1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation 5 * 6 * SPDX-License-Identifier: GPL-2.0+ 7 * 8 * Authors: Artem Bityutskiy (Битюцкий Артём) 9 * Adrian Hunter 10 */ 11 12 /* 13 * This file implements most of the debugging stuff which is compiled in only 14 * when it is enabled. But some debugging check functions are implemented in 15 * corresponding subsystem, just because they are closely related and utilize 16 * various local functions of those subsystems. 17 */ 18 19 #ifndef __UBOOT__ 20 #include <linux/module.h> 21 #include <linux/debugfs.h> 22 #include <linux/math64.h> 23 #include <linux/uaccess.h> 24 #include <linux/random.h> 25 #else 26 #include <linux/compat.h> 27 #include <linux/err.h> 28 #endif 29 #include "ubifs.h" 30 31 #ifndef __UBOOT__ 32 static DEFINE_SPINLOCK(dbg_lock); 33 #endif 34 35 static const char *get_key_fmt(int fmt) 36 { 37 switch (fmt) { 38 case UBIFS_SIMPLE_KEY_FMT: 39 return "simple"; 40 default: 41 return "unknown/invalid format"; 42 } 43 } 44 45 static const char *get_key_hash(int hash) 46 { 47 switch (hash) { 48 case UBIFS_KEY_HASH_R5: 49 return "R5"; 50 case UBIFS_KEY_HASH_TEST: 51 return "test"; 52 default: 53 return "unknown/invalid name hash"; 54 } 55 } 56 57 static const char *get_key_type(int type) 58 { 59 switch (type) { 60 case UBIFS_INO_KEY: 61 return "inode"; 62 case UBIFS_DENT_KEY: 63 return "direntry"; 64 case UBIFS_XENT_KEY: 65 return "xentry"; 66 case UBIFS_DATA_KEY: 67 return "data"; 68 case UBIFS_TRUN_KEY: 69 return "truncate"; 70 default: 71 return "unknown/invalid key"; 72 } 73 } 74 75 #ifndef __UBOOT__ 76 static const char *get_dent_type(int type) 77 { 78 switch (type) { 79 case UBIFS_ITYPE_REG: 80 return "file"; 81 case UBIFS_ITYPE_DIR: 82 return "dir"; 83 case UBIFS_ITYPE_LNK: 84 return "symlink"; 85 case UBIFS_ITYPE_BLK: 86 return "blkdev"; 87 case UBIFS_ITYPE_CHR: 88 return "char dev"; 89 case UBIFS_ITYPE_FIFO: 90 return "fifo"; 91 case UBIFS_ITYPE_SOCK: 92 return "socket"; 93 default: 94 return "unknown/invalid type"; 95 } 96 } 97 #endif 98 99 const char *dbg_snprintf_key(const struct ubifs_info *c, 100 const union ubifs_key *key, char *buffer, int len) 101 { 102 char *p = buffer; 103 int type = key_type(c, key); 104 105 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) { 106 switch (type) { 107 case UBIFS_INO_KEY: 108 len -= snprintf(p, len, "(%lu, %s)", 109 (unsigned long)key_inum(c, key), 110 get_key_type(type)); 111 break; 112 case UBIFS_DENT_KEY: 113 case UBIFS_XENT_KEY: 114 len -= snprintf(p, len, "(%lu, %s, %#08x)", 115 (unsigned long)key_inum(c, key), 116 get_key_type(type), key_hash(c, key)); 117 break; 118 case UBIFS_DATA_KEY: 119 len -= snprintf(p, len, "(%lu, %s, %u)", 120 (unsigned long)key_inum(c, key), 121 get_key_type(type), key_block(c, key)); 122 break; 123 case UBIFS_TRUN_KEY: 124 len -= snprintf(p, len, "(%lu, %s)", 125 (unsigned long)key_inum(c, key), 126 get_key_type(type)); 127 break; 128 default: 129 len -= snprintf(p, len, "(bad key type: %#08x, %#08x)", 130 key->u32[0], key->u32[1]); 131 } 132 } else 133 len -= snprintf(p, len, "bad key format %d", c->key_fmt); 134 ubifs_assert(len > 0); 135 return p; 136 } 137 138 const char *dbg_ntype(int type) 139 { 140 switch (type) { 141 case UBIFS_PAD_NODE: 142 return "padding node"; 143 case UBIFS_SB_NODE: 144 return "superblock node"; 145 case UBIFS_MST_NODE: 146 return "master node"; 147 case UBIFS_REF_NODE: 148 return "reference node"; 149 case UBIFS_INO_NODE: 150 return "inode node"; 151 case UBIFS_DENT_NODE: 152 return "direntry node"; 153 case UBIFS_XENT_NODE: 154 return "xentry node"; 155 case UBIFS_DATA_NODE: 156 return "data node"; 157 case UBIFS_TRUN_NODE: 158 return "truncate node"; 159 case UBIFS_IDX_NODE: 160 return "indexing node"; 161 case UBIFS_CS_NODE: 162 return "commit start node"; 163 case UBIFS_ORPH_NODE: 164 return "orphan node"; 165 default: 166 return "unknown node"; 167 } 168 } 169 170 static const char *dbg_gtype(int type) 171 { 172 switch (type) { 173 case UBIFS_NO_NODE_GROUP: 174 return "no node group"; 175 case UBIFS_IN_NODE_GROUP: 176 return "in node group"; 177 case UBIFS_LAST_OF_NODE_GROUP: 178 return "last of node group"; 179 default: 180 return "unknown"; 181 } 182 } 183 184 const char *dbg_cstate(int cmt_state) 185 { 186 switch (cmt_state) { 187 case COMMIT_RESTING: 188 return "commit resting"; 189 case COMMIT_BACKGROUND: 190 return "background commit requested"; 191 case COMMIT_REQUIRED: 192 return "commit required"; 193 case COMMIT_RUNNING_BACKGROUND: 194 return "BACKGROUND commit running"; 195 case COMMIT_RUNNING_REQUIRED: 196 return "commit running and required"; 197 case COMMIT_BROKEN: 198 return "broken commit"; 199 default: 200 return "unknown commit state"; 201 } 202 } 203 204 const char *dbg_jhead(int jhead) 205 { 206 switch (jhead) { 207 case GCHD: 208 return "0 (GC)"; 209 case BASEHD: 210 return "1 (base)"; 211 case DATAHD: 212 return "2 (data)"; 213 default: 214 return "unknown journal head"; 215 } 216 } 217 218 static void dump_ch(const struct ubifs_ch *ch) 219 { 220 pr_err("\tmagic %#x\n", le32_to_cpu(ch->magic)); 221 pr_err("\tcrc %#x\n", le32_to_cpu(ch->crc)); 222 pr_err("\tnode_type %d (%s)\n", ch->node_type, 223 dbg_ntype(ch->node_type)); 224 pr_err("\tgroup_type %d (%s)\n", ch->group_type, 225 dbg_gtype(ch->group_type)); 226 pr_err("\tsqnum %llu\n", 227 (unsigned long long)le64_to_cpu(ch->sqnum)); 228 pr_err("\tlen %u\n", le32_to_cpu(ch->len)); 229 } 230 231 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode) 232 { 233 #ifndef __UBOOT__ 234 const struct ubifs_inode *ui = ubifs_inode(inode); 235 struct qstr nm = { .name = NULL }; 236 union ubifs_key key; 237 struct ubifs_dent_node *dent, *pdent = NULL; 238 int count = 2; 239 240 pr_err("Dump in-memory inode:"); 241 pr_err("\tinode %lu\n", inode->i_ino); 242 pr_err("\tsize %llu\n", 243 (unsigned long long)i_size_read(inode)); 244 pr_err("\tnlink %u\n", inode->i_nlink); 245 pr_err("\tuid %u\n", (unsigned int)i_uid_read(inode)); 246 pr_err("\tgid %u\n", (unsigned int)i_gid_read(inode)); 247 pr_err("\tatime %u.%u\n", 248 (unsigned int)inode->i_atime.tv_sec, 249 (unsigned int)inode->i_atime.tv_nsec); 250 pr_err("\tmtime %u.%u\n", 251 (unsigned int)inode->i_mtime.tv_sec, 252 (unsigned int)inode->i_mtime.tv_nsec); 253 pr_err("\tctime %u.%u\n", 254 (unsigned int)inode->i_ctime.tv_sec, 255 (unsigned int)inode->i_ctime.tv_nsec); 256 pr_err("\tcreat_sqnum %llu\n", ui->creat_sqnum); 257 pr_err("\txattr_size %u\n", ui->xattr_size); 258 pr_err("\txattr_cnt %u\n", ui->xattr_cnt); 259 pr_err("\txattr_names %u\n", ui->xattr_names); 260 pr_err("\tdirty %u\n", ui->dirty); 261 pr_err("\txattr %u\n", ui->xattr); 262 pr_err("\tbulk_read %u\n", ui->xattr); 263 pr_err("\tsynced_i_size %llu\n", 264 (unsigned long long)ui->synced_i_size); 265 pr_err("\tui_size %llu\n", 266 (unsigned long long)ui->ui_size); 267 pr_err("\tflags %d\n", ui->flags); 268 pr_err("\tcompr_type %d\n", ui->compr_type); 269 pr_err("\tlast_page_read %lu\n", ui->last_page_read); 270 pr_err("\tread_in_a_row %lu\n", ui->read_in_a_row); 271 pr_err("\tdata_len %d\n", ui->data_len); 272 273 if (!S_ISDIR(inode->i_mode)) 274 return; 275 276 pr_err("List of directory entries:\n"); 277 ubifs_assert(!mutex_is_locked(&c->tnc_mutex)); 278 279 lowest_dent_key(c, &key, inode->i_ino); 280 while (1) { 281 dent = ubifs_tnc_next_ent(c, &key, &nm); 282 if (IS_ERR(dent)) { 283 if (PTR_ERR(dent) != -ENOENT) 284 pr_err("error %ld\n", PTR_ERR(dent)); 285 break; 286 } 287 288 pr_err("\t%d: %s (%s)\n", 289 count++, dent->name, get_dent_type(dent->type)); 290 291 nm.name = dent->name; 292 nm.len = le16_to_cpu(dent->nlen); 293 kfree(pdent); 294 pdent = dent; 295 key_read(c, &dent->key, &key); 296 } 297 kfree(pdent); 298 #endif 299 } 300 301 void ubifs_dump_node(const struct ubifs_info *c, const void *node) 302 { 303 int i, n; 304 union ubifs_key key; 305 const struct ubifs_ch *ch = node; 306 char key_buf[DBG_KEY_BUF_LEN]; 307 308 /* If the magic is incorrect, just hexdump the first bytes */ 309 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) { 310 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ); 311 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1, 312 (void *)node, UBIFS_CH_SZ, 1); 313 return; 314 } 315 316 spin_lock(&dbg_lock); 317 dump_ch(node); 318 319 switch (ch->node_type) { 320 case UBIFS_PAD_NODE: 321 { 322 const struct ubifs_pad_node *pad = node; 323 324 pr_err("\tpad_len %u\n", le32_to_cpu(pad->pad_len)); 325 break; 326 } 327 case UBIFS_SB_NODE: 328 { 329 const struct ubifs_sb_node *sup = node; 330 unsigned int sup_flags = le32_to_cpu(sup->flags); 331 332 pr_err("\tkey_hash %d (%s)\n", 333 (int)sup->key_hash, get_key_hash(sup->key_hash)); 334 pr_err("\tkey_fmt %d (%s)\n", 335 (int)sup->key_fmt, get_key_fmt(sup->key_fmt)); 336 pr_err("\tflags %#x\n", sup_flags); 337 pr_err("\tbig_lpt %u\n", 338 !!(sup_flags & UBIFS_FLG_BIGLPT)); 339 pr_err("\tspace_fixup %u\n", 340 !!(sup_flags & UBIFS_FLG_SPACE_FIXUP)); 341 pr_err("\tmin_io_size %u\n", le32_to_cpu(sup->min_io_size)); 342 pr_err("\tleb_size %u\n", le32_to_cpu(sup->leb_size)); 343 pr_err("\tleb_cnt %u\n", le32_to_cpu(sup->leb_cnt)); 344 pr_err("\tmax_leb_cnt %u\n", le32_to_cpu(sup->max_leb_cnt)); 345 pr_err("\tmax_bud_bytes %llu\n", 346 (unsigned long long)le64_to_cpu(sup->max_bud_bytes)); 347 pr_err("\tlog_lebs %u\n", le32_to_cpu(sup->log_lebs)); 348 pr_err("\tlpt_lebs %u\n", le32_to_cpu(sup->lpt_lebs)); 349 pr_err("\torph_lebs %u\n", le32_to_cpu(sup->orph_lebs)); 350 pr_err("\tjhead_cnt %u\n", le32_to_cpu(sup->jhead_cnt)); 351 pr_err("\tfanout %u\n", le32_to_cpu(sup->fanout)); 352 pr_err("\tlsave_cnt %u\n", le32_to_cpu(sup->lsave_cnt)); 353 pr_err("\tdefault_compr %u\n", 354 (int)le16_to_cpu(sup->default_compr)); 355 pr_err("\trp_size %llu\n", 356 (unsigned long long)le64_to_cpu(sup->rp_size)); 357 pr_err("\trp_uid %u\n", le32_to_cpu(sup->rp_uid)); 358 pr_err("\trp_gid %u\n", le32_to_cpu(sup->rp_gid)); 359 pr_err("\tfmt_version %u\n", le32_to_cpu(sup->fmt_version)); 360 pr_err("\ttime_gran %u\n", le32_to_cpu(sup->time_gran)); 361 pr_err("\tUUID %pUB\n", sup->uuid); 362 break; 363 } 364 case UBIFS_MST_NODE: 365 { 366 const struct ubifs_mst_node *mst = node; 367 368 pr_err("\thighest_inum %llu\n", 369 (unsigned long long)le64_to_cpu(mst->highest_inum)); 370 pr_err("\tcommit number %llu\n", 371 (unsigned long long)le64_to_cpu(mst->cmt_no)); 372 pr_err("\tflags %#x\n", le32_to_cpu(mst->flags)); 373 pr_err("\tlog_lnum %u\n", le32_to_cpu(mst->log_lnum)); 374 pr_err("\troot_lnum %u\n", le32_to_cpu(mst->root_lnum)); 375 pr_err("\troot_offs %u\n", le32_to_cpu(mst->root_offs)); 376 pr_err("\troot_len %u\n", le32_to_cpu(mst->root_len)); 377 pr_err("\tgc_lnum %u\n", le32_to_cpu(mst->gc_lnum)); 378 pr_err("\tihead_lnum %u\n", le32_to_cpu(mst->ihead_lnum)); 379 pr_err("\tihead_offs %u\n", le32_to_cpu(mst->ihead_offs)); 380 pr_err("\tindex_size %llu\n", 381 (unsigned long long)le64_to_cpu(mst->index_size)); 382 pr_err("\tlpt_lnum %u\n", le32_to_cpu(mst->lpt_lnum)); 383 pr_err("\tlpt_offs %u\n", le32_to_cpu(mst->lpt_offs)); 384 pr_err("\tnhead_lnum %u\n", le32_to_cpu(mst->nhead_lnum)); 385 pr_err("\tnhead_offs %u\n", le32_to_cpu(mst->nhead_offs)); 386 pr_err("\tltab_lnum %u\n", le32_to_cpu(mst->ltab_lnum)); 387 pr_err("\tltab_offs %u\n", le32_to_cpu(mst->ltab_offs)); 388 pr_err("\tlsave_lnum %u\n", le32_to_cpu(mst->lsave_lnum)); 389 pr_err("\tlsave_offs %u\n", le32_to_cpu(mst->lsave_offs)); 390 pr_err("\tlscan_lnum %u\n", le32_to_cpu(mst->lscan_lnum)); 391 pr_err("\tleb_cnt %u\n", le32_to_cpu(mst->leb_cnt)); 392 pr_err("\tempty_lebs %u\n", le32_to_cpu(mst->empty_lebs)); 393 pr_err("\tidx_lebs %u\n", le32_to_cpu(mst->idx_lebs)); 394 pr_err("\ttotal_free %llu\n", 395 (unsigned long long)le64_to_cpu(mst->total_free)); 396 pr_err("\ttotal_dirty %llu\n", 397 (unsigned long long)le64_to_cpu(mst->total_dirty)); 398 pr_err("\ttotal_used %llu\n", 399 (unsigned long long)le64_to_cpu(mst->total_used)); 400 pr_err("\ttotal_dead %llu\n", 401 (unsigned long long)le64_to_cpu(mst->total_dead)); 402 pr_err("\ttotal_dark %llu\n", 403 (unsigned long long)le64_to_cpu(mst->total_dark)); 404 break; 405 } 406 case UBIFS_REF_NODE: 407 { 408 const struct ubifs_ref_node *ref = node; 409 410 pr_err("\tlnum %u\n", le32_to_cpu(ref->lnum)); 411 pr_err("\toffs %u\n", le32_to_cpu(ref->offs)); 412 pr_err("\tjhead %u\n", le32_to_cpu(ref->jhead)); 413 break; 414 } 415 case UBIFS_INO_NODE: 416 { 417 const struct ubifs_ino_node *ino = node; 418 419 key_read(c, &ino->key, &key); 420 pr_err("\tkey %s\n", 421 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 422 pr_err("\tcreat_sqnum %llu\n", 423 (unsigned long long)le64_to_cpu(ino->creat_sqnum)); 424 pr_err("\tsize %llu\n", 425 (unsigned long long)le64_to_cpu(ino->size)); 426 pr_err("\tnlink %u\n", le32_to_cpu(ino->nlink)); 427 pr_err("\tatime %lld.%u\n", 428 (long long)le64_to_cpu(ino->atime_sec), 429 le32_to_cpu(ino->atime_nsec)); 430 pr_err("\tmtime %lld.%u\n", 431 (long long)le64_to_cpu(ino->mtime_sec), 432 le32_to_cpu(ino->mtime_nsec)); 433 pr_err("\tctime %lld.%u\n", 434 (long long)le64_to_cpu(ino->ctime_sec), 435 le32_to_cpu(ino->ctime_nsec)); 436 pr_err("\tuid %u\n", le32_to_cpu(ino->uid)); 437 pr_err("\tgid %u\n", le32_to_cpu(ino->gid)); 438 pr_err("\tmode %u\n", le32_to_cpu(ino->mode)); 439 pr_err("\tflags %#x\n", le32_to_cpu(ino->flags)); 440 pr_err("\txattr_cnt %u\n", le32_to_cpu(ino->xattr_cnt)); 441 pr_err("\txattr_size %u\n", le32_to_cpu(ino->xattr_size)); 442 pr_err("\txattr_names %u\n", le32_to_cpu(ino->xattr_names)); 443 pr_err("\tcompr_type %#x\n", 444 (int)le16_to_cpu(ino->compr_type)); 445 pr_err("\tdata len %u\n", le32_to_cpu(ino->data_len)); 446 break; 447 } 448 case UBIFS_DENT_NODE: 449 case UBIFS_XENT_NODE: 450 { 451 const struct ubifs_dent_node *dent = node; 452 int nlen = le16_to_cpu(dent->nlen); 453 454 key_read(c, &dent->key, &key); 455 pr_err("\tkey %s\n", 456 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 457 pr_err("\tinum %llu\n", 458 (unsigned long long)le64_to_cpu(dent->inum)); 459 pr_err("\ttype %d\n", (int)dent->type); 460 pr_err("\tnlen %d\n", nlen); 461 pr_err("\tname "); 462 463 if (nlen > UBIFS_MAX_NLEN) 464 pr_err("(bad name length, not printing, bad or corrupted node)"); 465 else { 466 for (i = 0; i < nlen && dent->name[i]; i++) 467 pr_cont("%c", dent->name[i]); 468 } 469 pr_cont("\n"); 470 471 break; 472 } 473 case UBIFS_DATA_NODE: 474 { 475 const struct ubifs_data_node *dn = node; 476 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ; 477 478 key_read(c, &dn->key, &key); 479 pr_err("\tkey %s\n", 480 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 481 pr_err("\tsize %u\n", le32_to_cpu(dn->size)); 482 pr_err("\tcompr_typ %d\n", 483 (int)le16_to_cpu(dn->compr_type)); 484 pr_err("\tdata size %d\n", dlen); 485 pr_err("\tdata:\n"); 486 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1, 487 (void *)&dn->data, dlen, 0); 488 break; 489 } 490 case UBIFS_TRUN_NODE: 491 { 492 const struct ubifs_trun_node *trun = node; 493 494 pr_err("\tinum %u\n", le32_to_cpu(trun->inum)); 495 pr_err("\told_size %llu\n", 496 (unsigned long long)le64_to_cpu(trun->old_size)); 497 pr_err("\tnew_size %llu\n", 498 (unsigned long long)le64_to_cpu(trun->new_size)); 499 break; 500 } 501 case UBIFS_IDX_NODE: 502 { 503 const struct ubifs_idx_node *idx = node; 504 505 n = le16_to_cpu(idx->child_cnt); 506 pr_err("\tchild_cnt %d\n", n); 507 pr_err("\tlevel %d\n", (int)le16_to_cpu(idx->level)); 508 pr_err("\tBranches:\n"); 509 510 for (i = 0; i < n && i < c->fanout - 1; i++) { 511 const struct ubifs_branch *br; 512 513 br = ubifs_idx_branch(c, idx, i); 514 key_read(c, &br->key, &key); 515 pr_err("\t%d: LEB %d:%d len %d key %s\n", 516 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs), 517 le32_to_cpu(br->len), 518 dbg_snprintf_key(c, &key, key_buf, 519 DBG_KEY_BUF_LEN)); 520 } 521 break; 522 } 523 case UBIFS_CS_NODE: 524 break; 525 case UBIFS_ORPH_NODE: 526 { 527 const struct ubifs_orph_node *orph = node; 528 529 pr_err("\tcommit number %llu\n", 530 (unsigned long long) 531 le64_to_cpu(orph->cmt_no) & LLONG_MAX); 532 pr_err("\tlast node flag %llu\n", 533 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63); 534 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3; 535 pr_err("\t%d orphan inode numbers:\n", n); 536 for (i = 0; i < n; i++) 537 pr_err("\t ino %llu\n", 538 (unsigned long long)le64_to_cpu(orph->inos[i])); 539 break; 540 } 541 default: 542 pr_err("node type %d was not recognized\n", 543 (int)ch->node_type); 544 } 545 spin_unlock(&dbg_lock); 546 } 547 548 void ubifs_dump_budget_req(const struct ubifs_budget_req *req) 549 { 550 spin_lock(&dbg_lock); 551 pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n", 552 req->new_ino, req->dirtied_ino); 553 pr_err("\tnew_ino_d %d, dirtied_ino_d %d\n", 554 req->new_ino_d, req->dirtied_ino_d); 555 pr_err("\tnew_page %d, dirtied_page %d\n", 556 req->new_page, req->dirtied_page); 557 pr_err("\tnew_dent %d, mod_dent %d\n", 558 req->new_dent, req->mod_dent); 559 pr_err("\tidx_growth %d\n", req->idx_growth); 560 pr_err("\tdata_growth %d dd_growth %d\n", 561 req->data_growth, req->dd_growth); 562 spin_unlock(&dbg_lock); 563 } 564 565 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst) 566 { 567 spin_lock(&dbg_lock); 568 pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs %d\n", 569 current->pid, lst->empty_lebs, lst->idx_lebs); 570 pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n", 571 lst->taken_empty_lebs, lst->total_free, lst->total_dirty); 572 pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n", 573 lst->total_used, lst->total_dark, lst->total_dead); 574 spin_unlock(&dbg_lock); 575 } 576 577 #ifndef __UBOOT__ 578 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi) 579 { 580 int i; 581 struct rb_node *rb; 582 struct ubifs_bud *bud; 583 struct ubifs_gced_idx_leb *idx_gc; 584 long long available, outstanding, free; 585 586 spin_lock(&c->space_lock); 587 spin_lock(&dbg_lock); 588 pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n", 589 current->pid, bi->data_growth + bi->dd_growth, 590 bi->data_growth + bi->dd_growth + bi->idx_growth); 591 pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n", 592 bi->data_growth, bi->dd_growth, bi->idx_growth); 593 pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n", 594 bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx); 595 pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n", 596 bi->page_budget, bi->inode_budget, bi->dent_budget); 597 pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp); 598 pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n", 599 c->dark_wm, c->dead_wm, c->max_idx_node_sz); 600 601 if (bi != &c->bi) 602 /* 603 * If we are dumping saved budgeting data, do not print 604 * additional information which is about the current state, not 605 * the old one which corresponded to the saved budgeting data. 606 */ 607 goto out_unlock; 608 609 pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n", 610 c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt); 611 pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n", 612 atomic_long_read(&c->dirty_pg_cnt), 613 atomic_long_read(&c->dirty_zn_cnt), 614 atomic_long_read(&c->clean_zn_cnt)); 615 pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum); 616 617 /* If we are in R/O mode, journal heads do not exist */ 618 if (c->jheads) 619 for (i = 0; i < c->jhead_cnt; i++) 620 pr_err("\tjhead %s\t LEB %d\n", 621 dbg_jhead(c->jheads[i].wbuf.jhead), 622 c->jheads[i].wbuf.lnum); 623 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) { 624 bud = rb_entry(rb, struct ubifs_bud, rb); 625 pr_err("\tbud LEB %d\n", bud->lnum); 626 } 627 list_for_each_entry(bud, &c->old_buds, list) 628 pr_err("\told bud LEB %d\n", bud->lnum); 629 list_for_each_entry(idx_gc, &c->idx_gc, list) 630 pr_err("\tGC'ed idx LEB %d unmap %d\n", 631 idx_gc->lnum, idx_gc->unmap); 632 pr_err("\tcommit state %d\n", c->cmt_state); 633 634 /* Print budgeting predictions */ 635 available = ubifs_calc_available(c, c->bi.min_idx_lebs); 636 outstanding = c->bi.data_growth + c->bi.dd_growth; 637 free = ubifs_get_free_space_nolock(c); 638 pr_err("Budgeting predictions:\n"); 639 pr_err("\tavailable: %lld, outstanding %lld, free %lld\n", 640 available, outstanding, free); 641 out_unlock: 642 spin_unlock(&dbg_lock); 643 spin_unlock(&c->space_lock); 644 } 645 #else 646 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi) 647 { 648 } 649 #endif 650 651 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp) 652 { 653 int i, spc, dark = 0, dead = 0; 654 struct rb_node *rb; 655 struct ubifs_bud *bud; 656 657 spc = lp->free + lp->dirty; 658 if (spc < c->dead_wm) 659 dead = spc; 660 else 661 dark = ubifs_calc_dark(c, spc); 662 663 if (lp->flags & LPROPS_INDEX) 664 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (", 665 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc, 666 lp->flags); 667 else 668 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (", 669 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc, 670 dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags); 671 672 if (lp->flags & LPROPS_TAKEN) { 673 if (lp->flags & LPROPS_INDEX) 674 pr_cont("index, taken"); 675 else 676 pr_cont("taken"); 677 } else { 678 const char *s; 679 680 if (lp->flags & LPROPS_INDEX) { 681 switch (lp->flags & LPROPS_CAT_MASK) { 682 case LPROPS_DIRTY_IDX: 683 s = "dirty index"; 684 break; 685 case LPROPS_FRDI_IDX: 686 s = "freeable index"; 687 break; 688 default: 689 s = "index"; 690 } 691 } else { 692 switch (lp->flags & LPROPS_CAT_MASK) { 693 case LPROPS_UNCAT: 694 s = "not categorized"; 695 break; 696 case LPROPS_DIRTY: 697 s = "dirty"; 698 break; 699 case LPROPS_FREE: 700 s = "free"; 701 break; 702 case LPROPS_EMPTY: 703 s = "empty"; 704 break; 705 case LPROPS_FREEABLE: 706 s = "freeable"; 707 break; 708 default: 709 s = NULL; 710 break; 711 } 712 } 713 pr_cont("%s", s); 714 } 715 716 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) { 717 bud = rb_entry(rb, struct ubifs_bud, rb); 718 if (bud->lnum == lp->lnum) { 719 int head = 0; 720 for (i = 0; i < c->jhead_cnt; i++) { 721 /* 722 * Note, if we are in R/O mode or in the middle 723 * of mounting/re-mounting, the write-buffers do 724 * not exist. 