1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation 5 * 6 * SPDX-License-Identifier: GPL-2.0+ 7 * 8 * Authors: Artem Bityutskiy (Битюцкий Артём) 9 * Adrian Hunter 10 */ 11 12 /* 13 * This file implements most of the debugging stuff which is compiled in only 14 * when it is enabled. But some debugging check functions are implemented in 15 * corresponding subsystem, just because they are closely related and utilize 16 * various local functions of those subsystems. 17 */ 18 19 #ifndef __UBOOT__ 20 #include <linux/module.h> 21 #include <linux/debugfs.h> 22 #include <linux/math64.h> 23 #include <linux/uaccess.h> 24 #include <linux/random.h> 25 #else 26 #include <linux/compat.h> 27 #include <linux/err.h> 28 #endif 29 #include "ubifs.h" 30 31 #ifndef __UBOOT__ 32 static DEFINE_SPINLOCK(dbg_lock); 33 #endif 34 35 static const char *get_key_fmt(int fmt) 36 { 37 switch (fmt) { 38 case UBIFS_SIMPLE_KEY_FMT: 39 return "simple"; 40 default: 41 return "unknown/invalid format"; 42 } 43 } 44 45 static const char *get_key_hash(int hash) 46 { 47 switch (hash) { 48 case UBIFS_KEY_HASH_R5: 49 return "R5"; 50 case UBIFS_KEY_HASH_TEST: 51 return "test"; 52 default: 53 return "unknown/invalid name hash"; 54 } 55 } 56 57 static const char *get_key_type(int type) 58 { 59 switch (type) { 60 case UBIFS_INO_KEY: 61 return "inode"; 62 case UBIFS_DENT_KEY: 63 return "direntry"; 64 case UBIFS_XENT_KEY: 65 return "xentry"; 66 case UBIFS_DATA_KEY: 67 return "data"; 68 case UBIFS_TRUN_KEY: 69 return "truncate"; 70 default: 71 return "unknown/invalid key"; 72 } 73 } 74 75 #ifndef __UBOOT__ 76 static const char *get_dent_type(int type) 77 { 78 switch (type) { 79 case UBIFS_ITYPE_REG: 80 return "file"; 81 case UBIFS_ITYPE_DIR: 82 return "dir"; 83 case UBIFS_ITYPE_LNK: 84 return "symlink"; 85 case UBIFS_ITYPE_BLK: 86 return "blkdev"; 87 case UBIFS_ITYPE_CHR: 88 return "char dev"; 89 case UBIFS_ITYPE_FIFO: 90 return "fifo"; 91 case UBIFS_ITYPE_SOCK: 92 return "socket"; 93 default: 94 return "unknown/invalid type"; 95 } 96 } 97 #endif 98 99 const char *dbg_snprintf_key(const struct ubifs_info *c, 100 const union ubifs_key *key, char *buffer, int len) 101 { 102 char *p = buffer; 103 int type = key_type(c, key); 104 105 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) { 106 switch (type) { 107 case UBIFS_INO_KEY: 108 len -= snprintf(p, len, "(%lu, %s)", 109 (unsigned long)key_inum(c, key), 110 get_key_type(type)); 111 break; 112 case UBIFS_DENT_KEY: 113 case UBIFS_XENT_KEY: 114 len -= snprintf(p, len, "(%lu, %s, %#08x)", 115 (unsigned long)key_inum(c, key), 116 get_key_type(type), key_hash(c, key)); 117 break; 118 case UBIFS_DATA_KEY: 119 len -= snprintf(p, len, "(%lu, %s, %u)", 120 (unsigned long)key_inum(c, key), 121 get_key_type(type), key_block(c, key)); 122 break; 123 case UBIFS_TRUN_KEY: 124 len -= snprintf(p, len, "(%lu, %s)", 125 (unsigned long)key_inum(c, key), 126 get_key_type(type)); 127 break; 128 default: 129 len -= snprintf(p, len, "(bad key type: %#08x, %#08x)", 130 key->u32[0], key->u32[1]); 131 } 132 } else 133 len -= snprintf(p, len, "bad key format %d", c->key_fmt); 134 ubifs_assert(len > 0); 135 return p; 136 } 137 138 const char *dbg_ntype(int type) 139 { 140 switch (type) { 141 case UBIFS_PAD_NODE: 142 return "padding node"; 143 case UBIFS_SB_NODE: 144 return "superblock node"; 145 case UBIFS_MST_NODE: 146 return "master node"; 147 case UBIFS_REF_NODE: 148 return "reference node"; 149 case UBIFS_INO_NODE: 150 return "inode node"; 151 case UBIFS_DENT_NODE: 152 return "direntry node"; 153 case UBIFS_XENT_NODE: 154 return "xentry node"; 155 case UBIFS_DATA_NODE: 156 return "data node"; 157 case UBIFS_TRUN_NODE: 158 return "truncate node"; 159 case UBIFS_IDX_NODE: 160 return "indexing node"; 161 case UBIFS_CS_NODE: 162 return "commit start node"; 163 case UBIFS_ORPH_NODE: 164 return "orphan node"; 165 default: 166 return "unknown node"; 167 } 168 } 169 170 static const char *dbg_gtype(int type) 171 { 172 switch (type) { 173 case UBIFS_NO_NODE_GROUP: 174 return "no node group"; 175 case UBIFS_IN_NODE_GROUP: 176 return "in node group"; 177 case UBIFS_LAST_OF_NODE_GROUP: 178 return "last of node group"; 179 default: 180 return "unknown"; 181 } 182 } 183 184 const char *dbg_cstate(int cmt_state) 185 { 186 switch (cmt_state) { 187 case COMMIT_RESTING: 188 return "commit resting"; 189 case COMMIT_BACKGROUND: 190 return "background commit requested"; 191 case COMMIT_REQUIRED: 192 return "commit required"; 193 case COMMIT_RUNNING_BACKGROUND: 194 return "BACKGROUND commit running"; 195 case COMMIT_RUNNING_REQUIRED: 196 return "commit running and required"; 197 case COMMIT_BROKEN: 198 return "broken commit"; 199 default: 200 return "unknown commit state"; 201 } 202 } 203 204 const char *dbg_jhead(int jhead) 205 { 206 switch (jhead) { 207 case GCHD: 208 return "0 (GC)"; 209 case BASEHD: 210 return "1 (base)"; 211 case DATAHD: 212 return "2 (data)"; 213 default: 214 return "unknown journal head"; 215 } 216 } 217 218 static void dump_ch(const struct ubifs_ch *ch) 219 { 220 pr_err("\tmagic %#x\n", le32_to_cpu(ch->magic)); 221 pr_err("\tcrc %#x\n", le32_to_cpu(ch->crc)); 222 pr_err("\tnode_type %d (%s)\n", ch->node_type, 223 dbg_ntype(ch->node_type)); 224 pr_err("\tgroup_type %d (%s)\n", ch->group_type, 225 dbg_gtype(ch->group_type)); 226 pr_err("\tsqnum %llu\n", 227 (unsigned long long)le64_to_cpu(ch->sqnum)); 228 pr_err("\tlen %u\n", le32_to_cpu(ch->len)); 229 } 230 231 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode) 232 { 233 #ifndef __UBOOT__ 234 const struct ubifs_inode *ui = ubifs_inode(inode); 235 struct qstr nm = { .name = NULL }; 236 union ubifs_key key; 237 struct ubifs_dent_node *dent, *pdent = NULL; 238 int count = 2; 239 240 pr_err("Dump in-memory inode:"); 241 pr_err("\tinode %lu\n", inode->i_ino); 242 pr_err("\tsize %llu\n", 243 (unsigned long long)i_size_read(inode)); 244 pr_err("\tnlink %u\n", inode->i_nlink); 245 pr_err("\tuid %u\n", (unsigned int)i_uid_read(inode)); 246 pr_err("\tgid %u\n", (unsigned int)i_gid_read(inode)); 247 pr_err("\tatime %u.%u\n", 248 (unsigned int)inode->i_atime.tv_sec, 249 (unsigned int)inode->i_atime.tv_nsec); 250 pr_err("\tmtime %u.%u\n", 251 (unsigned int)inode->i_mtime.tv_sec, 252 (unsigned int)inode->i_mtime.tv_nsec); 253 pr_err("\tctime %u.%u\n", 254 (unsigned int)inode->i_ctime.tv_sec, 255 (unsigned int)inode->i_ctime.tv_nsec); 256 pr_err("\tcreat_sqnum %llu\n", ui->creat_sqnum); 257 pr_err("\txattr_size %u\n", ui->xattr_size); 258 pr_err("\txattr_cnt %u\n", ui->xattr_cnt); 259 pr_err("\txattr_names %u\n", ui->xattr_names); 260 pr_err("\tdirty %u\n", ui->dirty); 261 pr_err("\txattr %u\n", ui->xattr); 262 pr_err("\tbulk_read %u\n", ui->xattr); 263 pr_err("\tsynced_i_size %llu\n", 264 (unsigned long long)ui->synced_i_size); 265 pr_err("\tui_size %llu\n", 266 (unsigned long long)ui->ui_size); 267 pr_err("\tflags %d\n", ui->flags); 268 pr_err("\tcompr_type %d\n", ui->compr_type); 269 pr_err("\tlast_page_read %lu\n", ui->last_page_read); 270 pr_err("\tread_in_a_row %lu\n", ui->read_in_a_row); 271 pr_err("\tdata_len %d\n", ui->data_len); 272 273 if (!S_ISDIR(inode->i_mode)) 274 return; 275 276 pr_err("List of directory entries:\n"); 277 ubifs_assert(!mutex_is_locked(&c->tnc_mutex)); 278 279 lowest_dent_key(c, &key, inode->i_ino); 280 while (1) { 281 dent = ubifs_tnc_next_ent(c, &key, &nm); 282 if (IS_ERR(dent)) { 283 if (PTR_ERR(dent) != -ENOENT) 284 pr_err("error %ld\n", PTR_ERR(dent)); 285 break; 286 } 287 288 pr_err("\t%d: %s (%s)\n", 289 count++, dent->name, get_dent_type(dent->type)); 290 291 nm.name = dent->name; 292 nm.len = le16_to_cpu(dent->nlen); 293 kfree(pdent); 294 pdent = dent; 295 key_read(c, &dent->key, &key); 296 } 297 kfree(pdent); 298 #endif 299 } 300 301 void ubifs_dump_node(const struct ubifs_info *c, const void *node) 302 { 303 int i, n; 304 union ubifs_key key; 305 const struct ubifs_ch *ch = node; 306 char key_buf[DBG_KEY_BUF_LEN]; 307 308 /* If the magic is incorrect, just hexdump the first bytes */ 309 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) { 310 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ); 311 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1, 312 (void *)node, UBIFS_CH_SZ, 1); 313 return; 314 } 315 316 spin_lock(&dbg_lock); 317 dump_ch(node); 318 319 switch (ch->node_type) { 320 case UBIFS_PAD_NODE: 321 { 322 const struct ubifs_pad_node *pad = node; 323 324 pr_err("\tpad_len %u\n", le32_to_cpu(pad->pad_len)); 325 break; 326 } 327 case UBIFS_SB_NODE: 328 { 329 const struct ubifs_sb_node *sup = node; 330 unsigned int sup_flags = le32_to_cpu(sup->flags); 331 332 pr_err("\tkey_hash %d (%s)\n", 333 (int)sup->key_hash, get_key_hash(sup->key_hash)); 334 pr_err("\tkey_fmt %d (%s)\n", 335 (int)sup->key_fmt, get_key_fmt(sup->key_fmt)); 336 pr_err("\tflags %#x\n", sup_flags); 337 pr_err("\t big_lpt %u\n", 338 !!(sup_flags & UBIFS_FLG_BIGLPT)); 339 pr_err("\t space_fixup %u\n", 340 !!(sup_flags & UBIFS_FLG_SPACE_FIXUP)); 341 pr_err("\tmin_io_size %u\n", le32_to_cpu(sup->min_io_size)); 342 pr_err("\tleb_size %u\n", le32_to_cpu(sup->leb_size)); 343 pr_err("\tleb_cnt %u\n", le32_to_cpu(sup->leb_cnt)); 344 pr_err("\tmax_leb_cnt %u\n", le32_to_cpu(sup->max_leb_cnt)); 345 pr_err("\tmax_bud_bytes %llu\n", 346 (unsigned long long)le64_to_cpu(sup->max_bud_bytes)); 347 pr_err("\tlog_lebs %u\n", le32_to_cpu(sup->log_lebs)); 348 pr_err("\tlpt_lebs %u\n", le32_to_cpu(sup->lpt_lebs)); 349 pr_err("\torph_lebs %u\n", le32_to_cpu(sup->orph_lebs)); 350 pr_err("\tjhead_cnt %u\n", le32_to_cpu(sup->jhead_cnt)); 351 pr_err("\tfanout %u\n", le32_to_cpu(sup->fanout)); 352 pr_err("\tlsave_cnt %u\n", le32_to_cpu(sup->lsave_cnt)); 353 pr_err("\tdefault_compr %u\n", 354 (int)le16_to_cpu(sup->default_compr)); 355 pr_err("\trp_size %llu\n", 356 (unsigned long long)le64_to_cpu(sup->rp_size)); 357 pr_err("\trp_uid %u\n", le32_to_cpu(sup->rp_uid)); 358 pr_err("\trp_gid %u\n", le32_to_cpu(sup->rp_gid)); 359 pr_err("\tfmt_version %u\n", le32_to_cpu(sup->fmt_version)); 360 pr_err("\ttime_gran %u\n", le32_to_cpu(sup->time_gran)); 361 pr_err("\tUUID %pUB\n", sup->uuid); 362 break; 363 } 364 case UBIFS_MST_NODE: 365 { 366 const struct ubifs_mst_node *mst = node; 367 368 pr_err("\thighest_inum %llu\n", 369 (unsigned long long)le64_to_cpu(mst->highest_inum)); 370 pr_err("\tcommit number %llu\n", 371 (unsigned long long)le64_to_cpu(mst->cmt_no)); 372 pr_err("\tflags %#x\n", le32_to_cpu(mst->flags)); 373 pr_err("\tlog_lnum %u\n", le32_to_cpu(mst->log_lnum)); 374 pr_err("\troot_lnum %u\n", le32_to_cpu(mst->root_lnum)); 375 pr_err("\troot_offs %u\n", le32_to_cpu(mst->root_offs)); 376 pr_err("\troot_len %u\n", le32_to_cpu(mst->root_len)); 377 pr_err("\tgc_lnum %u\n", le32_to_cpu(mst->gc_lnum)); 378 pr_err("\tihead_lnum %u\n", le32_to_cpu(mst->ihead_lnum)); 379 pr_err("\tihead_offs %u\n", le32_to_cpu(mst->ihead_offs)); 380 pr_err("\tindex_size %llu\n", 381 (unsigned long long)le64_to_cpu(mst->index_size)); 382 pr_err("\tlpt_lnum %u\n", le32_to_cpu(mst->lpt_lnum)); 383 pr_err("\tlpt_offs %u\n", le32_to_cpu(mst->lpt_offs)); 384 pr_err("\tnhead_lnum %u\n", le32_to_cpu(mst->nhead_lnum)); 385 pr_err("\tnhead_offs %u\n", le32_to_cpu(mst->nhead_offs)); 386 pr_err("\tltab_lnum %u\n", le32_to_cpu(mst->ltab_lnum)); 387 pr_err("\tltab_offs %u\n", le32_to_cpu(mst->ltab_offs)); 388 pr_err("\tlsave_lnum %u\n", le32_to_cpu(mst->lsave_lnum)); 389 pr_err("\tlsave_offs %u\n", le32_to_cpu(mst->lsave_offs)); 390 pr_err("\tlscan_lnum %u\n", le32_to_cpu(mst->lscan_lnum)); 391 pr_err("\tleb_cnt %u\n", le32_to_cpu(mst->leb_cnt)); 392 pr_err("\tempty_lebs %u\n", le32_to_cpu(mst->empty_lebs)); 393 pr_err("\tidx_lebs %u\n", le32_to_cpu(mst->idx_lebs)); 394 pr_err("\ttotal_free %llu\n", 395 (unsigned long long)le64_to_cpu(mst->total_free)); 396 pr_err("\ttotal_dirty %llu\n", 397 (unsigned long long)le64_to_cpu(mst->total_dirty)); 398 pr_err("\ttotal_used %llu\n", 399 (unsigned long long)le64_to_cpu(mst->total_used)); 400 pr_err("\ttotal_dead %llu\n", 401 (unsigned long long)le64_to_cpu(mst->total_dead)); 402 pr_err("\ttotal_dark %llu\n", 403 (unsigned long long)le64_to_cpu(mst->total_dark)); 404 break; 405 } 406 case UBIFS_REF_NODE: 407 { 408 const struct ubifs_ref_node *ref = node; 409 410 pr_err("\tlnum %u\n", le32_to_cpu(ref->lnum)); 411 pr_err("\toffs %u\n", le32_to_cpu(ref->offs)); 412 pr_err("\tjhead %u\n", le32_to_cpu(ref->jhead)); 413 break; 414 } 415 case UBIFS_INO_NODE: 416 { 417 const struct ubifs_ino_node *ino = node; 418 419 key_read(c, &ino->key, &key); 420 pr_err("\tkey %s\n", 421 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 422 pr_err("\tcreat_sqnum %llu\n", 423 (unsigned long long)le64_to_cpu(ino->creat_sqnum)); 424 pr_err("\tsize %llu\n", 425 (unsigned long long)le64_to_cpu(ino->size)); 426 pr_err("\tnlink %u\n", le32_to_cpu(ino->nlink)); 427 pr_err("\tatime %lld.