 	if (IS_ENABLED(CONFIG_DEBUG_FS))
3115 		debugfs_remove_recursive(dfs_rootdir);
3116 }
3117 
3118 /**
3119  * ubifs_debugging_init - initialize UBIFS debugging.
3120  * @c: UBIFS file-system description object
3121  *
3122  * This function initializes debugging-related data for the file system.
3123  * Returns zero in case of success and a negative error code in case of
3124  * failure.
3125  */
3126 int ubifs_debugging_init(struct ubifs_info *c)
3127 {
3128 	c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3129 	if (!c->dbg)
3130 		return -ENOMEM;
3131 
3132 	return 0;
3133 }
3134 
3135 /**
3136  * ubifs_debugging_exit - free debugging data.
3137  * @c: UBIFS file-system description object
3138  */
3139 void ubifs_debugging_exit(struct ubifs_info *c)
3140 {
3141 	kfree(c->dbg);
3142 }
3143 #endif
3144