725 */ 726 if (c->jheads && 727 lp->lnum == c->jheads[i].wbuf.lnum) { 728 pr_cont(", jhead %s", dbg_jhead(i)); 729 head = 1; 730 } 731 } 732 if (!head) 733 pr_cont(", bud of jhead %s", 734 dbg_jhead(bud->jhead)); 735 } 736 } 737 if (lp->lnum == c->gc_lnum) 738 pr_cont(", GC LEB"); 739 pr_cont(")\n"); 740 } 741 742 void ubifs_dump_lprops(struct ubifs_info *c) 743 { 744 int lnum, err; 745 struct ubifs_lprops lp; 746 struct ubifs_lp_stats lst; 747 748 pr_err("(pid %d) start dumping LEB properties\n", current->pid); 749 ubifs_get_lp_stats(c, &lst); 750 ubifs_dump_lstats(&lst); 751 752 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) { 753 err = ubifs_read_one_lp(c, lnum, &lp); 754 if (err) { 755 ubifs_err(c, "cannot read lprops for LEB %d", lnum); 756 continue; 757 } 758 759 ubifs_dump_lprop(c, &lp); 760 } 761 pr_err("(pid %d) finish dumping LEB properties\n", current->pid); 762 } 763 764 void ubifs_dump_lpt_info(struct ubifs_info *c) 765 { 766 int i; 767 768 spin_lock(&dbg_lock); 769 pr_err("(pid %d) dumping LPT information\n", current->pid); 770 pr_err("\tlpt_sz: %lld\n", c->lpt_sz); 771 pr_err("\tpnode_sz: %d\n", c->pnode_sz); 772 pr_err("\tnnode_sz: %d\n", c->nnode_sz); 773 pr_err("\tltab_sz: %d\n", c->ltab_sz); 774 pr_err("\tlsave_sz: %d\n", c->lsave_sz); 775 pr_err("\tbig_lpt: %d\n", c->big_lpt); 776 pr_err("\tlpt_hght: %d\n", c->lpt_hght); 777 pr_err("\tpnode_cnt: %d\n", c->pnode_cnt); 778 pr_err("\tnnode_cnt: %d\n", c->nnode_cnt); 779 pr_err("\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt); 780 pr_err("\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt); 781 pr_err("\tlsave_cnt: %d\n", c->lsave_cnt); 782 pr_err("\tspace_bits: %d\n", c->space_bits); 783 pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits); 784 pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits); 785 pr_err("\tlpt_spc_bits: %d\n", c->lpt_spc_bits); 786 pr_err("\tpcnt_bits: %d\n", c->pcnt_bits); 787 pr_err("\tlnum_bits: %d\n", c->lnum_bits); 788 pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs); 789 pr_err("\tLPT head is at %d:%d\n", 790 c->nhead_lnum, c->nhead_offs); 791 pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs); 792 if (c->big_lpt) 793 pr_err("\tLPT lsave is at %d:%d\n", 794 c->lsave_lnum, c->lsave_offs); 795 for (i = 0; i < c->lpt_lebs; i++) 796 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n", 797 i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty, 798 c->ltab[i].tgc, c->ltab[i].cmt); 799 spin_unlock(&dbg_lock); 800 } 801 802 void ubifs_dump_sleb(const struct ubifs_info *c, 803 const struct ubifs_scan_leb *sleb, int offs) 804 { 805 struct ubifs_scan_node *snod; 806 807 pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n", 808 current->pid, sleb->lnum, offs); 809 810 list_for_each_entry(snod, &sleb->nodes, list) { 811 cond_resched(); 812 pr_err("Dumping node at LEB %d:%d len %d\n", 813 sleb->lnum, snod->offs, snod->len); 814 ubifs_dump_node(c, snod->node); 815 } 816 } 817 818 void ubifs_dump_leb(const struct ubifs_info *c, int lnum) 819 { 820 struct ubifs_scan_leb *sleb; 821 struct ubifs_scan_node *snod; 822 void *buf; 823 824 pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum); 825 826 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL); 827 if (!buf) { 828 ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum); 829 return; 830 } 831 832 sleb = ubifs_scan(c, lnum, 0, buf, 0); 833 if (IS_ERR(sleb)) { 834 ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb)); 835 goto out; 836 } 837 838 pr_err("LEB %d has %d nodes ending at %d\n", lnum, 839 sleb->nodes_cnt, sleb->endpt); 840 841 list_for_each_entry(snod, &sleb->nodes, list) { 842 cond_resched(); 843 pr_err("Dumping node at LEB %d:%d len %d\n", lnum, 844 snod->offs, snod->len); 845 ubifs_dump_node(c, snod->node); 846 } 847 848 pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum); 849 ubifs_scan_destroy(sleb); 850 851 out: 852 vfree(buf); 853 return; 854 } 855 856 void ubifs_dump_znode(const struct ubifs_info *c, 857 const struct ubifs_znode *znode) 858 { 859 int n; 860 const struct ubifs_zbranch *zbr; 861 char key_buf[DBG_KEY_BUF_LEN]; 862 863 spin_lock(&dbg_lock); 864 if (znode->parent) 865 zbr = &znode->parent->zbranch[znode->iip]; 866 else 867 zbr = &c->zroot; 868 869 pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n", 870 znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip, 871 znode->level, znode->child_cnt, znode->flags); 872 873 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 874 spin_unlock(&dbg_lock); 875 return; 876 } 877 878 pr_err("zbranches:\n"); 879 for (n = 0; n < znode->child_cnt; n++) { 880 zbr = &znode->zbranch[n]; 881 if (znode->level > 0) 882 pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n", 883 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len, 884 dbg_snprintf_key(c, &zbr->key, key_buf, 885 DBG_KEY_BUF_LEN)); 886 else 887 pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n", 888 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len, 889 dbg_snprintf_key(c, &zbr->key, key_buf, 890 DBG_KEY_BUF_LEN)); 891 } 892 spin_unlock(&dbg_lock); 893 } 894 895 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat) 896 { 897 int i; 898 899 pr_err("(pid %d) start dumping heap cat %d (%d elements)\n", 900 current->pid, cat, heap->cnt); 901 for (i = 0; i < heap->cnt; i++) { 902 struct ubifs_lprops *lprops = heap->arr[i]; 903 904 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n", 905 i, lprops->lnum, lprops->hpos, lprops->free, 906 lprops->dirty, lprops->flags); 907 } 908 pr_err("(pid %d) finish dumping heap\n", current->pid); 909 } 910 911 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode, 912 struct ubifs_nnode *parent, int iip) 913 { 914 int i; 915 916 pr_err("(pid %d) dumping pnode:\n", current->pid); 917 pr_err("\taddress %zx parent %zx cnext %zx\n", 918 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext); 919 pr_err("\tflags %lu iip %d level %d num %d\n", 920 pnode->flags, iip, pnode->level, pnode->num); 921 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 922 struct ubifs_lprops *lp = &pnode->lprops[i]; 923 924 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n", 925 i, lp->free, lp->dirty, lp->flags, lp->lnum); 926 } 927 } 928 929 void ubifs_dump_tnc(struct ubifs_info *c) 930 { 931 struct ubifs_znode *znode; 932 int level; 933 934 pr_err("\n"); 935 pr_err("(pid %d) start dumping TNC tree\n", current->pid); 936 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL); 937 level = znode->level; 938 pr_err("== Level %d ==\n", level); 939 while (znode) { 940 if (level != znode->level) { 941 level = znode->level; 942 pr_err("== Level %d ==\n", level); 943 } 944 ubifs_dump_znode(c, znode); 945 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode); 946 } 947 pr_err("(pid %d) finish dumping TNC tree\n", current->pid); 948 } 949 950 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode, 951 void *priv) 952 { 953 ubifs_dump_znode(c, znode); 954 return 0; 955 } 956 957 /** 958 * ubifs_dump_index - dump the on-flash index. 959 * @c: UBIFS file-system description object 960 * 961 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()' 962 * which dumps only in-memory znodes and does not read znodes which from flash. 963 */ 964 void ubifs_dump_index(struct ubifs_info *c) 965 { 966 dbg_walk_index(c, NULL, dump_znode, NULL); 967 } 968 969 #ifndef __UBOOT__ 970 /** 971 * dbg_save_space_info - save information about flash space. 972 * @c: UBIFS file-system description object 973 * 974 * This function saves information about UBIFS free space, dirty space, etc, in 975 * order to check it later. 976 */ 977 void dbg_save_space_info(struct ubifs_info *c) 978 { 979 struct ubifs_debug_info *d = c->dbg; 980 int freeable_cnt; 981 982 spin_lock(&c->space_lock); 983 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats)); 984 memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info)); 985 d->saved_idx_gc_cnt = c->idx_gc_cnt; 986 987 /* 988 * We use a dirty hack here and zero out @c->freeable_cnt, because it 989 * affects the free space calculations, and UBIFS might not know about 990 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks 991 * only when we read their lprops, and we do this only lazily, upon the 992 * need. So at any given point of time @c->freeable_cnt might be not 993 * exactly accurate. 994 * 995 * Just one example about the issue we hit when we did not zero 996 * @c->freeable_cnt. 997 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the 998 * amount of free space in @d->saved_free 999 * 2. We re-mount R/W, which makes UBIFS to read the "lsave" 1000 * information from flash, where we cache LEBs from various 1001 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()' 1002 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()' 1003 * -> 'ubifs_get_pnode()' -> 'update_cats()' 1004 * -> 'ubifs_add_to_cat()'). 1005 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt 1006 * becomes %1. 1007 * 4. We calculate the amount of free space when the re-mount is 1008 * finished in 'dbg_check_space_info()' and it does not match 1009 * @d->saved_free. 1010 */ 1011 freeable_cnt = c->freeable_cnt; 1012 c->freeable_cnt = 0; 1013 d->saved_free = ubifs_get_free_space_nolock(c); 1014 c->freeable_cnt = freeable_cnt; 1015 spin_unlock(&c->space_lock); 1016 } 1017 1018 /** 1019 * dbg_check_space_info - check flash space information. 