%u\n", 428 (long long)le64_to_cpu(ino->atime_sec), 429 le32_to_cpu(ino->atime_nsec)); 430 pr_err("\tmtime %lld.%u\n", 431 (long long)le64_to_cpu(ino->mtime_sec), 432 le32_to_cpu(ino->mtime_nsec)); 433 pr_err("\tctime %lld.%u\n", 434 (long long)le64_to_cpu(ino->ctime_sec), 435 le32_to_cpu(ino->ctime_nsec)); 436 pr_err("\tuid %u\n", le32_to_cpu(ino->uid)); 437 pr_err("\tgid %u\n", le32_to_cpu(ino->gid)); 438 pr_err("\tmode %u\n", le32_to_cpu(ino->mode)); 439 pr_err("\tflags %#x\n", le32_to_cpu(ino->flags)); 440 pr_err("\txattr_cnt %u\n", le32_to_cpu(ino->xattr_cnt)); 441 pr_err("\txattr_size %u\n", le32_to_cpu(ino->xattr_size)); 442 pr_err("\txattr_names %u\n", le32_to_cpu(ino->xattr_names)); 443 pr_err("\tcompr_type %#x\n", 444 (int)le16_to_cpu(ino->compr_type)); 445 pr_err("\tdata len %u\n", le32_to_cpu(ino->data_len)); 446 break; 447 } 448 case UBIFS_DENT_NODE: 449 case UBIFS_XENT_NODE: 450 { 451 const struct ubifs_dent_node *dent = node; 452 int nlen = le16_to_cpu(dent->nlen); 453 454 key_read(c, &dent->key, &key); 455 pr_err("\tkey %s\n", 456 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 457 pr_err("\tinum %llu\n", 458 (unsigned long long)le64_to_cpu(dent->inum)); 459 pr_err("\ttype %d\n", (int)dent->type); 460 pr_err("\tnlen %d\n", nlen); 461 pr_err("\tname "); 462 463 if (nlen > UBIFS_MAX_NLEN) 464 pr_err("(bad name length, not printing, bad or corrupted node)"); 465 else { 466 for (i = 0; i < nlen && dent->name[i]; i++) 467 pr_cont("%c", dent->name[i]); 468 } 469 pr_cont("\n"); 470 471 break; 472 } 473 case UBIFS_DATA_NODE: 474 { 475 const struct ubifs_data_node *dn = node; 476 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ; 477 478 key_read(c, &dn->key, &key); 479 pr_err("\tkey %s\n", 480 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 481 pr_err("\tsize %u\n", le32_to_cpu(dn->size)); 482 pr_err("\tcompr_typ %d\n", 483 (int)le16_to_cpu(dn->compr_type)); 484 pr_err("\tdata size %d\n", dlen); 485 pr_err("\tdata:\n"); 486 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1, 487 (void *)&dn->data, dlen, 0); 488 break; 489 } 490 case UBIFS_TRUN_NODE: 491 { 492 const struct ubifs_trun_node *trun = node; 493 494 pr_err("\tinum %u\n", le32_to_cpu(trun->inum)); 495 pr_err("\told_size %llu\n", 496 (unsigned long long)le64_to_cpu(trun->old_size)); 497 pr_err("\tnew_size %llu\n", 498 (unsigned long long)le64_to_cpu(trun->new_size)); 499 break; 500 } 501 case UBIFS_IDX_NODE: 502 { 503 const struct ubifs_idx_node *idx = node; 504 505 n = le16_to_cpu(idx->child_cnt); 506 pr_err("\tchild_cnt %d\n", n); 507 pr_err("\tlevel %d\n", (int)le16_to_cpu(idx->level)); 508 pr_err("\tBranches:\n"); 509 510 for (i = 0; i < n && i < c->fanout - 1; i++) { 511 const struct ubifs_branch *br; 512 513 br = ubifs_idx_branch(c, idx, i); 514 key_read(c, &br->key, &key); 515 pr_err("\t%d: LEB %d:%d len %d key %s\n", 516 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs), 517 le32_to_cpu(br->len), 518 dbg_snprintf_key(c, &key, key_buf, 519 DBG_KEY_BUF_LEN)); 520 } 521 break; 522 } 523 case UBIFS_CS_NODE: 524 break; 525 case UBIFS_ORPH_NODE: 526 { 527 const struct ubifs_orph_node *orph = node; 528 529 pr_err("\tcommit number %llu\n", 530 (unsigned long long) 531 le64_to_cpu(orph->cmt_no) & LLONG_MAX); 532 pr_err("\tlast node flag %llu\n", 533 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63); 534 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3; 535 pr_err("\t%d orphan inode numbers:\n", n); 536 for (i = 0; i < n; i++) 537 pr_err("\t ino %llu\n", 538 (unsigned long long)le64_to_cpu(orph->inos[i])); 539 break; 540 } 541 default: 542 pr_err("node type %d was not recognized\n", 543 (int)ch->node_type); 544 } 545 spin_unlock(&dbg_lock); 546 } 547 548 void ubifs_dump_budget_req(const struct ubifs_budget_req *req) 549 { 550 spin_lock(&dbg_lock); 551 pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n", 552 req->new_ino, req->dirtied_ino); 553 pr_err("\tnew_ino_d %d, dirtied_ino_d %d\n", 554 req->new_ino_d, req->dirtied_ino_d); 555 pr_err("\tnew_page %d, dirtied_page %d\n", 556 req->new_page, req->dirtied_page); 557 pr_err("\tnew_dent %d, mod_dent %d\n", 558 req->new_dent, req->mod_dent); 559 pr_err("\tidx_growth %d\n", req->idx_growth); 560 pr_err("\tdata_growth %d dd_growth %d\n", 561 req->data_growth, req->dd_growth); 562 spin_unlock(&dbg_lock); 563 } 564 565 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst) 566 { 567 spin_lock(&dbg_lock); 568 pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs %d\n", 569 current->pid, lst->empty_lebs, lst->idx_lebs); 570 pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n", 571 lst->taken_empty_lebs, lst->total_free, lst->total_dirty); 572 pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n", 573 lst->total_used, lst->total_dark, lst->total_dead); 574 spin_unlock(&dbg_lock); 575 } 576 577 #ifndef __UBOOT__ 578 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi) 579 { 580 int i; 581 struct rb_node *rb; 582 struct ubifs_bud *bud; 583 struct ubifs_gced_idx_leb *idx_gc; 584 long long available, outstanding, free; 585 586 spin_lock(&c->space_lock); 587 spin_lock(&dbg_lock); 588 pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n", 589 current->pid, bi->data_growth + bi->dd_growth, 590 bi->data_growth + bi->dd_growth + bi->idx_growth); 591 pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n", 592 bi->data_growth, bi->dd_growth, bi->idx_growth); 593 pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n", 594 bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx); 595 pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n", 596 bi->page_budget, bi->inode_budget, bi->dent_budget); 597 pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp); 598 pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n", 599 c->dark_wm, c->dead_wm, c->max_idx_node_sz); 600 601 if (bi != &c->bi) 602 /* 603 * If we are dumping saved budgeting data, do not print 604 * additional information which is about the current state, not 605 * the old one which corresponded to the saved budgeting data. 606 */ 607 goto out_unlock; 608 609 pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n", 610 c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt); 611 pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n", 612 atomic_long_read(&c->dirty_pg_cnt), 613 atomic_long_read(&c->dirty_zn_cnt), 614 atomic_long_read(&c->clean_zn_cnt)); 615 pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum); 616 617 /* If we are in R/O mode, journal heads do not exist */ 618 if (c->jheads) 619 for (i = 0; i < c->jhead_cnt; i++) 620 pr_err("\tjhead %s\t LEB %d\n", 621 dbg_jhead(c->jheads[i].wbuf.jhead), 622 c->jheads[i].wbuf.lnum); 623 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) { 624 bud = rb_entry(rb, struct ubifs_bud, rb); 625 pr_err("\tbud LEB %d\n", bud->lnum); 626 } 627 list_for_each_entry(bud, &c->old_buds, list) 628 pr_err("\told bud LEB %d\n", bud->lnum); 629 list_for_each_entry(idx_gc, &c->idx_gc, list) 630 pr_err("\tGC'ed idx LEB %d unmap %d\n", 631 idx_gc->lnum, idx_gc->unmap); 632 pr_err("\tcommit state %d\n", c->cmt_state); 633 634 /* Print budgeting predictions */ 635 available = ubifs_calc_available(c, c->bi.min_idx_lebs); 636 outstanding = c->bi.data_growth + c->bi.dd_growth; 637 free = ubifs_get_free_space_nolock(c); 638 pr_err("Budgeting predictions:\n"); 639 pr_err("\tavailable: %lld, outstanding %lld, free %lld\n", 640 available, outstanding, free); 641 out_unlock: 642 spin_unlock(&dbg_lock); 643 spin_unlock(&c->space_lock); 644 } 645 #else 646 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi) 647 { 648 } 649 #endif 650 651 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp) 652 { 653 int i, spc, dark = 0, dead = 0; 654 struct rb_node *rb; 655 struct ubifs_bud *bud; 656 657 spc = lp->free + lp->dirty; 658 if (spc < c->dead_wm) 659 dead = spc; 660 else 661 dark = ubifs_calc_dark(c, spc); 662 663 if (lp->flags & LPROPS_INDEX) 664 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (", 665 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc, 666 lp->flags); 667 else 668 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (", 669 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc, 670 dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags); 671 672 if (lp->flags & LPROPS_TAKEN) { 673 if (lp->flags & LPROPS_INDEX) 674 pr_cont("index, taken"); 675 else 676 pr_cont("taken"); 677 } else { 678 const char *s; 679 680 if (lp->flags & LPROPS_INDEX) { 681 switch (lp->flags & LPROPS_CAT_MASK) { 682 case LPROPS_DIRTY_IDX: 683 s = "dirty index"; 684 break; 685 case LPROPS_FRDI_IDX: 686 s = "freeable index"; 687 break; 688 default: 689 s = "index"; 690 } 691 } else { 692 switch (lp->flags & LPROPS_CAT_MASK) { 693 case LPROPS_UNCAT: 694 s = "not categorized"; 695 break; 696 case LPROPS_DIRTY: 697 s = "dirty"; 698 break; 699 case LPROPS_FREE: 700 s = "free"; 701 break; 702 case LPROPS_EMPTY: 703 s = "empty"; 704 break; 705 case LPROPS_FREEABLE: 706 s = "freeable"; 707 break; 708 default: 709 s = NULL; 710 break; 711 } 712 } 713 pr_cont("%s", s); 714 } 715 716 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) { 717 bud = rb_entry(rb, struct ubifs_bud, rb); 718 if (bud->lnum == lp->lnum) { 719 int head = 0; 720 for (i = 0; i < c->jhead_cnt; i++) { 721 /* 722 * Note, if we are in R/O mode or in the middle 723 * of mounting/re-mounting, the write-buffers do 724 * not exist. 