1020 * @c: UBIFS file-system description object 1021 * 1022 * This function compares current flash space information with the information 1023 * which was saved when the 'dbg_save_space_info()' function was called. 1024 * Returns zero if the information has not changed, and %-EINVAL it it has 1025 * changed. 1026 */ 1027 int dbg_check_space_info(struct ubifs_info *c) 1028 { 1029 struct ubifs_debug_info *d = c->dbg; 1030 struct ubifs_lp_stats lst; 1031 long long free; 1032 int freeable_cnt; 1033 1034 spin_lock(&c->space_lock); 1035 freeable_cnt = c->freeable_cnt; 1036 c->freeable_cnt = 0; 1037 free = ubifs_get_free_space_nolock(c); 1038 c->freeable_cnt = freeable_cnt; 1039 spin_unlock(&c->space_lock); 1040 1041 if (free != d->saved_free) { 1042 ubifs_err(c, "free space changed from %lld to %lld", 1043 d->saved_free, free); 1044 goto out; 1045 } 1046 1047 return 0; 1048 1049 out: 1050 ubifs_msg(c, "saved lprops statistics dump"); 1051 ubifs_dump_lstats(&d->saved_lst); 1052 ubifs_msg(c, "saved budgeting info dump"); 1053 ubifs_dump_budg(c, &d->saved_bi); 1054 ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt); 1055 ubifs_msg(c, "current lprops statistics dump"); 1056 ubifs_get_lp_stats(c, &lst); 1057 ubifs_dump_lstats(&lst); 1058 ubifs_msg(c, "current budgeting info dump"); 1059 ubifs_dump_budg(c, &c->bi); 1060 dump_stack(); 1061 return -EINVAL; 1062 } 1063 1064 /** 1065 * dbg_check_synced_i_size - check synchronized inode size. 1066 * @c: UBIFS file-system description object 1067 * @inode: inode to check 1068 * 1069 * If inode is clean, synchronized inode size has to be equivalent to current 1070 * inode size. This function has to be called only for locked inodes (@i_mutex 1071 * has to be locked). Returns %0 if synchronized inode size if correct, and 1072 * %-EINVAL if not. 1073 */ 1074 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode) 1075 { 1076 int err = 0; 1077 struct ubifs_inode *ui = ubifs_inode(inode); 1078 1079 if (!dbg_is_chk_gen(c)) 1080 return 0; 1081 if (!S_ISREG(inode->i_mode)) 1082 return 0; 1083 1084 mutex_lock(&ui->ui_mutex); 1085 spin_lock(&ui->ui_lock); 1086 if (ui->ui_size != ui->synced_i_size && !ui->dirty) { 1087 ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean", 1088 ui->ui_size, ui->synced_i_size); 1089 ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino, 1090 inode->i_mode, i_size_read(inode)); 1091 dump_stack(); 1092 err = -EINVAL; 1093 } 1094 spin_unlock(&ui->ui_lock); 1095 mutex_unlock(&ui->ui_mutex); 1096 return err; 1097 } 1098 1099 /* 1100 * dbg_check_dir - check directory inode size and link count. 1101 * @c: UBIFS file-system description object 1102 * @dir: the directory to calculate size for 1103 * @size: the result is returned here 1104 * 1105 * This function makes sure that directory size and link count are correct. 1106 * Returns zero in case of success and a negative error code in case of 1107 * failure. 1108 * 1109 * Note, it is good idea to make sure the @dir->i_mutex is locked before 1110 * calling this function. 1111 */ 1112 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir) 1113 { 1114 unsigned int nlink = 2; 1115 union ubifs_key key; 1116 struct ubifs_dent_node *dent, *pdent = NULL; 1117 struct qstr nm = { .name = NULL }; 1118 loff_t size = UBIFS_INO_NODE_SZ; 1119 1120 if (!dbg_is_chk_gen(c)) 1121 return 0; 1122 1123 if (!S_ISDIR(dir->i_mode)) 1124 return 0; 1125 1126 lowest_dent_key(c, &key, dir->i_ino); 1127 while (1) { 1128 int err; 1129 1130 dent = ubifs_tnc_next_ent(c, &key, &nm); 1131 if (IS_ERR(dent)) { 1132 err = PTR_ERR(dent); 1133 if (err == -ENOENT) 1134 break; 1135 return err; 1136 } 1137 1138 nm.name = dent->name; 1139 nm.len = le16_to_cpu(dent->nlen); 1140 size += CALC_DENT_SIZE(nm.len); 1141 if (dent->type == UBIFS_ITYPE_DIR) 1142 nlink += 1; 1143 kfree(pdent); 1144 pdent = dent; 1145 key_read(c, &dent->key, &key); 1146 } 1147 kfree(pdent); 1148 1149 if (i_size_read(dir) != size) { 1150 ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu", 1151 dir->i_ino, (unsigned long long)i_size_read(dir), 1152 (unsigned long long)size); 1153 ubifs_dump_inode(c, dir); 1154 dump_stack(); 1155 return -EINVAL; 1156 } 1157 if (dir->i_nlink != nlink) { 1158 ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u", 1159 dir->i_ino, dir->i_nlink, nlink); 1160 ubifs_dump_inode(c, dir); 1161 dump_stack(); 1162 return -EINVAL; 1163 } 1164 1165 return 0; 1166 } 1167 1168 /** 1169 * dbg_check_key_order - make sure that colliding keys are properly ordered. 1170 * @c: UBIFS file-system description object 1171 * @zbr1: first zbranch 1172 * @zbr2: following zbranch 1173 * 1174 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of 1175 * names of the direntries/xentries which are referred by the keys. This 1176 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes 1177 * sure the name of direntry/xentry referred by @zbr1 is less than 1178 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not, 1179 * and a negative error code in case of failure. 1180 */ 1181 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1, 1182 struct ubifs_zbranch *zbr2) 1183 { 1184 int err, nlen1, nlen2, cmp; 1185 struct ubifs_dent_node *dent1, *dent2; 1186 union ubifs_key key; 1187 char key_buf[DBG_KEY_BUF_LEN]; 1188 1189 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key)); 1190 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 1191 if (!dent1) 1192 return -ENOMEM; 1193 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 1194 if (!dent2) { 1195 err = -ENOMEM; 1196 goto out_free; 1197 } 1198 1199 err = ubifs_tnc_read_node(c, zbr1, dent1); 1200 if (err) 1201 goto out_free; 1202 err = ubifs_validate_entry(c, dent1); 1203 if (err) 1204 goto out_free; 1205 1206 err = ubifs_tnc_read_node(c, zbr2, dent2); 1207 if (err) 1208 goto out_free; 1209 err = ubifs_validate_entry(c, dent2); 1210 if (err) 1211 goto out_free; 1212 1213 /* Make sure node keys are the same as in zbranch */ 1214 err = 1; 1215 key_read(c, &dent1->key, &key); 1216 if (keys_cmp(c, &zbr1->key, &key)) { 1217 ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum, 1218 zbr1->offs, dbg_snprintf_key(c, &key, key_buf, 1219 DBG_KEY_BUF_LEN)); 1220 ubifs_err(c, "but it should have key %s according to tnc", 1221 dbg_snprintf_key(c, &zbr1->key, key_buf, 1222 DBG_KEY_BUF_LEN)); 1223 ubifs_dump_node(c, dent1); 1224 goto out_free; 1225 } 1226 1227 key_read(c, &dent2->key, &key); 1228 if (keys_cmp(c, &zbr2->key, &key)) { 1229 ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum, 1230 zbr1->offs, dbg_snprintf_key(c, &key, key_buf, 1231 DBG_KEY_BUF_LEN)); 1232 ubifs_err(c, "but it should have key %s according to tnc", 1233 dbg_snprintf_key(c, &zbr2->key, key_buf, 1234 DBG_KEY_BUF_LEN)); 1235 ubifs_dump_node(c, dent2); 1236 goto out_free; 1237 } 1238 1239 nlen1 = le16_to_cpu(dent1->nlen); 1240 nlen2 = le16_to_cpu(dent2->nlen); 1241 1242 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2)); 1243 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) { 1244 err = 0; 1245 goto out_free; 1246 } 1247 if (cmp == 0 && nlen1 == nlen2) 1248 ubifs_err(c, "2 xent/dent nodes with the same name"); 1249 else 1250 ubifs_err(c, "bad order of colliding key %s", 1251 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 1252 1253 ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs); 1254 ubifs_dump_node(c, dent1); 1255 ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs); 1256 ubifs_dump_node(c, dent2); 1257 1258 out_free: 1259 kfree(dent2); 1260 kfree(dent1); 1261 return err; 1262 } 1263 1264 /** 1265 * dbg_check_znode - check if znode is all right. 1266 * @c: UBIFS file-system description object 1267 * @zbr: zbranch which points to this znode 1268 * 1269 * This function makes sure that znode referred to by @zbr is all right. 1270 * Returns zero if it is, and %-EINVAL if it is not. 1271 */ 1272 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr) 1273 { 1274 struct ubifs_znode *znode = zbr->znode; 1275 struct ubifs_znode *zp = znode->parent; 1276 int n, err, cmp; 1277 1278 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 1279 err = 1; 1280 goto out; 1281 } 1282 if (znode->level < 0) { 1283 err = 2; 1284 goto out; 1285 } 1286 if (znode->iip < 0 || znode->iip >= c->fanout) { 1287 err = 3; 1288 goto out; 1289 } 1290 1291 if (zbr->len == 0) 1292 /* Only dirty zbranch may have no on-flash nodes */ 1293 if (!ubifs_zn_dirty(znode)) { 1294 err = 4; 1295 goto out; 1296 } 1297 1298 if (ubifs_zn_dirty(znode)) { 1299 /* 1300 * If znode is dirty, its parent has to be dirty as well. The 1301 * order of the operation is important, so we have to have 1302 * memory barriers. 1303 */ 1304 smp_mb(); 1305 if (zp && !ubifs_zn_dirty(zp)) { 1306 /* 1307 * The dirty flag is atomic and is cleared outside the 1308 * TNC mutex, so znode's dirty flag may now have 1309 * been cleared. The child is always cleared before the 1310 * parent, so we just need to check again. 1311 */ 1312 smp_mb(); 1313 if (ubifs_zn_dirty(znode)) { 1314 err = 5; 1315 goto out; 1316 } 1317 } 1318 } 1319 1320 if (zp) { 1321 const union ubifs_key *min, *max; 1322 1323 if (znode->level != zp->level - 1) { 1324 err = 6; 1325 goto out; 1326 } 1327 1328 /* Make sure the 'parent' pointer in our znode is correct */ 1329 err = ubifs_search_zbranch(c, zp, &zbr->key, &n); 1330 if (!err) { 1331 /* This zbranch does not exist in the parent */ 1332 err = 7; 1333 goto out; 1334 } 1335 1336 if (znode->iip >= zp->child_cnt) { 1337 err = 8; 1338 goto out; 1339 } 1340 1341 if (znode->iip != n) { 1342 /* This may happen only in case of collisions */ 1343 if (keys_cmp(c, &zp->zbranch[n].key, 1344 &zp->zbranch[znode->iip].key)) { 1345 err = 9; 1346 goto out; 1347 } 1348 n = znode->iip; 1349 } 1350 1351 /* 1352 * Make sure that the first key in our znode is greater than or 1353 * equal to the key in the pointing zbranch. 1354 */ 1355 min = &zbr->key; 1356 cmp = keys_cmp(c, min, &znode->zbranch[0].key); 1357 if (cmp == 1) { 1358 err = 10; 1359 goto out; 1360 } 1361 1362 if (n + 1 < zp->child_cnt) { 1363 max = &zp->zbranch[n + 1].key; 1364 1365 /* 1366 * Make sure the last key in our znode is less or 1367 * equivalent than the key in the zbranch which goes 1368 * after our pointing zbranch. 1369 */ 1370 cmp = keys_cmp(c, max, 1371 &znode->zbranch[znode->child_cnt - 1].key); 1372 if (cmp == -1) { 1373 err = 11; 1374 goto out; 1375 } 1376 } 1377 } else { 1378 /* This may only be root znode */ 1379 if (zbr != &c->zroot) { 1380 err = 12; 1381 goto out; 1382 } 1383 } 1384 1385 /* 1386 * Make sure that next key is greater or equivalent then the previous 1387 * one. 1388 */ 1389 for (n = 1; n < znode->child_cnt; n++) { 1390 cmp = keys_cmp(c, &znode->zbranch[n - 1].key, 1391 &znode->zbranch[n].key); 1392 if (cmp > 0) { 1393 err = 13; 1394 goto out; 1395 } 1396 if (cmp == 0) { 1397 /* This can only be keys with colliding hash */ 1398 if (!is_hash_key(c, &znode->zbranch[n].key)) { 1399 err = 14; 1400 goto out; 1401 } 1402 1403 if (znode->level != 0 || c->replaying) 1404 continue; 1405 1406 /* 1407 * Colliding keys should follow binary order of 1408 * corresponding xentry/dentry names. 1409 */ 1410 err = dbg_check_key_order(c, &znode->zbranch[n - 1], 1411 &znode->zbranch[n]); 1412 if (err < 0) 1413 return err; 1414 if (err) { 1415 err = 15; 1416 goto out; 1417 } 1418 } 1419 } 1420 1421 for (n = 0; n < znode->child_cnt; n++) { 1422 if (!znode->zbranch[n].znode && 1423 (znode->zbranch[n].lnum == 0 || 1424 znode->zbranch[n].len == 0)) { 1425 err = 16; 1426 goto out; 1427 } 1428 1429 if (znode->zbranch[n].lnum != 0 && 1430 znode->zbranch[n].len == 0) { 1431 err = 17; 1432 goto out; 1433 } 1434 1435 if (znode->zbranch[n].lnum == 0 && 1436 znode->zbranch[n].len != 0) { 1437 err = 18; 1438 goto out; 1439 } 1440 1441 if (znode->zbranch[n].lnum == 0 && 1442 znode->zbranch[n].offs != 0) { 1443 err = 19; 1444 goto out; 1445 } 1446 1447 if (znode->level != 0 && znode->zbranch[n].znode) 1448 if (znode->zbranch[n].znode->parent != znode) { 1449 err = 20; 1450 goto out; 1451 } 1452 } 1453 1454 return 0; 1455 1456 out: 1457 ubifs_err(c, "failed, error %d", err); 1458 ubifs_msg(c, "dump of the znode"); 1459 ubifs_dump_znode(c, znode); 1460 if (zp) { 1461 ubifs_msg(c, "dump of the parent znode"); 1462 ubifs_dump_znode(c, zp); 1463 } 1464 dump_stack(); 1465 return -EINVAL; 1466 } 1467 #else 1468 1469 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir) 1470 { 1471 return 0; 1472 } 1473 1474 void dbg_debugfs_exit_fs(struct ubifs_info *c) 1475 { 1476 return; 1477 } 1478 1479 int ubifs_debugging_init(struct ubifs_info *c) 1480 { 1481 return 0; 1482 } 1483 void ubifs_debugging_exit(struct ubifs_info *c) 1484 { 1485 } 1486 int dbg_check_filesystem(struct ubifs_info *c) 1487 { 1488 return 0; 1489 } 1490 int dbg_debugfs_init_fs(struct ubifs_info *c) 1491 { 1492 return 0; 1493 } 1494 #endif 1495 1496 #ifndef __UBOOT__ 1497 /** 1498 * dbg_check_tnc - check TNC tree. 1499 * @c: UBIFS file-system description object 1500 * @extra: do extra checks that are possible at start commit 1501 * 1502 * This function traverses whole TNC tree and checks every znode. Returns zero 1503 * if everything is all right and %-EINVAL if something is wrong with TNC. 1504 */ 1505 int dbg_check_tnc(struct ubifs_info *c, int extra) 1506 { 1507 struct ubifs_znode *znode; 1508 long clean_cnt = 0, dirty_cnt = 0; 1509 int err, last; 1510 1511 if (!dbg_is_chk_index(c)) 1512 return 0; 1513 1514 ubifs_assert(mutex_is_locked(&c->tnc_mutex)); 1515 if (!c->zroot.znode) 1516 return 0; 1517 1518 znode = ubifs_tnc_postorder_first(c->zroot.znode); 1519 while (1) { 1520 struct ubifs_znode *prev; 1521 struct ubifs_zbranch *zbr; 1522 1523 if (!znode->parent) 1524 zbr = &c->zroot; 1525 else 1526 zbr = &znode->parent->zbranch[znode->iip]; 1527 1528 err = dbg_check_znode(c, zbr); 1529 if (err) 1530 return err; 1531 1532 if (extra) { 1533 if (ubifs_zn_dirty(znode)) 1534 dirty_cnt += 1; 1535 else 1536 clean_cnt += 1; 1537 } 1538 1539 prev = znode; 1540 znode = ubifs_tnc_postorder_next(znode); 1541 if (!znode) 1542 break; 1543 1544 /* 1545 * If the last key of this znode is equivalent to the first key 1546 * of the next znode (collision), then check order of the keys. 1547 */ 1548 last = prev->child_cnt - 1; 1549 if (prev->level == 0 && znode->level == 0 && !c->replaying && 1550 !keys_cmp(c, &prev->zbranch[last].key, 1551 &znode->zbranch[0].key)) { 1552 err = dbg_check_key_order(c, &prev->zbranch[last], 1553 &znode->zbranch[0]); 1554 if (err < 0) 1555 return err; 1556 if (err) { 1557 ubifs_msg(c, "first znode"); 1558 ubifs_dump_znode(c, prev); 1559 ubifs_msg(c, "second znode"); 1560 ubifs_dump_znode(c, znode); 1561 return -EINVAL; 1562 } 1563 } 1564 } 1565 1566 if (extra) { 1567 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) { 1568 ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld", 1569 atomic_long_read(&c->clean_zn_cnt), 1570 clean_cnt); 1571 return -EINVAL; 1572 } 1573 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) { 1574 ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld", 1575 atomic_long_read(&c->dirty_zn_cnt), 1576 dirty_cnt); 1577 return -EINVAL; 1578 } 1579 } 1580 1581 return 0; 1582 } 1583 #else 1584 int dbg_check_tnc(struct ubifs_info *c, int extra) 1585 { 1586 return 0; 1587 } 1588 #endif 1589 1590 /** 1591 * dbg_walk_index - walk the on-flash index. 1592 * @c: UBIFS file-system description object 1593 * @leaf_cb: called for each leaf node 1594 * @znode_cb: called for each indexing node 1595 * @priv: private data which is passed to callbacks 1596 * 1597 * This function walks the UBIFS index and calls the @leaf_cb for each leaf 1598 * node and @znode_cb for each indexing node. Returns zero in case of success 1599 * and a negative error code in case of failure. 1600 * 1601 * It would be better if this function removed every znode it pulled to into 1602 * the TNC, so that the behavior more closely matched the non-debugging 1603 * behavior. 1604 */ 1605 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb, 1606 dbg_znode_callback znode_cb, void *priv) 1607 { 1608 int err; 1609 struct ubifs_zbranch *zbr; 1610 struct ubifs_znode *znode, *child; 1611 1612 mutex_lock(&c->tnc_mutex); 1613 /* If the root indexing node is not in TNC - pull it */ 1614 if (!c->zroot.znode) { 1615 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1616 if (IS_ERR(c->zroot.znode)) { 1617 err = PTR_ERR(c->zroot.znode); 1618 c->zroot.znode = NULL; 1619 goto out_unlock; 1620 } 1621 } 1622 1623 /* 1624 * We are going to traverse the indexing tree in the postorder manner. 1625 * Go down and find the leftmost indexing node where we are going to 1626 * start from. 1627 */ 1628 znode = c->zroot.znode; 1629 while (znode->level > 0) { 1630 zbr = &znode->zbranch[0]; 1631 child = zbr->znode; 1632 if (!child) { 1633 child = ubifs_load_znode(c, zbr, znode, 0); 1634 if (IS_ERR(child)) { 1635 err = PTR_ERR(child); 1636 goto out_unlock; 1637 } 1638 zbr->znode = child; 1639 } 1640 1641 znode = child; 1642 } 1643 1644 /* Iterate over all indexing nodes */ 1645 while (1) { 1646 int idx; 1647 1648 cond_resched(); 1649 1650 if (znode_cb) { 1651 err = znode_cb(c, znode, priv); 1652 if (err) { 1653 ubifs_err(c, "znode checking function returned error %d", 1654 err); 1655 ubifs_dump_znode(c, znode); 1656 goto out_dump; 1657 } 1658 } 1659 if (leaf_cb && znode->level == 0) { 1660 for (idx = 0; idx < znode->child_cnt; idx++) { 1661 zbr = &znode->zbranch[idx]; 1662 err = leaf_cb(c, zbr, priv); 1663 if (err) { 1664 ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d", 1665 err, zbr->lnum, zbr->offs); 1666 goto out_dump; 1667 } 1668 } 1669 } 1670 1671 if (!znode->parent) 1672 break; 1673 1674 idx = znode->iip + 1; 1675 znode = znode->parent; 1676 if (idx < znode->child_cnt) { 1677 /* Switch to the next index in the parent */ 1678 zbr = &znode->zbranch[idx]; 1679 child = zbr->znode; 1680 if (!child) { 1681 child = ubifs_load_znode(c, zbr, znode, idx); 1682 if (IS_ERR(child)) { 1683 err = PTR_ERR(child); 1684 goto out_unlock; 1685 } 1686 zbr->znode = child; 1687 } 1688 znode = child; 1689 } else 1690 /* 1691 * This is the last child, switch to the parent and 1692 * continue. 1693 */ 1694 continue; 1695 1696 /* Go to the lowest leftmost znode in the new sub-tree */ 1697 while (znode->level > 0) { 1698 zbr = &znode->zbranch[0]; 1699 child = zbr->znode; 1700 if (!child) { 1701 child = ubifs_load_znode(c, zbr, znode, 0); 1702 if (IS_ERR(child)) { 1703 err = PTR_ERR(child); 1704 goto out_unlock; 1705 } 1706 zbr->znode = child; 1707 } 1708 znode = child; 1709 } 1710 } 1711 1712 mutex_unlock(&c->tnc_mutex); 1713 return 0; 1714 1715 out_dump: 1716 if (znode->parent) 1717 zbr = &znode->parent->zbranch[znode->iip]; 1718 else 1719 zbr = &c->zroot; 1720 ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs); 1721 ubifs_dump_znode(c, znode); 1722 out_unlock: 1723 mutex_unlock(&c->tnc_mutex); 1724 return err; 1725 } 1726 1727 /** 1728 * add_size - add znode size to partially calculated index size. 1729 * @c: UBIFS file-system description object 1730 * @znode: znode to add size for 1731 * @priv: partially calculated index size 1732 * 1733 * This is a helper function for 'dbg_check_idx_size()' which is called for 1734 * every indexing node and adds its size to the 'long long' variable pointed to 1735 * by @priv. 1736 */ 1737 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv) 1738 { 1739 long long *idx_size = priv; 1740 int add; 1741 1742 add = ubifs_idx_node_sz(c, znode->child_cnt); 1743 add = ALIGN(add, 8); 1744 *idx_size += add; 1745 return 0; 1746 } 1747 1748 /** 1749 * dbg_check_idx_size - check index size. 1750 * @c: UBIFS file-system description object 1751 * @idx_size: size to check 1752 * 1753 * This function walks the UBIFS index, calculates its size and checks that the 1754 * size is equivalent to @idx_size. Returns zero in case of success and a 1755 * negative error code in case of failure. 1756 */ 1757 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size) 1758 { 1759 int err; 1760 long long calc = 0; 1761 1762 if (!dbg_is_chk_index(c)) 1763 return 0; 1764 1765 err = dbg_walk_index(c, NULL, add_size, &calc); 1766 if (err) { 1767 ubifs_err(c, "error %d while walking the index", err); 1768 return err; 1769 } 1770 1771 if (calc != idx_size) { 1772 ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld", 1773 calc, idx_size); 1774 dump_stack(); 1775 return -EINVAL; 1776 } 1777 1778 return 0; 1779 } 1780 1781 #ifndef __UBOOT__ 1782 /** 1783 * struct fsck_inode - information about an inode used when checking the file-system. 