725 */ 726 if (c->jheads && 727 lp->lnum == c->jheads[i].wbuf.lnum) { 728 pr_cont(", jhead %s", dbg_jhead(i)); 729 head = 1; 730 } 731 } 732 if (!head) 733 pr_cont(", bud of jhead %s", 734 dbg_jhead(bud->jhead)); 735 } 736 } 737 if (lp->lnum == c->gc_lnum) 738 pr_cont(", GC LEB"); 739 pr_cont(")\n"); 740 } 741 742 void ubifs_dump_lprops(struct ubifs_info *c) 743 { 744 int lnum, err; 745 struct ubifs_lprops lp; 746 struct ubifs_lp_stats lst; 747 748 pr_err("(pid %d) start dumping LEB properties\n", current->pid); 749 ubifs_get_lp_stats(c, &lst); 750 ubifs_dump_lstats(&lst); 751 752 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) { 753 err = ubifs_read_one_lp(c, lnum, &lp); 754 if (err) 755 ubifs_err("cannot read lprops for LEB %d", lnum); 756 757 ubifs_dump_lprop(c, &lp); 758 } 759 pr_err("(pid %d) finish dumping LEB properties\n", current->pid); 760 } 761 762 void ubifs_dump_lpt_info(struct ubifs_info *c) 763 { 764 int i; 765 766 spin_lock(&dbg_lock); 767 pr_err("(pid %d) dumping LPT information\n", current->pid); 768 pr_err("\tlpt_sz: %lld\n", c->lpt_sz); 769 pr_err("\tpnode_sz: %d\n", c->pnode_sz); 770 pr_err("\tnnode_sz: %d\n", c->nnode_sz); 771 pr_err("\tltab_sz: %d\n", c->ltab_sz); 772 pr_err("\tlsave_sz: %d\n", c->lsave_sz); 773 pr_err("\tbig_lpt: %d\n", c->big_lpt); 774 pr_err("\tlpt_hght: %d\n", c->lpt_hght); 775 pr_err("\tpnode_cnt: %d\n", c->pnode_cnt); 776 pr_err("\tnnode_cnt: %d\n", c->nnode_cnt); 777 pr_err("\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt); 778 pr_err("\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt); 779 pr_err("\tlsave_cnt: %d\n", c->lsave_cnt); 780 pr_err("\tspace_bits: %d\n", c->space_bits); 781 pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits); 782 pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits); 783 pr_err("\tlpt_spc_bits: %d\n", c->lpt_spc_bits); 784 pr_err("\tpcnt_bits: %d\n", c->pcnt_bits); 785 pr_err("\tlnum_bits: %d\n", c->lnum_bits); 786 pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs); 787 pr_err("\tLPT head is at %d:%d\n", 788 c->nhead_lnum, c->nhead_offs); 789 pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs); 790 if (c->big_lpt) 791 pr_err("\tLPT lsave is at %d:%d\n", 792 c->lsave_lnum, c->lsave_offs); 793 for (i = 0; i < c->lpt_lebs; i++) 794 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n", 795 i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty, 796 c->ltab[i].tgc, c->ltab[i].cmt); 797 spin_unlock(&dbg_lock); 798 } 799 800 void ubifs_dump_sleb(const struct ubifs_info *c, 801 const struct ubifs_scan_leb *sleb, int offs) 802 { 803 struct ubifs_scan_node *snod; 804 805 pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n", 806 current->pid, sleb->lnum, offs); 807 808 list_for_each_entry(snod, &sleb->nodes, list) { 809 cond_resched(); 810 pr_err("Dumping node at LEB %d:%d len %d\n", 811 sleb->lnum, snod->offs, snod->len); 812 ubifs_dump_node(c, snod->node); 813 } 814 } 815 816 void ubifs_dump_leb(const struct ubifs_info *c, int lnum) 817 { 818 struct ubifs_scan_leb *sleb; 819 struct ubifs_scan_node *snod; 820 void *buf; 821 822 pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum); 823 824 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL); 825 if (!buf) { 826 ubifs_err("cannot allocate memory for dumping LEB %d", lnum); 827 return; 828 } 829 830 sleb = ubifs_scan(c, lnum, 0, buf, 0); 831 if (IS_ERR(sleb)) { 832 ubifs_err("scan error %d", (int)PTR_ERR(sleb)); 833 goto out; 834 } 835 836 pr_err("LEB %d has %d nodes ending at %d\n", lnum, 837 sleb->nodes_cnt, sleb->endpt); 838 839 list_for_each_entry(snod, &sleb->nodes, list) { 840 cond_resched(); 841 pr_err("Dumping node at LEB %d:%d len %d\n", lnum, 842 snod->offs, snod->len); 843 ubifs_dump_node(c, snod->node); 844 } 845 846 pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum); 847 ubifs_scan_destroy(sleb); 848 849 out: 850 vfree(buf); 851 return; 852 } 853 854 void ubifs_dump_znode(const struct ubifs_info *c, 855 const struct ubifs_znode *znode) 856 { 857 int n; 858 const struct ubifs_zbranch *zbr; 859 char key_buf[DBG_KEY_BUF_LEN]; 860 861 spin_lock(&dbg_lock); 862 if (znode->parent) 863 zbr = &znode->parent->zbranch[znode->iip]; 864 else 865 zbr = &c->zroot; 866 867 pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n", 868 znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip, 869 znode->level, znode->child_cnt, znode->flags); 870 871 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 872 spin_unlock(&dbg_lock); 873 return; 874 } 875 876 pr_err("zbranches:\n"); 877 for (n = 0; n < znode->child_cnt; n++) { 878 zbr = &znode->zbranch[n]; 879 if (znode->level > 0) 880 pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n", 881 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len, 882 dbg_snprintf_key(c, &zbr->key, key_buf, 883 DBG_KEY_BUF_LEN)); 884 else 885 pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n", 886 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len, 887 dbg_snprintf_key(c, &zbr->key, key_buf, 888 DBG_KEY_BUF_LEN)); 889 } 890 spin_unlock(&dbg_lock); 891 } 892 893 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat) 894 { 895 int i; 896 897 pr_err("(pid %d) start dumping heap cat %d (%d elements)\n", 898 current->pid, cat, heap->cnt); 899 for (i = 0; i < heap->cnt; i++) { 900 struct ubifs_lprops *lprops = heap->arr[i]; 901 902 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n", 903 i, lprops->lnum, lprops->hpos, lprops->free, 904 lprops->dirty, lprops->flags); 905 } 906 pr_err("(pid %d) finish dumping heap\n", current->pid); 907 } 908 909 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode, 910 struct ubifs_nnode *parent, int iip) 911 { 912 int i; 913 914 pr_err("(pid %d) dumping pnode:\n", current->pid); 915 pr_err("\taddress %zx parent %zx cnext %zx\n", 916 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext); 917 pr_err("\tflags %lu iip %d level %d num %d\n", 918 pnode->flags, iip, pnode->level, pnode->num); 919 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 920 struct ubifs_lprops *lp = &pnode->lprops[i]; 921 922 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n", 923 i, lp->free, lp->dirty, lp->flags, lp->lnum); 924 } 925 } 926 927 void ubifs_dump_tnc(struct ubifs_info *c) 928 { 929 struct ubifs_znode *znode; 930 int level; 931 932 pr_err("\n"); 933 pr_err("(pid %d) start dumping TNC tree\n", current->pid); 934 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL); 935 level = znode->level; 936 pr_err("== Level %d ==\n", level); 937 while (znode) { 938 if (level != znode->level) { 939 level = znode->level; 940 pr_err("== Level %d ==\n", level); 941 } 942 ubifs_dump_znode(c, znode); 943 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode); 944 } 945 pr_err("(pid %d) finish dumping TNC tree\n", current->pid); 946 } 947 948 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode, 949 void *priv) 950 { 951 ubifs_dump_znode(c, znode); 952 return 0; 953 } 954 955 /** 956 * ubifs_dump_index - dump the on-flash index. 957 * @c: UBIFS file-system description object 958 * 959 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()' 960 * which dumps only in-memory znodes and does not read znodes which from flash. 961 */ 962 void ubifs_dump_index(struct ubifs_info *c) 963 { 964 dbg_walk_index(c, NULL, dump_znode, NULL); 965 } 966 967 #ifndef __UBOOT__ 968 /** 969 * dbg_save_space_info - save information about flash space. 970 * @c: UBIFS file-system description object 971 * 972 * This function saves information about UBIFS free space, dirty space, etc, in 973 * order to check it later. 974 */ 975 void dbg_save_space_info(struct ubifs_info *c) 976 { 977 struct ubifs_debug_info *d = c->dbg; 978 int freeable_cnt; 979 980 spin_lock(&c->space_lock); 981 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats)); 982 memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info)); 983 d->saved_idx_gc_cnt = c->idx_gc_cnt; 984 985 /* 986 * We use a dirty hack here and zero out @c->freeable_cnt, because it 987 * affects the free space calculations, and UBIFS might not know about 988 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks 989 * only when we read their lprops, and we do this only lazily, upon the 990 * need. So at any given point of time @c->freeable_cnt might be not 991 * exactly accurate. 992 * 993 * Just one example about the issue we hit when we did not zero 994 * @c->freeable_cnt. 995 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the 996 * amount of free space in @d->saved_free 997 * 2. We re-mount R/W, which makes UBIFS to read the "lsave" 998 * information from flash, where we cache LEBs from various 999 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()' 1000 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()' 1001 * -> 'ubifs_get_pnode()' -> 'update_cats()' 1002 * -> 'ubifs_add_to_cat()'). 1003 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt 1004 * becomes %1. 1005 * 4. We calculate the amount of free space when the re-mount is 1006 * finished in 'dbg_check_space_info()' and it does not match 1007 * @d->saved_free. 1008 */ 1009 freeable_cnt = c->freeable_cnt; 1010 c->freeable_cnt = 0; 1011 d->saved_free = ubifs_get_free_space_nolock(c); 1012 c->freeable_cnt = freeable_cnt; 1013 spin_unlock(&c->space_lock); 1014 } 1015 1016 /** 1017 * dbg_check_space_info - check flash space information. 1018 * @c: UBIFS file-system description object 1019 * 1020 * This function compares current flash space information with the information 1021 * which was saved when the 'dbg_save_space_info()' function was called. 1022 * Returns zero if the information has not changed, and %-EINVAL it it has 1023 * changed. 1024 */ 1025 int dbg_check_space_info(struct ubifs_info *c) 1026 { 1027 struct ubifs_debug_info *d = c->dbg; 1028 struct ubifs_lp_stats lst; 1029 long long free; 1030 int freeable_cnt; 1031 1032 spin_lock(&c->space_lock); 1033 freeable_cnt = c->freeable_cnt; 1034 c->freeable_cnt = 0; 1035 free = ubifs_get_free_space_nolock(c); 1036 c->freeable_cnt = freeable_cnt; 1037 spin_unlock(&c->space_lock); 1038 1039 if (free != d->saved_free) { 1040 ubifs_err("free space changed from %lld to %lld", 1041 d->saved_free, free); 1042 goto out; 1043 } 1044 1045 return 0; 1046 1047 out: 1048 ubifs_msg("saved lprops statistics dump"); 1049 ubifs_dump_lstats(&d->saved_lst); 1050 ubifs_msg("saved budgeting info dump"); 1051 ubifs_dump_budg(c, &d->saved_bi); 1052 ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt); 1053 ubifs_msg("current lprops statistics dump"); 1054 ubifs_get_lp_stats(c, &lst); 1055 ubifs_dump_lstats(&lst); 1056 ubifs_msg("current budgeting info dump"); 1057 ubifs_dump_budg(c, &c->bi); 1058 dump_stack(); 1059 return -EINVAL; 1060 } 1061 1062 /** 1063 * dbg_check_synced_i_size - check synchronized inode size. 1064 * @c: UBIFS file-system description object 1065 * @inode: inode to check 1066 * 1067 * If inode is clean, synchronized inode size has to be equivalent to current 1068 * inode size. This function has to be called only for locked inodes (@i_mutex 1069 * has to be locked). Returns %0 if synchronized inode size if correct, and 1070 * %-EINVAL if not. 1071 */ 1072 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode) 1073 { 1074 int err = 0; 1075 struct ubifs_inode *ui = ubifs_inode(inode); 1076 1077 if (!dbg_is_chk_gen(c)) 1078 return 0; 1079 if (!S_ISREG(inode->i_mode)) 1080 return 0; 1081 1082 mutex_lock(&ui->ui_mutex); 1083 spin_lock(&ui->ui_lock); 1084 if (ui->ui_size != ui->synced_i_size && !ui->dirty) { 1085 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode is clean", 1086 ui->ui_size, ui->synced_i_size); 1087 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino, 1088 inode->i_mode, i_size_read(inode)); 1089 dump_stack(); 1090 err = -EINVAL; 1091 } 1092 spin_unlock(&ui->ui_lock); 1093 mutex_unlock(&ui->ui_mutex); 1094 return err; 1095 } 1096 1097 /* 1098 * dbg_check_dir - check directory inode size and link count. 1099 * @c: UBIFS file-system description object 1100 * @dir: the directory to calculate size for 1101 * @size: the result is returned here 1102 * 1103 * This function makes sure that directory size and link count are correct. 1104 * Returns zero in case of success and a negative error code in case of 1105 * failure. 