1784 * @rb: link in the RB-tree of inodes 1785 * @inum: inode number 1786 * @mode: inode type, permissions, etc 1787 * @nlink: inode link count 1788 * @xattr_cnt: count of extended attributes 1789 * @references: how many directory/xattr entries refer this inode (calculated 1790 * while walking the index) 1791 * @calc_cnt: for directory inode count of child directories 1792 * @size: inode size (read from on-flash inode) 1793 * @xattr_sz: summary size of all extended attributes (read from on-flash 1794 * inode) 1795 * @calc_sz: for directories calculated directory size 1796 * @calc_xcnt: count of extended attributes 1797 * @calc_xsz: calculated summary size of all extended attributes 1798 * @xattr_nms: sum of lengths of all extended attribute names belonging to this 1799 * inode (read from on-flash inode) 1800 * @calc_xnms: calculated sum of lengths of all extended attribute names 1801 */ 1802 struct fsck_inode { 1803 struct rb_node rb; 1804 ino_t inum; 1805 umode_t mode; 1806 unsigned int nlink; 1807 unsigned int xattr_cnt; 1808 int references; 1809 int calc_cnt; 1810 long long size; 1811 unsigned int xattr_sz; 1812 long long calc_sz; 1813 long long calc_xcnt; 1814 long long calc_xsz; 1815 unsigned int xattr_nms; 1816 long long calc_xnms; 1817 }; 1818 1819 /** 1820 * struct fsck_data - private FS checking information. 1821 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects) 1822 */ 1823 struct fsck_data { 1824 struct rb_root inodes; 1825 }; 1826 1827 /** 1828 * add_inode - add inode information to RB-tree of inodes. 1829 * @c: UBIFS file-system description object 1830 * @fsckd: FS checking information 1831 * @ino: raw UBIFS inode to add 1832 * 1833 * This is a helper function for 'check_leaf()' which adds information about 1834 * inode @ino to the RB-tree of inodes. Returns inode information pointer in 1835 * case of success and a negative error code in case of failure. 1836 */ 1837 static struct fsck_inode *add_inode(struct ubifs_info *c, 1838 struct fsck_data *fsckd, 1839 struct ubifs_ino_node *ino) 1840 { 1841 struct rb_node **p, *parent = NULL; 1842 struct fsck_inode *fscki; 1843 ino_t inum = key_inum_flash(c, &ino->key); 1844 struct inode *inode; 1845 struct ubifs_inode *ui; 1846 1847 p = &fsckd->inodes.rb_node; 1848 while (*p) { 1849 parent = *p; 1850 fscki = rb_entry(parent, struct fsck_inode, rb); 1851 if (inum < fscki->inum) 1852 p = &(*p)->rb_left; 1853 else if (inum > fscki->inum) 1854 p = &(*p)->rb_right; 1855 else 1856 return fscki; 1857 } 1858 1859 if (inum > c->highest_inum) { 1860 ubifs_err(c, "too high inode number, max. is %lu", 1861 (unsigned long)c->highest_inum); 1862 return ERR_PTR(-EINVAL); 1863 } 1864 1865 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS); 1866 if (!fscki) 1867 return ERR_PTR(-ENOMEM); 1868 1869 inode = ilookup(c->vfs_sb, inum); 1870 1871 fscki->inum = inum; 1872 /* 1873 * If the inode is present in the VFS inode cache, use it instead of 1874 * the on-flash inode which might be out-of-date. E.g., the size might 1875 * be out-of-date. If we do not do this, the following may happen, for 1876 * example: 1877 * 1. A power cut happens 1878 * 2. We mount the file-system R/O, the replay process fixes up the 1879 * inode size in the VFS cache, but on on-flash. 1880 * 3. 'check_leaf()' fails because it hits a data node beyond inode 1881 * size. 1882 */ 1883 if (!inode) { 1884 fscki->nlink = le32_to_cpu(ino->nlink); 1885 fscki->size = le64_to_cpu(ino->size); 1886 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 1887 fscki->xattr_sz = le32_to_cpu(ino->xattr_size); 1888 fscki->xattr_nms = le32_to_cpu(ino->xattr_names); 1889 fscki->mode = le32_to_cpu(ino->mode); 1890 } else { 1891 ui = ubifs_inode(inode); 1892 fscki->nlink = inode->i_nlink; 1893 fscki->size = inode->i_size; 1894 fscki->xattr_cnt = ui->xattr_cnt; 1895 fscki->xattr_sz = ui->xattr_size; 1896 fscki->xattr_nms = ui->xattr_names; 1897 fscki->mode = inode->i_mode; 1898 iput(inode); 1899 } 1900 1901 if (S_ISDIR(fscki->mode)) { 1902 fscki->calc_sz = UBIFS_INO_NODE_SZ; 1903 fscki->calc_cnt = 2; 1904 } 1905 1906 rb_link_node(&fscki->rb, parent, p); 1907 rb_insert_color(&fscki->rb, &fsckd->inodes); 1908 1909 return fscki; 1910 } 1911 1912 /** 1913 * search_inode - search inode in the RB-tree of inodes. 1914 * @fsckd: FS checking information 1915 * @inum: inode number to search 1916 * 1917 * This is a helper function for 'check_leaf()' which searches inode @inum in 1918 * the RB-tree of inodes and returns an inode information pointer or %NULL if 1919 * the inode was not found. 1920 */ 1921 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum) 1922 { 1923 struct rb_node *p; 1924 struct fsck_inode *fscki; 1925 1926 p = fsckd->inodes.rb_node; 1927 while (p) { 1928 fscki = rb_entry(p, struct fsck_inode, rb); 1929 if (inum < fscki->inum) 1930 p = p->rb_left; 1931 else if (inum > fscki->inum) 1932 p = p->rb_right; 1933 else 1934 return fscki; 1935 } 1936 return NULL; 1937 } 1938 1939 /** 1940 * read_add_inode - read inode node and add it to RB-tree of inodes. 1941 * @c: UBIFS file-system description object 1942 * @fsckd: FS checking information 1943 * @inum: inode number to read 1944 * 1945 * This is a helper function for 'check_leaf()' which finds inode node @inum in 1946 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode 1947 * information pointer in case of success and a negative error code in case of 1948 * failure. 1949 */ 1950 static struct fsck_inode *read_add_inode(struct ubifs_info *c, 1951 struct fsck_data *fsckd, ino_t inum) 1952 { 1953 int n, err; 1954 union ubifs_key key; 1955 struct ubifs_znode *znode; 1956 struct ubifs_zbranch *zbr; 1957 struct ubifs_ino_node *ino; 1958 struct fsck_inode *fscki; 1959 1960 fscki = search_inode(fsckd, inum); 1961 if (fscki) 1962 return fscki; 1963 1964 ino_key_init(c, &key, inum); 1965 err = ubifs_lookup_level0(c, &key, &znode, &n); 1966 if (!err) { 1967 ubifs_err(c, "inode %lu not found in index", (unsigned long)inum); 1968 return ERR_PTR(-ENOENT); 1969 } else if (err < 0) { 1970 ubifs_err(c, "error %d while looking up inode %lu", 1971 err, (unsigned long)inum); 1972 return ERR_PTR(err); 1973 } 1974 1975 zbr = &znode->zbranch[n]; 1976 if (zbr->len < UBIFS_INO_NODE_SZ) { 1977 ubifs_err(c, "bad node %lu node length %d", 1978 (unsigned long)inum, zbr->len); 1979 return ERR_PTR(-EINVAL); 1980 } 1981 1982 ino = kmalloc(zbr->len, GFP_NOFS); 1983 if (!ino) 1984 return ERR_PTR(-ENOMEM); 1985 1986 err = ubifs_tnc_read_node(c, zbr, ino); 1987 if (err) { 1988 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d", 1989 zbr->lnum, zbr->offs, err); 1990 kfree(ino); 1991 return ERR_PTR(err); 1992 } 1993 1994 fscki = add_inode(c, fsckd, ino); 1995 kfree(ino); 1996 if (IS_ERR(fscki)) { 1997 ubifs_err(c, "error %ld while adding inode %lu node", 1998 PTR_ERR(fscki), (unsigned long)inum); 1999 return fscki; 2000 } 2001 2002 return fscki; 2003 } 2004 2005 /** 2006 * check_leaf - check leaf node. 2007 * @c: UBIFS file-system description object 2008 * @zbr: zbranch of the leaf node to check 2009 * @priv: FS checking information 2010 * 2011 * This is a helper function for 'dbg_check_filesystem()' which is called for 2012 * every single leaf node while walking the indexing tree. It checks that the 2013 * leaf node referred from the indexing tree exists, has correct CRC, and does 2014 * some other basic validation. This function is also responsible for building 2015 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also 2016 * calculates reference count, size, etc for each inode in order to later 2017 * compare them to the information stored inside the inodes and detect possible 2018 * inconsistencies. Returns zero in case of success and a negative error code 2019 * in case of failure. 2020 */ 2021 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr, 2022 void *priv) 2023 { 2024 ino_t inum; 2025 void *node; 2026 struct ubifs_ch *ch; 2027 int err, type = key_type(c, &zbr->key); 2028 struct fsck_inode *fscki; 2029 2030 if (zbr->len < UBIFS_CH_SZ) { 2031 ubifs_err(c, "bad leaf length %d (LEB %d:%d)", 2032 zbr->len, zbr->lnum, zbr->offs); 2033 return -EINVAL; 2034 } 2035 2036 node = kmalloc(zbr->len, GFP_NOFS); 2037 if (!node) 2038 return -ENOMEM; 2039 2040 err = ubifs_tnc_read_node(c, zbr, node); 2041 if (err) { 2042 ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d", 2043 zbr->lnum, zbr->offs, err); 2044 goto out_free; 2045 } 2046 2047 /* If this is an inode node, add it to RB-tree of inodes */ 2048 if (type == UBIFS_INO_KEY) { 2049 fscki = add_inode(c, priv, node); 2050 if (IS_ERR(fscki)) { 2051 err = PTR_ERR(fscki); 2052 ubifs_err(c, "error %d while adding inode node", err); 2053 goto out_dump; 2054 } 2055 goto out; 2056 } 2057 2058 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY && 2059 type != UBIFS_DATA_KEY) { 2060 ubifs_err(c, "unexpected node type %d at LEB %d:%d", 2061 type, zbr->lnum, zbr->offs); 2062 err = -EINVAL; 2063 goto out_free; 2064 } 2065 2066 ch = node; 2067 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) { 2068 ubifs_err(c, "too high sequence number, max. is %llu", 2069 c->max_sqnum); 2070 err = -EINVAL; 2071 goto out_dump; 2072 } 2073 2074 if (type == UBIFS_DATA_KEY) { 2075 long long blk_offs; 2076 struct ubifs_data_node *dn = node; 2077 2078 ubifs_assert(zbr->len >= UBIFS_DATA_NODE_SZ); 2079 2080 /* 2081 * Search the inode node this data node belongs to and insert 2082 * it to the RB-tree of inodes. 2083 */ 2084 inum = key_inum_flash(c, &dn->key); 2085 fscki = read_add_inode(c, priv, inum); 2086 if (IS_ERR(fscki)) { 2087 err = PTR_ERR(fscki); 2088 ubifs_err(c, "error %d while processing data node and trying to find inode node %lu", 2089 err, (unsigned long)inum); 2090 goto out_dump; 2091 } 2092 2093 /* Make sure the data node is within inode size */ 2094 blk_offs = key_block_flash(c, &dn->key); 2095 blk_offs <<= UBIFS_BLOCK_SHIFT; 2096 blk_offs += le32_to_cpu(dn->size); 2097 if (blk_offs > fscki->size) { 2098 ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld", 2099 zbr->lnum, zbr->offs, fscki->size); 2100 err = -EINVAL; 2101 goto out_dump; 2102 } 2103 } else { 2104 int nlen; 2105 struct ubifs_dent_node *dent = node; 2106 struct fsck_inode *fscki1; 2107 2108 ubifs_assert(zbr->len >= UBIFS_DENT_NODE_SZ); 2109 2110 err = ubifs_validate_entry(c, dent); 2111 if (err) 2112 goto out_dump; 2113 2114 /* 2115 * Search the inode node this entry refers to and the parent 2116 * inode node and insert them to the RB-tree of inodes. 2117 */ 2118 inum = le64_to_cpu(dent->inum); 2119 fscki = read_add_inode(c, priv, inum); 2120 if (IS_ERR(fscki)) { 2121 err = PTR_ERR(fscki); 2122 ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu", 2123 err, (unsigned long)inum); 2124 goto out_dump; 2125 } 2126 2127 /* Count how many direntries or xentries refers this inode */ 2128 fscki->references += 1; 2129 2130 inum = key_inum_flash(c, &dent->key); 2131 fscki1 = read_add_inode(c, priv, inum); 2132 if (IS_ERR(fscki1)) { 2133 err = PTR_ERR(fscki1); 2134 ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu", 2135 err, (unsigned long)inum); 2136 goto out_dump; 2137 } 2138 2139 nlen = le16_to_cpu(dent->nlen); 2140 if (type == UBIFS_XENT_KEY) { 2141 fscki1->calc_xcnt += 1; 2142 fscki1->calc_xsz += CALC_DENT_SIZE(nlen); 2143 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size); 2144 fscki1->calc_xnms += nlen; 2145 } else { 2146 fscki1->calc_sz += CALC_DENT_SIZE(nlen); 2147 if (dent->type == UBIFS_ITYPE_DIR) 2148 fscki1->calc_cnt += 1; 2149 } 2150 } 2151 2152 out: 2153 kfree(node); 2154 return 0; 2155 2156 out_dump: 2157 ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs); 2158 ubifs_dump_node(c, node); 2159 out_free: 2160 kfree(node); 2161 return err; 2162 } 2163 2164 /** 2165 * free_inodes - free RB-tree of inodes. 2166 * @fsckd: FS checking information 2167 */ 2168 static void free_inodes(struct fsck_data *fsckd) 2169 { 2170 struct fsck_inode *fscki, *n; 2171 2172 rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb) 2173 kfree(fscki); 2174 } 2175 2176 /** 2177 * check_inodes - checks all inodes. 2178 * @c: UBIFS file-system description object 2179 * @fsckd: FS checking information 2180 * 2181 * This is a helper function for 'dbg_check_filesystem()' which walks the 2182 * RB-tree of inodes after the index scan has been finished, and checks that 2183 * inode nlink, size, etc are correct. Returns zero if inodes are fine, 2184 * %-EINVAL if not, and a negative error code in case of failure. 2185 */ 2186 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd) 2187 { 2188 int n, err; 2189 union ubifs_key key; 2190 struct ubifs_znode *znode; 2191 struct ubifs_zbranch *zbr; 2192 struct ubifs_ino_node *ino; 2193 struct fsck_inode *fscki; 2194 struct rb_node *this = rb_first(&fsckd->inodes); 2195 2196 while (this) { 2197 fscki = rb_entry(this, struct fsck_inode, rb); 2198 this = rb_next(this); 2199 2200 if (S_ISDIR(fscki->mode)) { 2201 /* 2202 * Directories have to have exactly one reference (they 2203 * cannot have hardlinks), although root inode is an 2204 * exception. 2205 */ 2206 if (fscki->inum != UBIFS_ROOT_INO && 2207 fscki->references != 1) { 2208 ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1", 2209 (unsigned long)fscki->inum, 2210 fscki->references); 2211 goto out_dump; 2212 } 2213 if (fscki->inum == UBIFS_ROOT_INO && 2214 fscki->references != 0) { 2215 ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it", 2216 (unsigned long)fscki->inum, 2217 fscki->references); 2218 goto out_dump; 2219 } 2220 if (fscki->calc_sz != fscki->size) { 2221 ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld", 2222 (unsigned long)fscki->inum, 2223 fscki->size, fscki->calc_sz); 2224 goto out_dump; 2225 } 2226 if (fscki->calc_cnt != fscki->nlink) { 2227 ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d", 2228 (unsigned long)fscki->inum, 2229 fscki->nlink, fscki->calc_cnt); 2230 goto out_dump; 2231 } 2232 } else { 2233 if (fscki->references != fscki->nlink) { 2234 ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d", 2235 (unsigned long)fscki->inum, 2236 fscki->nlink, fscki->references); 2237 goto out_dump; 2238 } 2239 } 2240 if (fscki->xattr_sz != fscki->calc_xsz) { 2241 ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld", 2242 (unsigned long)fscki->inum, fscki->xattr_sz, 2243 fscki->calc_xsz); 2244 goto out_dump; 2245 } 2246 if (fscki->xattr_cnt != fscki->calc_xcnt) { 2247 ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld", 2248 (unsigned long)fscki->inum, 2249 fscki->xattr_cnt, fscki->calc_xcnt); 2250 goto out_dump; 2251 } 2252 if (fscki->xattr_nms != fscki->calc_xnms) { 2253 ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld", 2254 (unsigned long)fscki->inum, fscki->xattr_nms, 2255 fscki->calc_xnms); 2256 goto out_dump; 2257 } 2258 } 2259 2260 return 0; 2261 2262 out_dump: 2263 /* Read the bad inode and dump it */ 2264 ino_key_init(c, &key, fscki->inum); 2265 err = ubifs_lookup_level0(c, &key, &znode, &n); 2266 if (!err) { 2267 ubifs_err(c, "inode %lu not found in index", 2268 (unsigned long)fscki->inum); 2269 return -ENOENT; 2270 } else if (err < 0) { 2271 ubifs_err(c, "error %d while looking up inode %lu", 2272 err, (unsigned long)fscki->inum); 2273 return err; 2274 } 2275 2276 zbr = &znode->zbranch[n]; 2277 ino = kmalloc(zbr->len, GFP_NOFS); 2278 if (!ino) 2279 return -ENOMEM; 2280 2281 err = ubifs_tnc_read_node(c, zbr, ino); 2282 if (err) { 2283 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d", 2284 zbr->lnum, zbr->offs, err); 2285 kfree(ino); 2286 return err; 2287 } 2288 2289 ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d", 2290 (unsigned long)fscki->inum, zbr->lnum, zbr->offs); 2291 ubifs_dump_node(c, ino); 2292 kfree(ino); 2293 return -EINVAL; 2294 } 2295 2296 /** 2297 * dbg_check_filesystem - check the file-system. 2298 * @c: UBIFS file-system description object 2299 * 2300 * This function checks the file system, namely: 2301 * o makes sure that all leaf nodes exist and their CRCs are correct; 2302 * o makes sure inode nlink, size, xattr size/count are correct (for all 2303 * inodes). 2304 * 2305 * The function reads whole indexing tree and all nodes, so it is pretty 2306 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if 2307 * not, and a negative error code in case of failure. 2308 */ 2309 int dbg_check_filesystem(struct ubifs_info *c) 2310 { 2311 int err; 2312 struct fsck_data fsckd; 2313 2314 if (!dbg_is_chk_fs(c)) 2315 return 0; 2316 2317 fsckd.inodes = RB_ROOT; 2318 err = dbg_walk_index(c, check_leaf, NULL, &fsckd); 2319 if (err) 2320 goto out_free; 2321 2322 err = check_inodes(c, &fsckd); 2323 if (err) 2324 goto out_free; 2325 2326 free_inodes(&fsckd); 2327 return 0; 2328 2329 out_free: 2330 ubifs_err(c, "file-system check failed with error %d", err); 2331 dump_stack(); 2332 free_inodes(&fsckd); 2333 return err; 2334 } 2335 2336 /** 2337 * dbg_check_data_nodes_order - check that list of data nodes is sorted. 2338 * @c: UBIFS file-system description object 2339 * @head: the list of nodes ('struct ubifs_scan_node' objects) 2340 * 2341 * This function returns zero if the list of data nodes is sorted correctly, 2342 * and %-EINVAL if not. 2343 */ 2344 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head) 2345 { 2346 struct list_head *cur; 2347 struct ubifs_scan_node *sa, *sb; 2348 2349 if (!dbg_is_chk_gen(c)) 2350 return 0; 2351 2352 for (cur = head->next; cur->next != head; cur = cur->next) { 2353 ino_t inuma, inumb; 2354 uint32_t blka, blkb; 2355 2356 cond_resched(); 2357 sa = container_of(cur, struct ubifs_scan_node, list); 2358 sb = container_of(cur->next, struct ubifs_scan_node, list); 2359 2360 if (sa->type != UBIFS_DATA_NODE) { 2361 ubifs_err(c, "bad node type %d", sa->type); 2362 ubifs_dump_node(c, sa->node); 2363 return -EINVAL; 2364 } 2365 if (sb->type != UBIFS_DATA_NODE) { 2366 ubifs_err(c, "bad node type %d", sb->type); 2367 ubifs_dump_node(c, sb->node); 2368 return -EINVAL; 2369 } 2370 2371 inuma = key_inum(c, &sa->key); 2372 inumb = key_inum(c, &sb->key); 2373 2374 if (inuma < inumb) 2375 continue; 2376 if (inuma > inumb) { 2377 ubifs_err(c, "larger inum %lu goes before inum %lu", 2378 (unsigned long)inuma, (unsigned long)inumb); 2379 goto error_dump; 2380 } 2381 2382 blka = key_block(c, &sa->key); 2383 blkb = key_block(c, &sb->key); 2384 2385 if (blka > blkb) { 2386 ubifs_err(c, "larger block %u goes before %u", blka, blkb); 2387 goto error_dump; 2388 } 2389 if (blka == blkb) { 2390 ubifs_err(c, "two data nodes for the same block"); 2391 goto error_dump; 2392 } 2393 } 2394 2395 return 0; 2396 2397 error_dump: 2398 ubifs_dump_node(c, sa->node); 2399 ubifs_dump_node(c, sb->node); 2400 return -EINVAL; 2401 } 2402 2403 /** 2404 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted. 2405 * @c: UBIFS file-system description object 2406 * @head: the list of nodes ('struct ubifs_scan_node' objects) 2407 * 2408 * This function returns zero if the list of non-data nodes is sorted correctly, 2409 * and %-EINVAL if not. 2410 */ 2411 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head) 2412 { 2413 struct list_head *cur; 2414 struct ubifs_scan_node *sa, *sb; 2415 2416 if (!dbg_is_chk_gen(c)) 2417 return 0; 2418 2419 for (cur = head->next; cur->next != head; cur = cur->next) { 2420 ino_t inuma, inumb; 2421 uint32_t hasha, hashb; 2422 2423 cond_resched(); 2424 sa = container_of(cur, struct ubifs_scan_node, list); 2425 sb = container_of(cur->next, struct ubifs_scan_node, list); 2426 2427 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE && 2428 sa->type != UBIFS_XENT_NODE) { 2429 ubifs_err(c, "bad node type %d", sa->type); 2430 ubifs_dump_node(c, sa->node); 2431 return -EINVAL; 2432 } 2433 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE && 2434 sa->type != UBIFS_XENT_NODE) { 2435 ubifs_err(c, "bad node type %d", sb->type); 2436 ubifs_dump_node(c, sb->node); 2437 return -EINVAL; 2438 } 2439 2440 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { 2441 ubifs_err(c, "non-inode node goes before inode node"); 2442 goto error_dump; 2443 } 2444 2445 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE) 2446 continue; 2447 2448 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { 2449 /* Inode nodes are sorted in descending size order */ 2450 if (sa->len < sb->len) { 2451 ubifs_err(c, "smaller inode node goes first"); 2452 goto error_dump; 2453 } 2454 continue; 2455 } 2456 2457 /* 2458 * This is either a dentry or xentry, which should be sorted in 2459 * ascending (parent ino, hash) order. 2460 */ 2461 inuma = key_inum(c, &sa->key); 2462 inumb = key_inum(c, &sb->key); 2463 2464 if (inuma < inumb) 2465 continue; 2466 if (inuma > inumb) { 2467 ubifs_err(c, "larger inum %lu goes before inum %lu", 2468 (unsigned long)inuma, (unsigned long)inumb); 2469 goto error_dump; 2470 } 2471 2472 hasha = key_block(c, &sa->key); 2473 hashb = key_block(c, &sb->key); 2474 2475 if (hasha > hashb) { 2476 ubifs_err(c, "larger hash %u goes before %u", 2477 hasha, hashb); 2478 goto error_dump; 2479 } 2480 } 2481 2482 return 0; 2483 2484 error_dump: 2485 ubifs_msg(c, "dumping first node"); 2486 ubifs_dump_node(c, sa->node); 2487 ubifs_msg(c, "dumping second node"); 2488 ubifs_dump_node(c, sb->node); 2489 return -EINVAL; 2490 return 0; 2491 } 2492 2493 static inline int chance(unsigned int n, unsigned int out_of) 2494 { 2495 return !!