1106 * 1107 * Note, it is good idea to make sure the @dir->i_mutex is locked before 1108 * calling this function. 1109 */ 1110 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir) 1111 { 1112 unsigned int nlink = 2; 1113 union ubifs_key key; 1114 struct ubifs_dent_node *dent, *pdent = NULL; 1115 struct qstr nm = { .name = NULL }; 1116 loff_t size = UBIFS_INO_NODE_SZ; 1117 1118 if (!dbg_is_chk_gen(c)) 1119 return 0; 1120 1121 if (!S_ISDIR(dir->i_mode)) 1122 return 0; 1123 1124 lowest_dent_key(c, &key, dir->i_ino); 1125 while (1) { 1126 int err; 1127 1128 dent = ubifs_tnc_next_ent(c, &key, &nm); 1129 if (IS_ERR(dent)) { 1130 err = PTR_ERR(dent); 1131 if (err == -ENOENT) 1132 break; 1133 return err; 1134 } 1135 1136 nm.name = dent->name; 1137 nm.len = le16_to_cpu(dent->nlen); 1138 size += CALC_DENT_SIZE(nm.len); 1139 if (dent->type == UBIFS_ITYPE_DIR) 1140 nlink += 1; 1141 kfree(pdent); 1142 pdent = dent; 1143 key_read(c, &dent->key, &key); 1144 } 1145 kfree(pdent); 1146 1147 if (i_size_read(dir) != size) { 1148 ubifs_err("directory inode %lu has size %llu, but calculated size is %llu", 1149 dir->i_ino, (unsigned long long)i_size_read(dir), 1150 (unsigned long long)size); 1151 ubifs_dump_inode(c, dir); 1152 dump_stack(); 1153 return -EINVAL; 1154 } 1155 if (dir->i_nlink != nlink) { 1156 ubifs_err("directory inode %lu has nlink %u, but calculated nlink is %u", 1157 dir->i_ino, dir->i_nlink, nlink); 1158 ubifs_dump_inode(c, dir); 1159 dump_stack(); 1160 return -EINVAL; 1161 } 1162 1163 return 0; 1164 } 1165 1166 /** 1167 * dbg_check_key_order - make sure that colliding keys are properly ordered. 1168 * @c: UBIFS file-system description object 1169 * @zbr1: first zbranch 1170 * @zbr2: following zbranch 1171 * 1172 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of 1173 * names of the direntries/xentries which are referred by the keys. This 1174 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes 1175 * sure the name of direntry/xentry referred by @zbr1 is less than 1176 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not, 1177 * and a negative error code in case of failure. 1178 */ 1179 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1, 1180 struct ubifs_zbranch *zbr2) 1181 { 1182 int err, nlen1, nlen2, cmp; 1183 struct ubifs_dent_node *dent1, *dent2; 1184 union ubifs_key key; 1185 char key_buf[DBG_KEY_BUF_LEN]; 1186 1187 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key)); 1188 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 1189 if (!dent1) 1190 return -ENOMEM; 1191 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 1192 if (!dent2) { 1193 err = -ENOMEM; 1194 goto out_free; 1195 } 1196 1197 err = ubifs_tnc_read_node(c, zbr1, dent1); 1198 if (err) 1199 goto out_free; 1200 err = ubifs_validate_entry(c, dent1); 1201 if (err) 1202 goto out_free; 1203 1204 err = ubifs_tnc_read_node(c, zbr2, dent2); 1205 if (err) 1206 goto out_free; 1207 err = ubifs_validate_entry(c, dent2); 1208 if (err) 1209 goto out_free; 1210 1211 /* Make sure node keys are the same as in zbranch */ 1212 err = 1; 1213 key_read(c, &dent1->key, &key); 1214 if (keys_cmp(c, &zbr1->key, &key)) { 1215 ubifs_err("1st entry at %d:%d has key %s", zbr1->lnum, 1216 zbr1->offs, dbg_snprintf_key(c, &key, key_buf, 1217 DBG_KEY_BUF_LEN)); 1218 ubifs_err("but it should have key %s according to tnc", 1219 dbg_snprintf_key(c, &zbr1->key, key_buf, 1220 DBG_KEY_BUF_LEN)); 1221 ubifs_dump_node(c, dent1); 1222 goto out_free; 1223 } 1224 1225 key_read(c, &dent2->key, &key); 1226 if (keys_cmp(c, &zbr2->key, &key)) { 1227 ubifs_err("2nd entry at %d:%d has key %s", zbr1->lnum, 1228 zbr1->offs, dbg_snprintf_key(c, &key, key_buf, 1229 DBG_KEY_BUF_LEN)); 1230 ubifs_err("but it should have key %s according to tnc", 1231 dbg_snprintf_key(c, &zbr2->key, key_buf, 1232 DBG_KEY_BUF_LEN)); 1233 ubifs_dump_node(c, dent2); 1234 goto out_free; 1235 } 1236 1237 nlen1 = le16_to_cpu(dent1->nlen); 1238 nlen2 = le16_to_cpu(dent2->nlen); 1239 1240 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2)); 1241 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) { 1242 err = 0; 1243 goto out_free; 1244 } 1245 if (cmp == 0 && nlen1 == nlen2) 1246 ubifs_err("2 xent/dent nodes with the same name"); 1247 else 1248 ubifs_err("bad order of colliding key %s", 1249 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 1250 1251 ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs); 1252 ubifs_dump_node(c, dent1); 1253 ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs); 1254 ubifs_dump_node(c, dent2); 1255 1256 out_free: 1257 kfree(dent2); 1258 kfree(dent1); 1259 return err; 1260 } 1261 1262 /** 1263 * dbg_check_znode - check if znode is all right. 1264 * @c: UBIFS file-system description object 1265 * @zbr: zbranch which points to this znode 1266 * 1267 * This function makes sure that znode referred to by @zbr is all right. 1268 * Returns zero if it is, and %-EINVAL if it is not. 1269 */ 1270 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr) 1271 { 1272 struct ubifs_znode *znode = zbr->znode; 1273 struct ubifs_znode *zp = znode->parent; 1274 int n, err, cmp; 1275 1276 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 1277 err = 1; 1278 goto out; 1279 } 1280 if (znode->level < 0) { 1281 err = 2; 1282 goto out; 1283 } 1284 if (znode->iip < 0 || znode->iip >= c->fanout) { 1285 err = 3; 1286 goto out; 1287 } 1288 1289 if (zbr->len == 0) 1290 /* Only dirty zbranch may have no on-flash nodes */ 1291 if (!ubifs_zn_dirty(znode)) { 1292 err = 4; 1293 goto out; 1294 } 1295 1296 if (ubifs_zn_dirty(znode)) { 1297 /* 1298 * If znode is dirty, its parent has to be dirty as well. The 1299 * order of the operation is important, so we have to have 1300 * memory barriers. 1301 */ 1302 smp_mb(); 1303 if (zp && !ubifs_zn_dirty(zp)) { 1304 /* 1305 * The dirty flag is atomic and is cleared outside the 1306 * TNC mutex, so znode's dirty flag may now have 1307 * been cleared. The child is always cleared before the 1308 * parent, so we just need to check again. 1309 */ 1310 smp_mb(); 1311 if (ubifs_zn_dirty(znode)) { 1312 err = 5; 1313 goto out; 1314 } 1315 } 1316 } 1317 1318 if (zp) { 1319 const union ubifs_key *min, *max; 1320 1321 if (znode->level != zp->level - 1) { 1322 err = 6; 1323 goto out; 1324 } 1325 1326 /* Make sure the 'parent' pointer in our znode is correct */ 1327 err = ubifs_search_zbranch(c, zp, &zbr->key, &n); 1328 if (!err) { 1329 /* This zbranch does not exist in the parent */ 1330 err = 7; 1331 goto out; 1332 } 1333 1334 if (znode->iip >= zp->child_cnt) { 1335 err = 8; 1336 goto out; 1337 } 1338 1339 if (znode->iip != n) { 1340 /* This may happen only in case of collisions */ 1341 if (keys_cmp(c, &zp->zbranch[n].key, 1342 &zp->zbranch[znode->iip].key)) { 1343 err = 9; 1344 goto out; 1345 } 1346 n = znode->iip; 1347 } 1348 1349 /* 1350 * Make sure that the first key in our znode is greater than or 1351 * equal to the key in the pointing zbranch. 1352 */ 1353 min = &zbr->key; 1354 cmp = keys_cmp(c, min, &znode->zbranch[0].key); 1355 if (cmp == 1) { 1356 err = 10; 1357 goto out; 1358 } 1359 1360 if (n + 1 < zp->child_cnt) { 1361 max = &zp->zbranch[n + 1].key; 1362 1363 /* 1364 * Make sure the last key in our znode is less or 1365 * equivalent than the key in the zbranch which goes 1366 * after our pointing zbranch. 1367 */ 1368 cmp = keys_cmp(c, max, 1369 &znode->zbranch[znode->child_cnt - 1].key); 1370 if (cmp == -1) { 1371 err = 11; 1372 goto out; 1373 } 1374 } 1375 } else { 1376 /* This may only be root znode */ 1377 if (zbr != &c->zroot) { 1378 err = 12; 1379 goto out; 1380 } 1381 } 1382 1383 /* 1384 * Make sure that next key is greater or equivalent then the previous 1385 * one. 1386 */ 1387 for (n = 1; n < znode->child_cnt; n++) { 1388 cmp = keys_cmp(c, &znode->zbranch[n - 1].key, 1389 &znode->zbranch[n].key); 1390 if (cmp > 0) { 1391 err = 13; 1392 goto out; 1393 } 1394 if (cmp == 0) { 1395 /* This can only be keys with colliding hash */ 1396 if (!is_hash_key(c, &znode->zbranch[n].key)) { 1397 err = 14; 1398 goto out; 1399 } 1400 1401 if (znode->level != 0 || c->replaying) 1402 continue; 1403 1404 /* 1405 * Colliding keys should follow binary order of 1406 * corresponding xentry/dentry names. 1407 */ 1408 err = dbg_check_key_order(c, &znode->zbranch[n - 1], 1409 &znode->zbranch[n]); 1410 if (err < 0) 1411 return err; 1412 if (err) { 1413 err = 15; 1414 goto out; 1415 } 1416 } 1417 } 1418 1419 for (n = 0; n < znode->child_cnt; n++) { 1420 if (!znode->zbranch[n].znode && 1421 (znode->zbranch[n].lnum == 0 || 1422 znode->zbranch[n].len == 0)) { 1423 err = 16; 1424 goto out; 1425 } 1426 1427 if (znode->zbranch[n].lnum != 0 && 1428 znode->zbranch[n].len == 0) { 1429 err = 17; 1430 goto out; 1431 } 1432 1433 if (znode->zbranch[n].lnum == 0 && 1434 znode->zbranch[n].len != 0) { 1435 err = 18; 1436 goto out; 1437 } 1438 1439 if (znode->zbranch[n].lnum == 0 && 1440 znode->zbranch[n].offs != 0) { 1441 err = 19; 1442 goto out; 1443 } 1444 1445 if (znode->level != 0 && znode->zbranch[n].znode) 1446 if (znode->zbranch[n].znode->parent != znode) { 1447 err = 20; 1448 goto out; 1449 } 1450 } 1451 1452 return 0; 1453 1454 out: 1455 ubifs_err("failed, error %d", err); 1456 ubifs_msg("dump of the znode"); 1457 ubifs_dump_znode(c, znode); 1458 if (zp) { 1459 ubifs_msg("dump of the parent znode"); 1460 ubifs_dump_znode(c, zp); 1461 } 1462 dump_stack(); 1463 return -EINVAL; 1464 } 1465 #else 1466 1467 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir) 1468 { 1469 return 0; 1470 } 1471 1472 void dbg_debugfs_exit_fs(struct ubifs_info *c) 1473 { 1474 return; 1475 } 1476 1477 int ubifs_debugging_init(struct ubifs_info *c) 1478 { 1479 return 0; 1480 } 1481 void ubifs_debugging_exit(struct ubifs_info *c) 1482 { 1483 } 1484 int dbg_check_filesystem(struct ubifs_info *c) 1485 { 1486 return 0; 1487 } 1488 int dbg_debugfs_init_fs(struct ubifs_info *c) 1489 { 1490 return 0; 1491 } 1492 #endif 1493 1494 #ifndef __UBOOT__ 1495 /** 1496 * dbg_check_tnc - check TNC tree. 1497 * @c: UBIFS file-system description object 1498 * @extra: do extra checks that are possible at start commit 1499 * 1500 * This function traverses whole TNC tree and checks every znode. Returns zero 1501 * if everything is all right and %-EINVAL if something is wrong with TNC. 1502 */ 1503 int dbg_check_tnc(struct ubifs_info *c, int extra) 1504 { 1505 struct ubifs_znode *znode; 1506 long clean_cnt = 0, dirty_cnt = 0; 1507 int err, last; 1508 1509 if (!dbg_is_chk_index(c)) 1510 return 0; 1511 1512 ubifs_assert(mutex_is_locked(&c->tnc_mutex)); 1513 if (!c->zroot.znode) 1514 return 0; 1515 1516 znode = ubifs_tnc_postorder_first(c->zroot.znode); 1517 while (1) { 1518 struct ubifs_znode *prev; 1519 struct ubifs_zbranch *zbr; 1520 1521 if (!znode->parent) 1522 zbr = &c->zroot; 1523 else 1524 zbr = &znode->parent->zbranch[znode->iip]; 1525 1526 err = dbg_check_znode(c, zbr); 1527 if (err) 1528 return err; 1529 1530 if (extra) { 1531 if (ubifs_zn_dirty(znode)) 1532 dirty_cnt += 1; 1533 else 1534 clean_cnt += 1; 1535 } 1536 1537 prev = znode; 1538 znode = ubifs_tnc_postorder_next(znode); 1539 if (!znode) 1540 break; 1541 1542 /* 1543 * If the last key of this znode is equivalent to the first key 1544 * of the next znode (collision), then check order of the keys. 1545 */ 1546 last = prev->child_cnt - 1; 1547 if (prev->level == 0 && znode->level == 0 && !c->replaying && 1548 !keys_cmp(c, &prev->zbranch[last].key, 1549 &znode->zbranch[0].key)) { 1550 err = dbg_check_key_order(c, &prev->zbranch[last], 1551 &znode->zbranch[0]); 1552 if (err < 0) 1553 return err; 1554 if (err) { 1555 ubifs_msg("first znode"); 1556 ubifs_dump_znode(c, prev); 1557 ubifs_msg("second znode"); 1558 ubifs_dump_znode(c, znode); 1559 return -EINVAL; 1560 } 1561 } 1562 } 1563 1564 if (extra) { 1565 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) { 1566 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld", 1567 atomic_long_read(&c->clean_zn_cnt), 1568 clean_cnt); 1569 return -EINVAL; 1570 } 1571 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) { 1572 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld", 1573 atomic_long_read(&c->dirty_zn_cnt), 1574 dirty_cnt); 1575 return -EINVAL; 1576 } 1577 } 1578 1579 return 0; 1580 } 1581 #else 1582 int dbg_check_tnc(struct ubifs_info *c, int extra) 1583 { 1584 return 0; 1585 } 1586 #endif 1587 1588 /** 1589 * dbg_walk_index - walk the on-flash index. 1590 * @c: UBIFS file-system description object 1591 * @leaf_cb: called for each leaf node 1592 * @znode_cb: called for each indexing node 1593 * @priv: private data which is passed to callbacks 1594 * 1595 * This function walks the UBIFS index and calls the @leaf_cb for each leaf 1596 * node and @znode_cb for each indexing node. Returns zero in case of success 1597 * and a negative error code in case of failure. 1598 * 1599 * It would be better if this function removed every znode it pulled to into 1600 * the TNC, so that the behavior more closely matched the non-debugging 1601 * behavior. 1602 */ 1603 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb, 1604 dbg_znode_callback znode_cb, void *priv) 1605 { 1606 int err; 1607 struct ubifs_zbranch *zbr; 1608 struct ubifs_znode *znode, *child; 1609 1610 mutex_lock(&c->tnc_mutex); 1611 /* If the root indexing node is not in TNC - pull it */ 1612 if (!c->zroot.znode) { 1613 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1614 if (IS_ERR(c->zroot.znode)) { 1615 err = PTR_ERR(c->zroot.znode); 1616 c->zroot.znode = NULL; 1617 goto out_unlock; 1618 } 1619 } 1620 1621 /* 1622 * We are going to traverse the indexing tree in the postorder manner. 1623 * Go down and find the leftmost indexing node where we are going to 1624 * start from. 1625 */ 1626 znode = c->zroot.znode; 1627 while (znode->level > 0) { 1628 zbr = &znode->zbranch[0]; 1629 child = zbr->znode; 1630 if (!child) { 1631 child = ubifs_load_znode(c, zbr, znode, 0); 1632 if (IS_ERR(child)) { 1633 err = PTR_ERR(child); 1634 goto out_unlock; 1635 } 1636 zbr->znode = child; 1637 } 1638 1639 znode = child; 1640 } 1641 1642 /* Iterate over all indexing nodes */ 1643 while (1) { 1644 int idx; 1645 1646 cond_resched(); 1647 1648 if (znode_cb) { 1649 err = znode_cb(c, znode, priv); 1650 if (err) { 1651 ubifs_err("znode checking function returned error %d", 1652 err); 1653 ubifs_dump_znode(c, znode); 1654 goto out_dump; 1655 } 1656 } 1657 if (leaf_cb && znode->level == 0) { 1658 for (idx = 0; idx < znode->child_cnt; idx++) { 1659 zbr = &znode->zbranch[idx]; 1660 err = leaf_cb(c, zbr, priv); 1661 if (err) { 1662 ubifs_err("leaf checking function returned error %d, for leaf at LEB %d:%d", 1663 err, zbr->lnum, zbr->offs); 1664 goto out_dump; 1665 } 1666 } 1667 } 1668 1669 if (!znode->parent) 1670 break; 1671 1672 idx = znode->iip + 1; 1673 znode = znode->parent; 1674 if (idx < znode->child_cnt) { 1675 /* Switch to the next index in the parent */ 1676 zbr = &znode->zbranch[idx]; 1677 child = zbr->znode; 1678 if (!child) { 1679 child = ubifs_load_znode(c, zbr, znode, idx); 1680 if (IS_ERR(child)) { 1681 err = PTR_ERR(child); 1682 goto out_unlock; 1683 } 1684 zbr->znode = child; 1685 } 1686 znode = child; 1687 } else 1688 /* 1689 * This is the last child, switch to the parent and 1690 * continue. 1691 */ 1692 continue; 1693 1694 /* Go to the lowest leftmost znode in the new sub-tree */ 1695 while (znode->level > 0) { 1696 zbr = &znode->zbranch[0]; 1697 child = zbr->znode; 1698 if (!child) { 1699 child = ubifs_load_znode(c, zbr, znode, 0); 1700 if (IS_ERR(child)) { 1701 err = PTR_ERR(child); 1702 goto out_unlock; 1703 } 1704 zbr->znode = child; 1705 } 1706 znode = child; 1707 } 1708 } 1709 1710 mutex_unlock(&c->tnc_mutex); 1711 return 0; 1712 1713 out_dump: 1714 if (znode->parent) 1715 zbr = &znode->parent->zbranch[znode->iip]; 1716 else 1717 zbr = &c->zroot; 1718 ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs); 1719 ubifs_dump_znode(c, znode); 1720 out_unlock: 1721 mutex_unlock(&c->tnc_mutex); 1722 return err; 1723 } 1724 1725 /** 1726 * add_size - add znode size to partially calculated index size. 1727 * @c: UBIFS file-system description object 1728 * @znode: znode to add size for 1729 * @priv: partially calculated index size 1730 * 1731 * This is a helper function for 'dbg_check_idx_size()' which is called for 1732 * every indexing node and adds its size to the 'long long' variable pointed to 1733 * by @priv. 1734 */ 1735 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv) 1736 { 1737 long long *idx_size = priv; 1738 int add; 1739 1740 add = ubifs_idx_node_sz(c, znode->child_cnt); 1741 add = ALIGN(add, 8); 1742 *idx_size += add; 1743 return 0; 1744 } 1745 1746 /** 1747 * dbg_check_idx_size - check index size. 1748 * @c: UBIFS file-system description object 1749 * @idx_size: size to check 1750 * 1751 * This function walks the UBIFS index, calculates its size and checks that the 1752 * size is equivalent to @idx_size. Returns zero in case of success and a 1753 * negative error code in case of failure. 1754 */ 1755 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size) 1756 { 1757 int err; 1758 long long calc = 0; 1759 1760 if (!dbg_is_chk_index(c)) 1761 return 0; 1762 1763 err = dbg_walk_index(c, NULL, add_size, &calc); 1764 if (err) { 1765 ubifs_err("error %d while walking the index", err); 1766 return err; 1767 } 1768 1769 if (calc != idx_size) { 1770 ubifs_err("index size check failed: calculated size is %lld, should be %lld", 1771 calc, idx_size); 1772 dump_stack(); 1773 return -EINVAL; 1774 } 1775 1776 return 0; 1777 } 1778 1779 #ifndef __UBOOT__ 1780 /** 1781 * struct fsck_inode - information about an inode used when checking the file-system. 1782 * @rb: link in the RB-tree of inodes 1783 * @inum: inode number 1784 * @mode: inode type, permissions, etc 1785 * @nlink: inode link count 1786 * @xattr_cnt: count of extended attributes 1787 * @references: how many directory/xattr entries refer this inode (calculated 1788 * while walking the index) 1789 * @calc_cnt: for directory inode count of child directories 1790 * @size: inode size (read from on-flash inode) 1791 * @xattr_sz: summary size of all extended attributes (read from on-flash 1792 * inode) 1793 * @calc_sz: for directories calculated directory size 1794 * @calc_xcnt: count of extended attributes 1795 * @calc_xsz: calculated summary size of all extended attributes 1796 * @xattr_nms: sum of lengths of all extended attribute names belonging to this 1797 * inode (read from on-flash inode) 1798 * @calc_xnms: calculated sum of lengths of all extended attribute names 1799 */ 1800 struct fsck_inode { 1801 struct rb_node rb; 1802 ino_t inum; 1803 umode_t mode; 1804 unsigned int nlink; 1805 unsigned int xattr_cnt; 1806 int references; 1807 int calc_cnt; 1808 long long size; 1809 unsigned int xattr_sz; 1810 long long calc_sz; 1811 long long calc_xcnt; 1812 long long calc_xsz; 1813 unsigned int xattr_nms; 1814 long long calc_xnms; 1815 }; 1816 1817 /** 1818 * struct fsck_data - private FS checking information. 1819 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects) 1820 */ 1821 struct fsck_data { 1822 struct rb_root inodes; 1823 }; 1824 1825 /** 1826 * add_inode - add inode information to RB-tree of inodes. 1827 * @c: UBIFS file-system description object 1828 * @fsckd: FS checking information 1829 * @ino: raw UBIFS inode to add 1830 * 1831 * This is a helper function for 'check_leaf()' which adds information about 1832 * inode @ino to the RB-tree of inodes. Returns inode information pointer in 1833 * case of success and a negative error code in case of failure. 1834 */ 1835 static struct fsck_inode *add_inode(struct ubifs_info *c, 1836 struct fsck_data *fsckd, 1837 struct ubifs_ino_node *ino) 1838 { 1839 struct rb_node **p, *parent = NULL; 1840 struct fsck_inode *fscki; 1841 ino_t inum = key_inum_flash(c, &ino->key); 1842 struct inode *inode; 1843 struct ubifs_inode *ui; 1844 1845 p = &fsckd->inodes.rb_node; 1846 while (*p) { 1847 parent = *p; 1848 fscki = rb_entry(parent, struct fsck_inode, rb); 1849 if (inum < fscki->inum) 1850 p = &(*p)->rb_left; 1851 else if (inum > fscki->inum) 1852 p = &(*p)->rb_right; 1853 else 1854 return fscki; 1855 } 1856 1857 if (inum > c->highest_inum) { 1858 ubifs_err("too high inode number, max. is %lu", 1859 (unsigned long)c->highest_inum); 1860 return ERR_PTR(-EINVAL); 1861 } 1862 1863 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS); 1864 if (!fscki) 1865 return ERR_PTR(-ENOMEM); 1866 1867 inode = ilookup(c->vfs_sb, inum); 1868 1869 fscki->inum = inum; 1870 /* 1871 * If the inode is present in the VFS inode cache, use it instead of 1872 * the on-flash inode which might be out-of-date. E.g., the size might 1873 * be out-of-date. If we do not do this, the following may happen, for 1874 * example: 1875 * 1. A power cut happens 1876 * 2. We mount the file-system R/O, the replay process fixes up the 1877 * inode size in the VFS cache, but on on-flash. 1878 * 3. 'check_leaf()' fails because it hits a data node beyond inode 1879 * size. 1880 */ 1881 if (!inode) { 1882 fscki->nlink = le32_to_cpu(ino->nlink); 1883 fscki->size = le64_to_cpu(ino->size); 1884 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 1885 fscki->xattr_sz = le32_to_cpu(ino->xattr_size); 1886 fscki->xattr_nms = le32_to_cpu(ino->xattr_names); 1887 fscki->mode = le32_to_cpu(ino->mode); 1888 } else { 1889 ui = ubifs_inode(inode); 1890 fscki->nlink = inode->i_nlink; 1891 fscki->size = inode->i_size; 1892 fscki->xattr_cnt = ui->xattr_cnt; 1893 fscki->xattr_sz = ui->xattr_size; 1894 fscki->xattr_nms = ui->xattr_names; 1895 fscki->mode = inode->i_mode; 1896 iput(inode); 1897 } 1898 1899 if (S_ISDIR(fscki->mode)) { 1900 fscki->calc_sz = UBIFS_INO_NODE_SZ; 1901 fscki->calc_cnt = 2; 1902 } 1903 1904 rb_link_node(&fscki->rb, parent, p); 1905 rb_insert_color(&fscki->rb, &fsckd->inodes); 1906 1907 return fscki; 1908 } 1909 1910 /** 1911 * search_inode - search inode in the RB-tree of inodes. 1912 * @fsckd: FS checking information 1913 * @inum: inode number to search 1914 * 1915 * This is a helper function for 'check_leaf()' which searches inode @inum in 1916 * the RB-tree of inodes and returns an inode information pointer or %NULL if 1917 * the inode was not found. 1918 */ 1919 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum) 1920 { 1921 struct rb_node *p; 1922 struct fsck_inode *fscki; 1923 1924 p = fsckd->inodes.rb_node; 1925 while (p) { 1926 fscki = rb_entry(p, struct fsck_inode, rb); 1927 if (inum < fscki->inum) 1928 p = p->rb_left; 1929 else if (inum > fscki->inum) 1930 p = p->rb_right; 1931 else 1932 return fscki; 1933 } 1934 return NULL; 1935 } 1936 1937 /** 1938 * read_add_inode - read inode node and add it to RB-tree of inodes. 1939 * @c: UBIFS file-system description object 1940 * @fsckd: FS checking information 1941 * @inum: inode number to read 1942 * 1943 * This is a helper function for 'check_leaf()' which finds inode node @inum in 1944 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode 1945 * information pointer in case of success and a negative error code in case of 1946 * failure. 1947 */ 1948 static struct fsck_inode *read_add_inode(struct ubifs_info *c, 1949 struct fsck_data *fsckd, ino_t inum) 1950 { 1951 int n, err; 1952 union ubifs_key key; 1953 struct ubifs_znode *znode; 1954 struct ubifs_zbranch *zbr; 1955 struct ubifs_ino_node *ino; 1956 struct fsck_inode *fscki; 1957 1958 fscki = search_inode(fsckd, inum); 1959 if (fscki) 1960 return fscki; 1961 1962 ino_key_init(c, &key, inum); 1963 err = ubifs_lookup_level0(c, &key, &znode, &n); 1964 if (!err) { 1965 ubifs_err("inode %lu not found in index", (unsigned long)inum); 1966 return ERR_PTR(-ENOENT); 1967 } else if (err < 0) { 1968 ubifs_err("error %d while looking up inode %lu", 1969 err, (unsigned long)inum); 1970 return ERR_PTR(err); 1971 } 1972 1973 zbr = &znode->zbranch[n]; 1974 if (zbr->len < UBIFS_INO_NODE_SZ) { 1975 ubifs_err("bad node %lu node length %d", 1976 (unsigned long)inum, zbr->len); 1977 return ERR_PTR(-EINVAL); 1978 } 1979 1980 ino = kmalloc(zbr->len, GFP_NOFS); 1981 if (!ino) 1982 return ERR_PTR(-ENOMEM); 1983 1984 err = ubifs_tnc_read_node(c, zbr, ino); 1985 if (err) { 1986 ubifs_err("cannot read inode node at LEB %d:%d, error %d", 1987 zbr->lnum, zbr->offs, err); 1988 kfree(ino); 1989 return ERR_PTR(err); 1990 } 1991 1992 fscki = add_inode(c, fsckd, ino); 1993 kfree(ino); 1994 if (IS_ERR(fscki)) { 1995 ubifs_err("error %ld while adding inode %lu node", 1996 PTR_ERR(fscki), (unsigned long)inum); 1997 return fscki; 1998 } 1999 2000 return fscki; 2001 } 2002 2003 /** 2004 * check_leaf - check leaf node. 2005 * @c: UBIFS file-system description object 2006 * @zbr: zbranch of the leaf node to check 2007 * @priv: FS checking information 2008 * 2009 * This is a helper function for 'dbg_check_filesystem()' which is called for 2010 * every single leaf node while walking the indexing tree. It checks that the 2011 * leaf node referred from the indexing tree exists, has correct CRC, and does 2012 * some other basic validation. This function is also responsible for building 2013 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also 2014 * calculates reference count, size, etc for each inode in order to later 2015 * compare them to the information stored inside the inodes and detect possible 2016 * inconsistencies. Returns zero in case of success and a negative error code 2017 * in case of failure. 2018 */ 2019 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr, 2020 void *priv) 2021 { 2022 ino_t inum; 2023 void *node; 2024 struct ubifs_ch *ch; 2025 int err, type = key_type(c, &zbr->key); 2026 struct fsck_inode *fscki; 2027 2028 if (zbr->len < UBIFS_CH_SZ) { 2029 ubifs_err("bad leaf length %d (LEB %d:%d)", 2030 zbr->len, zbr->lnum, zbr->offs); 2031 return -EINVAL; 2032 } 2033 2034 node = kmalloc(zbr->len, GFP_NOFS); 2035 if (!node) 2036 return -ENOMEM; 2037 2038 err = ubifs_tnc_read_node(c, zbr, node); 2039 if (err) { 2040 ubifs_err("cannot read leaf node at LEB %d:%d, error %d", 2041 zbr->lnum, zbr->offs, err); 2042 goto out_free; 2043 } 2044 2045 /* If this is an inode node, add it to RB-tree of inodes */ 2046 if (type == UBIFS_INO_KEY) { 2047 fscki = add_inode(c, priv, node); 2048 if (IS_ERR(fscki)) { 2049 err = PTR_ERR(fscki); 2050 ubifs_err("error %d while adding inode node", err); 2051 goto out_dump; 2052 } 2053 goto out; 2054 } 2055 2056 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY && 2057 type != UBIFS_DATA_KEY) { 2058 ubifs_err("unexpected node type %d at LEB %d:%d", 2059 type, zbr->lnum, zbr->offs); 2060 err = -EINVAL; 2061 goto out_free; 2062 } 2063 2064 ch = node; 2065 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) { 2066 ubifs_err("too high sequence number, max. is %llu", 2067 c->max_sqnum); 2068 err = -EINVAL; 2069 goto out_dump; 2070 } 2071 2072 if (type == UBIFS_DATA_KEY) { 2073 long long blk_offs; 2074 struct ubifs_data_node *dn = node; 2075 2076 /* 2077 * Search the inode node this data node belongs to and insert 2078 * it to the RB-tree of inodes. 2079 */ 2080 inum = key_inum_flash(c, &dn->key); 2081 fscki = read_add_inode(c, priv, inum); 2082 if (IS_ERR(fscki)) { 2083 err = PTR_ERR(fscki); 2084 ubifs_err("error %d while processing data node and trying to find inode node %lu", 2085 err, (unsigned long)inum); 2086 goto out_dump; 2087 } 2088 2089 /* Make sure the data node is within inode size */ 2090 blk_offs = key_block_flash(c, &dn->key); 2091 blk_offs <<= UBIFS_BLOCK_SHIFT; 2092 blk_offs += le32_to_cpu(dn->size); 2093 if (blk_offs > fscki->size) { 2094 ubifs_err("data node at LEB %d:%d is not within inode size %lld", 2095 zbr->lnum, zbr->offs, fscki->size); 2096 err = -EINVAL; 2097 goto out_dump; 2098 } 2099 } else { 2100 int nlen; 2101 struct ubifs_dent_node *dent = node; 2102 struct fsck_inode *fscki1; 2103 2104 err = ubifs_validate_entry(c, dent); 2105 if (err) 2106 goto out_dump; 2107 2108 /* 2109 * Search the inode node this entry refers to and the parent 2110 * inode node and insert them to the RB-tree of inodes. 2111 */ 2112 inum = le64_to_cpu(dent->inum); 2113 fscki = read_add_inode(c, priv, inum); 2114 if (IS_ERR(fscki)) { 2115 err = PTR_ERR(fscki); 2116 ubifs_err("error %d while processing entry node and trying to find inode node %lu", 2117 err, (unsigned long)inum); 2118 goto out_dump; 2119 } 2120 2121 /* Count how many direntries or xentries refers this inode */ 2122 fscki->references += 1; 2123 2124 inum = key_inum_flash(c, &dent->key); 2125 fscki1 = read_add_inode(c, priv, inum); 2126 if (IS_ERR(fscki1)) { 2127 err = PTR_ERR(fscki1); 2128 ubifs_err("error %d while processing entry node and trying to find parent inode node %lu", 2129 err, (unsigned long)inum); 2130 goto out_dump; 2131 } 2132 2133 nlen = le16_to_cpu(dent->nlen); 2134 if (type == UBIFS_XENT_KEY) { 2135 fscki1->calc_xcnt += 1; 2136 fscki1->calc_xsz += CALC_DENT_SIZE(nlen); 2137 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size); 2138 fscki1->calc_xnms += nlen; 2139 } else { 2140 fscki1->calc_sz += CALC_DENT_SIZE(nlen); 2141 if (dent->type == UBIFS_ITYPE_DIR) 2142 fscki1->calc_cnt += 1; 2143 } 2144 } 2145 2146 out: 2147 kfree(node); 2148 return 0; 2149 2150 out_dump: 2151 ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs); 2152 ubifs_dump_node(c, node); 2153 out_free: 2154 kfree(node); 2155 return err; 2156 } 2157 2158 /** 2159 * free_inodes - free RB-tree of inodes. 2160 * @fsckd: FS checking information 2161 */ 2162 static void free_inodes(struct fsck_data *fsckd) 2163 { 2164 struct fsck_inode *fscki, *n; 2165 2166 rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb) 2167 kfree(fscki); 2168 } 2169 2170 /** 2171 * check_inodes - checks all inodes. 2172 * @c: UBIFS file-system description object 2173 * @fsckd: FS checking information 2174 * 2175 * This is a helper function for 'dbg_check_filesystem()' which walks the 2176 * RB-tree of inodes after the index scan has been finished, and checks that 2177 * inode nlink, size, etc are correct. Returns zero if inodes are fine, 2178 * %-EINVAL if not, and a negative error code in case of failure. 2179 */ 2180 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd) 2181 { 2182 int n, err; 2183 union ubifs_key key; 2184 struct ubifs_znode *znode; 2185 struct ubifs_zbranch *zbr; 2186 struct ubifs_ino_node *ino; 2187 struct fsck_inode *fscki; 2188 struct rb_node *this = rb_first(&fsckd->inodes); 2189 2190 while (this) { 2191 fscki = rb_entry(this, struct fsck_inode, rb); 2192 this = rb_next(this); 2193 2194 if (S_ISDIR(fscki->mode)) { 2195 /* 2196 * Directories have to have exactly one reference (they 2197 * cannot have hardlinks), although root inode is an 2198 * exception. 2199 */ 2200 if (fscki->inum != UBIFS_ROOT_INO && 2201 fscki->references != 1) { 2202 ubifs_err("directory inode %lu has %d direntries which refer it, but should be 1", 2203 (unsigned long)fscki->inum, 2204 fscki->references); 2205 goto out_dump; 2206 } 2207 if (fscki->inum == UBIFS_ROOT_INO && 2208 fscki->references != 0) { 2209 ubifs_err("root inode %lu has non-zero (%d) direntries which refer it", 2210 (unsigned long)fscki->inum, 2211 fscki->references); 2212 goto out_dump; 2213 } 2214 if (fscki->calc_sz != fscki->size) { 2215 ubifs_err("directory inode %lu size is %lld, but calculated size is %lld", 2216 (unsigned long)fscki->inum, 2217 fscki->size, fscki->calc_sz); 2218 goto out_dump; 2219 } 2220 if (fscki->calc_cnt != fscki->nlink) { 2221 ubifs_err("directory inode %lu nlink is %d, but calculated nlink is %d", 2222 (unsigned long)fscki->inum, 2223 fscki->nlink, fscki->calc_cnt); 2224 goto out_dump; 2225 } 2226 } else { 2227 if (fscki->references != fscki->nlink) { 2228 ubifs_err("inode %lu nlink is %d, but calculated nlink is %d", 2229 (unsigned long)fscki->inum, 2230 fscki->nlink, fscki->references); 2231 goto out_dump; 2232 } 2233 } 2234 if (fscki->xattr_sz != fscki->calc_xsz) { 2235 ubifs_err("inode %lu has xattr size %u, but calculated size is %lld", 2236 (unsigned long)fscki->inum, fscki->xattr_sz, 2237 fscki->calc_xsz); 2238 goto out_dump; 2239 } 2240 if (fscki->xattr_cnt != fscki->calc_xcnt) { 2241 ubifs_err("inode %lu has %u xattrs, but calculated count is %lld", 2242 (unsigned long)fscki->inum, 2243 fscki->xattr_cnt, fscki->calc_xcnt); 2244 goto out_dump; 2245 } 2246 if (fscki->xattr_nms != fscki->calc_xnms) { 2247 ubifs_err("inode %lu has xattr names' size %u, but calculated names' size is %lld", 2248 (unsigned long)fscki->inum, fscki->xattr_nms, 2249 fscki->calc_xnms); 2250 goto out_dump; 2251 } 2252 } 2253 2254 return 0; 2255 2256 out_dump: 2257 /* Read the bad inode and dump it */ 2258 ino_key_init(c, &key, fscki->inum); 2259 err = ubifs_lookup_level0(c, &key, &znode, &n); 2260 if (!err) { 2261 ubifs_err("inode %lu not found in index", 2262 (unsigned long)fscki->inum); 2263 return -ENOENT; 2264 } else if (err < 0) { 2265 ubifs_err("error %d while looking up inode %lu", 2266 err, (unsigned long)fscki->inum); 2267 return err; 2268 } 2269 2270 zbr = &znode->zbranch[n]; 2271 ino = kmalloc(zbr->len, GFP_NOFS); 2272 if (!ino) 2273 return -ENOMEM; 2274 2275 err = ubifs_tnc_read_node(c, zbr, ino); 2276 if (err) { 2277 ubifs_err("cannot read inode node at LEB %d:%d, error %d", 2278 zbr->lnum, zbr->offs, err); 2279 kfree(ino); 2280 return err; 2281 } 2282 2283 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d", 2284 (unsigned long)fscki->inum, zbr->lnum, zbr->offs); 2285 ubifs_dump_node(c, ino); 2286 kfree(ino); 2287 return -EINVAL; 2288 } 2289 2290 /** 2291 * dbg_check_filesystem - check the file-system. 2292 * @c: UBIFS file-system description object 2293 * 2294 * This function checks the file system, namely: 2295 * o makes sure that all leaf nodes exist and their CRCs are correct; 2296 * o makes sure inode nlink, size, xattr size/count are correct (for all 2297 * inodes). 2298 * 2299 * The function reads whole indexing tree and all nodes, so it is pretty 2300 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if 2301 * not, and a negative error code in case of failure. 2302 */ 2303 int dbg_check_filesystem(struct ubifs_info *c) 2304 { 2305 int err; 2306 struct fsck_data fsckd; 2307 2308 if (!dbg_is_chk_fs(c)) 2309 return 0; 2310 2311 fsckd.inodes = RB_ROOT; 2312 err = dbg_walk_index(c, check_leaf, NULL, &fsckd); 2313 if (err) 2314 goto out_free; 2315 2316 err = check_inodes(c, &fsckd); 2317 if (err) 2318 goto out_free; 2319 2320 free_inodes(&fsckd); 2321 return 0; 2322 2323 out_free: 2324 ubifs_err("file-system check failed with error %d", err); 2325 dump_stack(); 2326 free_inodes(&fsckd); 2327 return err; 2328 } 2329 2330 /** 2331 * dbg_check_data_nodes_order - check that list of data nodes is sorted. 2332 * @c: UBIFS file-system description object 2333 * @head: the list of nodes ('struct ubifs_scan_node' objects) 2334 * 2335 * This function returns zero if the list of data nodes is sorted correctly, 2336 * and %-EINVAL if not. 2337 */ 2338 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head) 2339 { 2340 struct list_head *cur; 2341 struct ubifs_scan_node *sa, *sb; 2342 2343 if (!dbg_is_chk_gen(c)) 2344 return 0; 2345 2346 for (cur = head->next; cur->next != head; cur = cur->next) { 2347 ino_t inuma, inumb; 2348 uint32_t blka, blkb; 2349 2350 cond_resched(); 2351 sa = container_of(cur, struct ubifs_scan_node, list); 2352 sb = container_of(cur->next, struct ubifs_scan_node, list); 2353 2354 if (sa->type != UBIFS_DATA_NODE) { 2355 ubifs_err("bad node type %d", sa->type); 2356 ubifs_dump_node(c, sa->node); 2357 return -EINVAL; 2358 } 2359 if (sb->type != UBIFS_DATA_NODE) { 2360 ubifs_err("bad node type %d", sb->type); 2361 ubifs_dump_node(c, sb->node); 2362 return -EINVAL; 2363 } 2364 2365 inuma = key_inum(c, &sa->key); 2366 inumb = key_inum(c, &sb->key); 2367 2368 if (inuma < inumb) 2369 continue; 2370 if (inuma > inumb) { 2371 ubifs_err("larger inum %lu goes before inum %lu", 2372 (unsigned long)inuma, (unsigned long)inumb); 2373 goto error_dump; 2374 } 2375 2376 blka = key_block(c, &sa->key); 2377 blkb = key_block(c, &sb->key); 2378 2379 if (blka > blkb) { 2380 ubifs_err("larger block %u goes before %u", blka, blkb); 2381 goto error_dump; 2382 } 2383 if (blka == blkb) { 2384 ubifs_err("two data nodes for the same block"); 2385 goto error_dump; 2386 } 2387 } 2388 2389 return 0; 2390 2391 error_dump: 2392 ubifs_dump_node(c, sa->node); 2393 ubifs_dump_node(c, sb->node); 2394 return -EINVAL; 2395 } 2396 2397 /** 2398 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted. 2399 * @c: UBIFS file-system description object 2400 * @head: the list of nodes ('struct ubifs_scan_node' objects) 2401 * 2402 * This function returns zero if the list of non-data nodes is sorted correctly, 2403 * and %-EINVAL if not. 2404 */ 2405 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head) 2406 { 2407 struct list_head *cur; 2408 struct ubifs_scan_node *sa, *sb; 2409 2410 if (!dbg_is_chk_gen(c)) 2411 return 0; 2412 2413 for (cur = head->next; cur->next != head; cur = cur->next) { 2414 ino_t inuma, inumb; 2415 uint32_t hasha, hashb; 2416 2417 cond_resched(); 2418 sa = container_of(cur, struct ubifs_scan_node, list); 2419 sb = container_of(cur->next, struct ubifs_scan_node, list); 2420 2421 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE && 2422 sa->type != UBIFS_XENT_NODE) { 2423 ubifs_err("bad node type %d", sa->type); 2424 ubifs_dump_node(c, sa->node); 2425 return -EINVAL; 2426 } 2427 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE && 2428 sa->type != UBIFS_XENT_NODE) { 2429 ubifs_err("bad node type %d", sb->type); 2430 ubifs_dump_node(c, sb->node); 2431 return -EINVAL; 2432 } 2433 2434 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { 2435 ubifs_err("non-inode node goes before inode node"); 2436 goto error_dump; 2437 } 2438 2439 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE) 2440 continue; 2441 2442 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { 2443 /* Inode nodes are sorted in descending size order */ 2444 if (sa->len < sb->len) { 2445 ubifs_err("smaller inode node goes first"); 2446 goto error_dump; 2447 } 2448 continue; 2449 } 2450 2451 /* 2452 * This is either a dentry or xentry, which should be sorted in 2453 * ascending (parent ino, hash) order. 2454 */ 2455 inuma = key_inum(c, &sa->key); 2456 inumb = key_inum(c, &sb->key); 2457 2458 if (inuma < inumb) 2459 continue; 2460 if (inuma > inumb) { 2461 ubifs_err("larger inum %lu goes before inum %lu", 2462 (unsigned long)inuma, (unsigned long)inumb); 2463 goto error_dump; 2464 } 2465 2466 hasha = key_block(c, &sa->key); 2467 hashb = key_block(c, &sb->key); 2468 2469 if (hasha > hashb) { 2470 ubifs_err("larger hash %u goes before %u", 2471 hasha, hashb); 2472 goto error_dump; 2473 } 2474 } 2475 2476 return 0; 2477 2478 error_dump: 2479 ubifs_msg("dumping first node"); 2480 ubifs_dump_node(c, sa->node); 2481 ubifs_msg("dumping second node"); 2482 ubifs_dump_node(c, sb->node); 2483 return -EINVAL; 2484 return 0; 2485 } 2486 2487 static inline int chance(unsigned int n, unsigned int out_of) 2488 { 2489 return !!((prandom_u32() % out_of) + 1 <= n); 2490 2491 } 2492 2493 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write) 2494 { 2495 struct ubifs_debug_info *d = c->dbg; 2496 2497 ubifs_assert(dbg_is_tst_rcvry(c)); 2498 2499 if (!d->pc_cnt) { 2500 /* First call - decide delay to the power cut */ 2501 if (chance(1, 2)) { 2502 unsigned long delay; 2503 2504 if (chance(1, 2)) { 2505 d->pc_delay = 1; 2506 /* Fail withing 1 minute */ 2507 delay = prandom_u32() % 60000; 2508 d->pc_timeout = jiffies; 2509 d->pc_timeout += msecs_to_jiffies(delay); 2510 ubifs_warn("failing after %lums", delay); 2511 } else { 2512 d->pc_delay = 2; 2513 delay = prandom_u32() % 10000; 2514 /* Fail within 10000 operations */ 2515 d->pc_cnt_max = delay; 2516 ubifs_warn("failing after %lu calls", delay); 2517 } 2518 } 2519 2520 d->pc_cnt += 1; 2521 } 2522 2523 /* Determine if failure delay has expired */ 2524 if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout)) 2525 return 0; 2526 if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max) 2527 return 0; 2528 2529 if (lnum == UBIFS_SB_LNUM) { 2530 if (write && chance(1, 2)) 2531 return 0; 2532 if (chance(19, 20)) 2533 return 0; 2534 ubifs_warn("failing in super block LEB %d", lnum); 2535 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) { 2536 if (chance(19, 20)) 2537 return 0; 2538 ubifs_warn("failing in master LEB %d", lnum); 2539 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) { 2540 if (write && chance(99, 100)) 2541 return 0; 2542 if (chance(399, 400)) 2543 return 0; 2544 ubifs_warn("failing in log LEB %d", lnum); 2545 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) { 2546 if (write && chance(7, 8)) 2547 return 0; 2548 if (chance(19, 20)) 2549 return 0; 2550 ubifs_warn("failing in LPT LEB %d", lnum); 2551 } else if (lnum >= c->orph_first && lnum <= c->orph_last) { 2552 if (write && chance(1, 2)) 2553 return 0; 2554 if (chance(9, 10)) 2555 return 0; 2556 ubifs_warn("failing in orphan LEB %d", lnum); 2557 } else if (lnum == c->ihead_lnum) { 2558 if (chance(99, 100)) 2559 return 0; 2560 ubifs_warn("failing in index head LEB %d", lnum); 2561 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) { 2562 if (chance(9, 10)) 2563 return 0; 2564 ubifs_warn("failing in GC head LEB %d", lnum); 2565 } else if (write && !RB_EMPTY_ROOT(&c->buds) && 2566 !ubifs_search_bud(c, lnum)) { 2567 if (chance(19, 20)) 2568 return 0; 2569 ubifs_warn("failing in non-bud LEB %d", lnum); 2570 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND || 2571 c->cmt_state == COMMIT_RUNNING_REQUIRED) { 2572 if (chance(999, 1000)) 2573 return 0; 2574 ubifs_warn("failing in bud LEB %d commit running", lnum); 2575 } else { 2576 if (chance(9999, 10000)) 2577 return 0; 2578 ubifs_warn("failing in bud LEB %d commit not running", lnum); 2579 } 2580 2581 d->pc_happened = 1; 2582 ubifs_warn("========== Power cut emulated =========="); 2583 dump_stack(); 2584 return 1; 2585 } 2586 2587 static int corrupt_data(const struct ubifs_info *c, const void *buf, 2588 unsigned int len) 2589 { 2590 unsigned int from, to, ffs = chance(1, 2); 2591 unsigned char *p = (void *)buf; 2592 2593 from = prandom_u32() % len; 2594 /* Corruption span max to end of write unit */ 2595 to = min(len, ALIGN(from + 1, c->max_write_size)); 2596 2597 ubifs_warn("filled bytes %u-%u with %s", from, to - 1, 2598 ffs ? "0xFFs" : "random data"); 2599 2600 if (ffs) 2601 memset(p + from, 0xFF, to - from); 2602 else 2603 prandom_bytes(p + from, to - from); 2604 2605 return to; 2606 } 2607 2608 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf, 2609 int offs, int len) 2610 { 2611 int err, failing; 2612 2613 if (c->dbg->pc_happened) 2614 return -EROFS; 2615 2616 failing = power_cut_emulated(c, lnum, 1); 2617 if (failing) { 2618 len = corrupt_data(c, buf, len); 2619 ubifs_warn("actually write %d bytes to LEB %d:%d (the buffer was corrupted)", 2620 len, lnum, offs); 2621 } 2622 err = ubi_leb_write(c->ubi, lnum, buf, offs, len); 2623 if (err) 2624 return err; 2625 if (failing) 2626 return -EROFS; 2627 return 0; 2628 } 2629 2630 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf, 2631 int len) 2632 { 2633 int err; 2634 2635 if (c->dbg->pc_happened) 2636 return -EROFS; 2637 if (power_cut_emulated(c, lnum, 1)) 2638 return -EROFS; 2639 err = ubi_leb_change(c->ubi, lnum, buf, len); 2640 if (err) 2641 return err; 2642 if (power_cut_emulated(c, lnum, 1)) 2643 return -EROFS; 2644 return 0; 2645 } 2646 2647 int dbg_leb_unmap(struct ubifs_info *c, int lnum) 2648 { 2649 int err; 2650 2651 if (c->dbg->pc_happened) 2652 return -EROFS; 2653 if (power_cut_emulated(c, lnum, 0)) 2654 return -EROFS; 2655 err = ubi_leb_unmap(c->ubi, lnum); 2656 if (err) 2657 return err; 2658 if (power_cut_emulated(c, lnum, 0)) 2659 return -EROFS; 2660 return 0; 2661 } 2662 2663 int dbg_leb_map(struct ubifs_info *c, int lnum) 2664 { 2665 int err; 2666 2667 if (c->dbg->pc_happened) 2668 return -EROFS; 2669 if (power_cut_emulated(c, lnum, 0)) 2670 return -EROFS; 2671 err = ubi_leb_map(c->ubi, lnum); 2672 if (err) 2673 return err; 2674 if (power_cut_emulated(c, lnum, 0)) 2675 return -EROFS; 2676 return 0; 2677 } 2678 2679 /* 2680 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which 2681 * contain the stuff specific to particular file-system mounts. 2682 */ 2683 static struct dentry *dfs_rootdir; 2684 2685 static int dfs_file_open(struct inode *inode, struct file *file) 2686 { 2687 file->private_data = inode->i_private; 2688 return nonseekable_open(inode, file); 2689 } 2690 2691 /** 2692 * provide_user_output - provide output to the user reading a debugfs file. 2693 * @val: boolean value for the answer 2694 * @u: the buffer to store the answer at 2695 * @count: size of the buffer 2696 * @ppos: position in the @u output buffer 2697 * 2698 * This is a simple helper function which stores @val boolean value in the user 2699 * buffer when the user reads one of UBIFS debugfs files. Returns amount of 2700 * bytes written to @u in case of success and a negative error code in case of 2701 * failure. 2702 */ 2703 static int provide_user_output(int val, char __user *u, size_t count, 2704 loff_t *ppos) 2705 { 2706 char buf[3]; 2707 2708 if (val) 2709 buf[0] = '1'; 2710 else 2711 buf[0] = '0'; 2712 buf[1] = '\n'; 2713 buf[2] = 0x00; 2714 2715 return simple_read_from_buffer(u, count, ppos, buf, 2); 2716 } 2717 2718 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count, 2719 loff_t *ppos) 2720 { 2721 struct dentry *dent = file->f_path.dentry; 2722 struct ubifs_info *c = file->private_data; 2723 struct ubifs_debug_info *d = c->dbg; 2724 int val; 2725 2726 if (dent == d->dfs_chk_gen) 2727 val = d->chk_gen; 2728 else if (dent == d->dfs_chk_index) 2729 val = d->chk_index; 2730 else if (dent == d->dfs_chk_orph) 2731 val = d->chk_orph; 2732 else if (dent == d->dfs_chk_lprops) 2733 val = d->chk_lprops; 2734 else if (dent == d->dfs_chk_fs) 2735 val = d->chk_fs; 2736 else if (dent == d->dfs_tst_rcvry) 2737 val = d->tst_rcvry; 2738 else if (dent == d->dfs_ro_error) 2739 val = c->ro_error; 2740 else 2741 return -EINVAL; 2742 2743 return provide_user_output(val, u, count, ppos); 2744 } 2745 2746 /** 2747 * interpret_user_input - interpret user debugfs file input. 2748 * @u: user-provided buffer with the input 2749 * @count: buffer size 2750 * 2751 * This is a helper function which interpret user input to a boolean UBIFS 2752 * debugfs file. Returns %0 or %1 in case of success and a negative error code 2753 * in case of failure. 2754 */ 2755 static int interpret_user_input(const char __user *u, size_t count) 2756 { 2757 size_t buf_size; 2758 char buf[8]; 2759 2760 buf_size = min_t(size_t, count, (sizeof(buf) - 1)); 2761 if (copy_from_user(buf, u, buf_size)) 2762 return -EFAULT; 2763 2764 if (buf[0] == '1') 2765 return 1; 2766 else if (buf[0] == '0') 2767 return 0; 2768 2769 return -EINVAL; 2770 } 2771 2772 static ssize_t dfs_file_write(struct file *file, const char __user *u, 2773 size_t count, loff_t *ppos) 2774 { 2775 struct ubifs_info *c = file->private_data; 2776 struct ubifs_debug_info *d = c->dbg; 2777 struct dentry *dent = file->f_path.dentry; 2778 int val; 2779 2780 /* 2781 * TODO: this is racy - the file-system might have already been 2782 * unmounted and we'd oops in this case. The plan is to fix it with 2783 * help of 'iterate_supers_type()' which we should have in v3.0: when 2784 * a debugfs opened, we rember FS's UUID in file->private_data. Then 2785 * whenever we access the FS via a debugfs file, we iterate all UBIFS 2786 * superblocks and fine the one with the same UUID, and take the 2787 * locking right. 2788 * 2789 * The other way to go suggested by Al Viro is to create a separate 2790 * 'ubifs-debug' file-system instead. 2791 */ 2792 if (file->f_path.dentry == d->dfs_dump_lprops) { 2793 ubifs_dump_lprops(c); 2794 return count; 2795 } 2796 if (file->f_path.dentry == d->dfs_dump_budg) { 2797 ubifs_dump_budg(c, &c->bi); 2798 return count; 2799 } 2800 if (file->f_path.dentry == d->dfs_dump_tnc) { 2801 mutex_lock(&c->tnc_mutex); 2802 ubifs_dump_tnc(c); 2803 mutex_unlock(&c->tnc_mutex); 2804 return count; 2805 } 2806 2807 val = interpret_user_input(u, count); 2808 if (val < 0) 2809 return val; 2810 2811 if (dent == d->dfs_chk_gen) 2812 d->chk_gen = val; 2813 else if (dent == d->dfs_chk_index) 2814 d->chk_index = val; 2815 else if (dent == d->dfs_chk_orph) 2816 d->chk_orph = val; 2817 else if (dent == d->dfs_chk_lprops) 2818 d->chk_lprops = val; 2819 else if (dent == d->dfs_chk_fs) 2820 d->chk_fs = val; 2821 else if (dent == d->dfs_tst_rcvry) 2822 d->tst_rcvry = val; 2823 else if (dent == d->dfs_ro_error) 2824 c->ro_error = !!val; 2825 else 2826 return -EINVAL; 2827 2828 return count; 2829 } 2830 2831 static const struct file_operations dfs_fops = { 2832 .open = dfs_file_open, 2833 .read = dfs_file_read, 2834 .write = dfs_file_write, 2835 .owner = THIS_MODULE, 2836 .llseek = no_llseek, 2837 }; 2838 2839 /** 2840 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance. 2841 * @c: UBIFS file-system description object 2842 * 2843 * This function creates all debugfs files for this instance of UBIFS. Returns 2844 * zero in case of success and a negative error code in case of failure. 2845 * 2846 * Note, the only reason we have not merged this function with the 2847 * 'ubifs_debugging_init()' function is because it is better to initialize 2848 * debugfs interfaces at the very end of the mount process, and remove them at 2849 * the very beginning of the mount process. 2850 */ 2851 int dbg_debugfs_init_fs(struct ubifs_info *c) 2852 { 2853 int err, n; 2854 const char *fname; 2855 struct dentry *dent; 2856 struct ubifs_debug_info *d = c->dbg; 2857 2858 if (!IS_ENABLED(CONFIG_DEBUG_FS)) 2859 return 0; 2860 2861 n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME, 2862 c->vi.ubi_num, c->vi.vol_id); 2863 if (n == UBIFS_DFS_DIR_LEN) { 2864 /* The array size is too small */ 2865 fname = UBIFS_DFS_DIR_NAME; 2866 dent = ERR_PTR(-EINVAL); 2867 goto out; 2868 } 2869 2870 fname = d->dfs_dir_name; 2871 dent = debugfs_create_dir(fname, dfs_rootdir); 2872 if (IS_ERR_OR_NULL(dent)) 2873 goto out; 2874 d->dfs_dir = dent; 2875 2876 fname = "dump_lprops"; 2877 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); 2878 if (IS_ERR_OR_NULL(dent)) 2879 goto out_remove; 2880 d->dfs_dump_lprops = dent; 2881 2882 fname = "dump_budg"; 2883 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); 2884 if (IS_ERR_OR_NULL(dent)) 2885 goto out_remove; 2886 d->dfs_dump_budg = dent; 2887 2888 fname = "dump_tnc"; 2889 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); 2890 if (IS_ERR_OR_NULL(dent)) 2891 goto out_remove; 2892 d->dfs_dump_tnc = dent; 2893 2894 fname = "chk_general"; 2895 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2896 &dfs_fops); 2897 if (IS_ERR_OR_NULL(dent)) 2898 goto out_remove; 2899 d->dfs_chk_gen = dent; 2900 2901 fname = "chk_index"; 2902 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2903 &dfs_fops); 2904 if (IS_ERR_OR_NULL(dent)) 2905 goto out_remove; 2906 d->dfs_chk_index = dent; 2907 2908 fname = "chk_orphans"; 2909 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2910 &dfs_fops); 2911 if (IS_ERR_OR_NULL(dent)) 2912 goto out_remove; 2913 d->dfs_chk_orph = dent; 2914 2915 fname = "chk_lprops"; 2916 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2917 &dfs_fops); 2918 if (IS_ERR_OR_NULL(dent)) 2919 goto out_remove; 2920 d->dfs_chk_lprops = dent; 2921 2922 fname = "chk_fs"; 2923 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2924 &dfs_fops); 2925 if (IS_ERR_OR_NULL(dent)) 2926 goto out_remove; 2927 d->dfs_chk_fs = dent; 2928 2929 fname = "tst_recovery"; 2930 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2931 &dfs_fops); 2932 if (IS_ERR_OR_NULL(dent)) 2933 goto out_remove; 2934 d->dfs_tst_rcvry = dent; 2935 2936 fname = "ro_error"; 2937 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2938 &dfs_fops); 2939 if (IS_ERR_OR_NULL(dent)) 2940 goto out_remove; 2941 d->dfs_ro_error = dent; 2942 2943 return 0; 2944 2945 out_remove: 2946 debugfs_remove_recursive(d->dfs_dir); 2947 out: 2948 err = dent ? PTR_ERR(dent) : -ENODEV; 2949 ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n", 2950 fname, err); 2951 return err; 2952 } 2953 2954 /** 2955 * dbg_debugfs_exit_fs - remove all debugfs files. 2956 * @c: UBIFS file-system description object 2957 */ 2958 void dbg_debugfs_exit_fs(struct ubifs_info *c) 2959 { 2960 if (IS_ENABLED(CONFIG_DEBUG_FS)) 2961 debugfs_remove_recursive(c->dbg->dfs_dir); 2962 } 2963 2964 struct ubifs_global_debug_info ubifs_dbg; 2965 2966 static struct dentry *dfs_chk_gen; 2967 static struct dentry *dfs_chk_index; 2968 static struct dentry *dfs_chk_orph; 2969 static struct dentry *dfs_chk_lprops; 2970 static struct dentry *dfs_chk_fs; 2971 static struct dentry *dfs_tst_rcvry; 2972 2973 static ssize_t dfs_global_file_read(struct file *file, char __user *u, 2974 size_t count, loff_t *ppos) 2975 { 2976 struct dentry *dent = file->f_path.dentry; 2977 int val; 2978 2979 if (dent == dfs_chk_gen) 2980 val = ubifs_dbg.chk_gen; 2981 else if (dent == dfs_chk_index) 2982 val = ubifs_dbg.chk_index; 2983 else if (dent == dfs_chk_orph) 2984 val = ubifs_dbg.chk_orph; 2985 else if (dent == dfs_chk_lprops) 2986 val = ubifs_dbg.chk_lprops; 2987 else if (dent == dfs_chk_fs) 2988 val = ubifs_dbg.chk_fs; 2989 else if (dent == dfs_tst_rcvry) 2990 val = ubifs_dbg.tst_rcvry; 2991 else 2992 return -EINVAL; 2993 2994 return provide_user_output(val, u, count, ppos); 2995 } 2996 2997 static ssize_t dfs_global_file_write(struct file *file, const char __user *u, 2998 size_t count, loff_t *ppos) 2999 { 3000 struct dentry *dent = file->f_path.dentry; 3001 int val; 3002 3003 val = interpret_user_input(u, count); 3004 if (val < 0) 3005 return val; 3006 3007 if (dent == dfs_chk_gen) 3008 ubifs_dbg.chk_gen = val; 3009 else if (dent == dfs_chk_index) 3010 ubifs_dbg.chk_index = val; 3011 else if (dent == dfs_chk_orph) 3012 ubifs_dbg.chk_orph = val; 3013 else if (dent == dfs_chk_lprops) 3014 ubifs_dbg.chk_lprops = val; 3015 else if (dent == dfs_chk_fs) 3016 ubifs_dbg.chk_fs = val; 3017 else if (dent == dfs_tst_rcvry) 3018 ubifs_dbg.tst_rcvry = val; 3019 else 3020 return -EINVAL; 3021 3022 return count; 3023 } 3024 3025 static const struct file_operations dfs_global_fops = { 3026 .read = dfs_global_file_read, 3027 .write = dfs_global_file_write, 3028 .owner = THIS_MODULE, 3029 .llseek = no_llseek, 3030 }; 3031 3032 /** 3033 * dbg_debugfs_init - initialize debugfs file-system. 3034 * 3035 * UBIFS uses debugfs file-system to expose various debugging knobs to 3036 * user-space. This function creates "ubifs" directory in the debugfs 3037 * file-system. Returns zero in case of success and a negative error code in 3038 * case of failure. 3039 */ 3040 int dbg_debugfs_init(void) 3041 { 3042 int err; 3043 const char *fname; 3044 struct dentry *dent; 3045 3046 if (!IS_ENABLED(CONFIG_DEBUG_FS)) 3047 return 0; 3048 3049 fname = "ubifs"; 3050 dent = debugfs_create_dir(fname, NULL); 3051 if (IS_ERR_OR_NULL(dent)) 3052 goto out; 3053 dfs_rootdir = dent; 3054 3055 fname = "chk_general"; 3056 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3057 &dfs_global_fops); 3058 if (IS_ERR_OR_NULL(dent)) 3059 goto out_remove; 3060 dfs_chk_gen = dent; 3061 3062 fname = "chk_index"; 3063 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3064 &dfs_global_fops); 3065 if (IS_ERR_OR_NULL(dent)) 3066 goto out_remove; 3067 dfs_chk_index = dent; 3068 3069 fname = "chk_orphans"; 3070 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3071 &dfs_global_fops); 3072 if (IS_ERR_OR_NULL(dent)) 3073 goto out_remove; 3074 dfs_chk_orph = dent; 3075 3076 fname = "chk_lprops"; 3077 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3078 &dfs_global_fops); 3079 if (IS_ERR_OR_NULL(dent)) 3080 goto out_remove; 3081 dfs_chk_lprops = dent; 3082 3083 fname = "chk_fs"; 3084 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3085 &dfs_global_fops); 3086 if (IS_ERR_OR_NULL(dent)) 3087 goto out_remove; 3088 dfs_chk_fs = dent; 3089 3090 fname = "tst_recovery"; 3091 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3092 &dfs_global_fops); 3093 if (IS_ERR_OR_NULL(dent)) 3094 goto out_remove; 3095 dfs_tst_rcvry = dent; 3096 3097 return 0; 3098 3099 out_remove: 3100 debugfs_remove_recursive(dfs_rootdir); 3101 out: 3102 err = dent ? PTR_ERR(dent) : -ENODEV; 3103 ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n", 3104 fname, err); 3105 return err; 3106 } 3107 3108 /** 3109 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system. 3110 */ 3111 void dbg_debugfs_exit(void) 3112 { 3113 if (IS_ENABLED(CONFIG_DEBUG_FS)) 3114 debugfs_remove_recursive(dfs_rootdir); 3115 } 3116 3117 /** 3118 * ubifs_debugging_init - initialize UBIFS debugging. 3119 * @c: UBIFS file-system description object 3120 * 3121 * This function initializes debugging-related data for the file system. 3122 * Returns zero in case of success and a negative error code in case of 3123 * failure. 3124 */ 3125 int ubifs_debugging_init(struct ubifs_info *c) 3126 { 3127 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL); 3128 if (!c->dbg) 3129 return -ENOMEM; 3130 3131 return 0; 3132 } 3133 3134 /** 3135 * ubifs_debugging_exit - free debugging data. 3136 * @c: UBIFS file-system description object 3137 */ 3138 void ubifs_debugging_exit(struct ubifs_info *c) 3139 { 3140 kfree(c->dbg); 3141 } 3142 #endif 3143