((prandom_u32() % out_of) + 1 <= n); 2496 2497 } 2498 2499 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write) 2500 { 2501 struct ubifs_debug_info *d = c->dbg; 2502 2503 ubifs_assert(dbg_is_tst_rcvry(c)); 2504 2505 if (!d->pc_cnt) { 2506 /* First call - decide delay to the power cut */ 2507 if (chance(1, 2)) { 2508 unsigned long delay; 2509 2510 if (chance(1, 2)) { 2511 d->pc_delay = 1; 2512 /* Fail within 1 minute */ 2513 delay = prandom_u32() % 60000; 2514 d->pc_timeout = jiffies; 2515 d->pc_timeout += msecs_to_jiffies(delay); 2516 ubifs_warn(c, "failing after %lums", delay); 2517 } else { 2518 d->pc_delay = 2; 2519 delay = prandom_u32() % 10000; 2520 /* Fail within 10000 operations */ 2521 d->pc_cnt_max = delay; 2522 ubifs_warn(c, "failing after %lu calls", delay); 2523 } 2524 } 2525 2526 d->pc_cnt += 1; 2527 } 2528 2529 /* Determine if failure delay has expired */ 2530 if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout)) 2531 return 0; 2532 if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max) 2533 return 0; 2534 2535 if (lnum == UBIFS_SB_LNUM) { 2536 if (write && chance(1, 2)) 2537 return 0; 2538 if (chance(19, 20)) 2539 return 0; 2540 ubifs_warn(c, "failing in super block LEB %d", lnum); 2541 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) { 2542 if (chance(19, 20)) 2543 return 0; 2544 ubifs_warn(c, "failing in master LEB %d", lnum); 2545 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) { 2546 if (write && chance(99, 100)) 2547 return 0; 2548 if (chance(399, 400)) 2549 return 0; 2550 ubifs_warn(c, "failing in log LEB %d", lnum); 2551 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) { 2552 if (write && chance(7, 8)) 2553 return 0; 2554 if (chance(19, 20)) 2555 return 0; 2556 ubifs_warn(c, "failing in LPT LEB %d", lnum); 2557 } else if (lnum >= c->orph_first && lnum <= c->orph_last) { 2558 if (write && chance(1, 2)) 2559 return 0; 2560 if (chance(9, 10)) 2561 return 0; 2562 ubifs_warn(c, "failing in orphan LEB %d", lnum); 2563 } else if (lnum == c->ihead_lnum) { 2564 if (chance(99, 100)) 2565 return 0; 2566 ubifs_warn(c, "failing in index head LEB %d", lnum); 2567 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) { 2568 if (chance(9, 10)) 2569 return 0; 2570 ubifs_warn(c, "failing in GC head LEB %d", lnum); 2571 } else if (write && !RB_EMPTY_ROOT(&c->buds) && 2572 !ubifs_search_bud(c, lnum)) { 2573 if (chance(19, 20)) 2574 return 0; 2575 ubifs_warn(c, "failing in non-bud LEB %d", lnum); 2576 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND || 2577 c->cmt_state == COMMIT_RUNNING_REQUIRED) { 2578 if (chance(999, 1000)) 2579 return 0; 2580 ubifs_warn(c, "failing in bud LEB %d commit running", lnum); 2581 } else { 2582 if (chance(9999, 10000)) 2583 return 0; 2584 ubifs_warn(c, "failing in bud LEB %d commit not running", lnum); 2585 } 2586 2587 d->pc_happened = 1; 2588 ubifs_warn(c, "========== Power cut emulated =========="); 2589 dump_stack(); 2590 return 1; 2591 } 2592 2593 static int corrupt_data(const struct ubifs_info *c, const void *buf, 2594 unsigned int len) 2595 { 2596 unsigned int from, to, ffs = chance(1, 2); 2597 unsigned char *p = (void *)buf; 2598 2599 from = prandom_u32() % len; 2600 /* Corruption span max to end of write unit */ 2601 to = min(len, ALIGN(from + 1, c->max_write_size)); 2602 2603 ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1, 2604 ffs ? "0xFFs" : "random data"); 2605 2606 if (ffs) 2607 memset(p + from, 0xFF, to - from); 2608 else 2609 prandom_bytes(p + from, to - from); 2610 2611 return to; 2612 } 2613 2614 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf, 2615 int offs, int len) 2616 { 2617 int err, failing; 2618 2619 if (c->dbg->pc_happened) 2620 return -EROFS; 2621 2622 failing = power_cut_emulated(c, lnum, 1); 2623 if (failing) { 2624 len = corrupt_data(c, buf, len); 2625 ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)", 2626 len, lnum, offs); 2627 } 2628 err = ubi_leb_write(c->ubi, lnum, buf, offs, len); 2629 if (err) 2630 return err; 2631 if (failing) 2632 return -EROFS; 2633 return 0; 2634 } 2635 2636 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf, 2637 int len) 2638 { 2639 int err; 2640 2641 if (c->dbg->pc_happened) 2642 return -EROFS; 2643 if (power_cut_emulated(c, lnum, 1)) 2644 return -EROFS; 2645 err = ubi_leb_change(c->ubi, lnum, buf, len); 2646 if (err) 2647 return err; 2648 if (power_cut_emulated(c, lnum, 1)) 2649 return -EROFS; 2650 return 0; 2651 } 2652 2653 int dbg_leb_unmap(struct ubifs_info *c, int lnum) 2654 { 2655 int err; 2656 2657 if (c->dbg->pc_happened) 2658 return -EROFS; 2659 if (power_cut_emulated(c, lnum, 0)) 2660 return -EROFS; 2661 err = ubi_leb_unmap(c->ubi, lnum); 2662 if (err) 2663 return err; 2664 if (power_cut_emulated(c, lnum, 0)) 2665 return -EROFS; 2666 return 0; 2667 } 2668 2669 int dbg_leb_map(struct ubifs_info *c, int lnum) 2670 { 2671 int err; 2672 2673 if (c->dbg->pc_happened) 2674 return -EROFS; 2675 if (power_cut_emulated(c, lnum, 0)) 2676 return -EROFS; 2677 err = ubi_leb_map(c->ubi, lnum); 2678 if (err) 2679 return err; 2680 if (power_cut_emulated(c, lnum, 0)) 2681 return -EROFS; 2682 return 0; 2683 } 2684 2685 /* 2686 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which 2687 * contain the stuff specific to particular file-system mounts. 2688 */ 2689 static struct dentry *dfs_rootdir; 2690 2691 static int dfs_file_open(struct inode *inode, struct file *file) 2692 { 2693 file->private_data = inode->i_private; 2694 return nonseekable_open(inode, file); 2695 } 2696 2697 /** 2698 * provide_user_output - provide output to the user reading a debugfs file. 2699 * @val: boolean value for the answer 2700 * @u: the buffer to store the answer at 2701 * @count: size of the buffer 2702 * @ppos: position in the @u output buffer 2703 * 2704 * This is a simple helper function which stores @val boolean value in the user 2705 * buffer when the user reads one of UBIFS debugfs files. Returns amount of 2706 * bytes written to @u in case of success and a negative error code in case of 2707 * failure. 2708 */ 2709 static int provide_user_output(int val, char __user *u, size_t count, 2710 loff_t *ppos) 2711 { 2712 char buf[3]; 2713 2714 if (val) 2715 buf[0] = '1'; 2716 else 2717 buf[0] = '0'; 2718 buf[1] = '\n'; 2719 buf[2] = 0x00; 2720 2721 return simple_read_from_buffer(u, count, ppos, buf, 2); 2722 } 2723 2724 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count, 2725 loff_t *ppos) 2726 { 2727 struct dentry *dent = file->f_path.dentry; 2728 struct ubifs_info *c = file->private_data; 2729 struct ubifs_debug_info *d = c->dbg; 2730 int val; 2731 2732 if (dent == d->dfs_chk_gen) 2733 val = d->chk_gen; 2734 else if (dent == d->dfs_chk_index) 2735 val = d->chk_index; 2736 else if (dent == d->dfs_chk_orph) 2737 val = d->chk_orph; 2738 else if (dent == d->dfs_chk_lprops) 2739 val = d->chk_lprops; 2740 else if (dent == d->dfs_chk_fs) 2741 val = d->chk_fs; 2742 else if (dent == d->dfs_tst_rcvry) 2743 val = d->tst_rcvry; 2744 else if (dent == d->dfs_ro_error) 2745 val = c->ro_error; 2746 else 2747 return -EINVAL; 2748 2749 return provide_user_output(val, u, count, ppos); 2750 } 2751 2752 /** 2753 * interpret_user_input - interpret user debugfs file input. 2754 * @u: user-provided buffer with the input 2755 * @count: buffer size 2756 * 2757 * This is a helper function which interpret user input to a boolean UBIFS 2758 * debugfs file. Returns %0 or %1 in case of success and a negative error code 2759 * in case of failure. 2760 */ 2761 static int interpret_user_input(const char __user *u, size_t count) 2762 { 2763 size_t buf_size; 2764 char buf[8]; 2765 2766 buf_size = min_t(size_t, count, (sizeof(buf) - 1)); 2767 if (copy_from_user(buf, u, buf_size)) 2768 return -EFAULT; 2769 2770 if (buf[0] == '1') 2771 return 1; 2772 else if (buf[0] == '0') 2773 return 0; 2774 2775 return -EINVAL; 2776 } 2777 2778 static ssize_t dfs_file_write(struct file *file, const char __user *u, 2779 size_t count, loff_t *ppos) 2780 { 2781 struct ubifs_info *c = file->private_data; 2782 struct ubifs_debug_info *d = c->dbg; 2783 struct dentry *dent = file->f_path.dentry; 2784 int val; 2785 2786 /* 2787 * TODO: this is racy - the file-system might have already been 2788 * unmounted and we'd oops in this case. The plan is to fix it with 2789 * help of 'iterate_supers_type()' which we should have in v3.0: when 2790 * a debugfs opened, we rember FS's UUID in file->private_data. Then 2791 * whenever we access the FS via a debugfs file, we iterate all UBIFS 2792 * superblocks and fine the one with the same UUID, and take the 2793 * locking right. 2794 * 2795 * The other way to go suggested by Al Viro is to create a separate 2796 * 'ubifs-debug' file-system instead. 2797 */ 2798 if (file->f_path.dentry == d->dfs_dump_lprops) { 2799 ubifs_dump_lprops(c); 2800 return count; 2801 } 2802 if (file->f_path.dentry == d->dfs_dump_budg) { 2803 ubifs_dump_budg(c, &c->bi); 2804 return count; 2805 } 2806 if (file->f_path.dentry == d->dfs_dump_tnc) { 2807 mutex_lock(&c->tnc_mutex); 2808 ubifs_dump_tnc(c); 2809 mutex_unlock(&c->tnc_mutex); 2810 return count; 2811 } 2812 2813 val = interpret_user_input(u, count); 2814 if (val < 0) 2815 return val; 2816 2817 if (dent == d->dfs_chk_gen) 2818 d->chk_gen = val; 2819 else if (dent == d->dfs_chk_index) 2820 d->chk_index = val; 2821 else if (dent == d->dfs_chk_orph) 2822 d->chk_orph = val; 2823 else if (dent == d->dfs_chk_lprops) 2824 d->chk_lprops = val; 2825 else if (dent == d->dfs_chk_fs) 2826 d->chk_fs = val; 2827 else if (dent == d->dfs_tst_rcvry) 2828 d->tst_rcvry = val; 2829 else if (dent == d->dfs_ro_error) 2830 c->ro_error = !!val; 2831 else 2832 return -EINVAL; 2833 2834 return count; 2835 } 2836 2837 static const struct file_operations dfs_fops = { 2838 .open = dfs_file_open, 2839 .read = dfs_file_read, 2840 .write = dfs_file_write, 2841 .owner = THIS_MODULE, 2842 .llseek = no_llseek, 2843 }; 2844 2845 /** 2846 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance. 2847 * @c: UBIFS file-system description object 2848 * 2849 * This function creates all debugfs files for this instance of UBIFS. Returns 2850 * zero in case of success and a negative error code in case of failure. 2851 * 2852 * Note, the only reason we have not merged this function with the 2853 * 'ubifs_debugging_init()' function is because it is better to initialize 2854 * debugfs interfaces at the very end of the mount process, and remove them at 2855 * the very beginning of the mount process. 2856 */ 2857 int dbg_debugfs_init_fs(struct ubifs_info *c) 2858 { 2859 int err, n; 2860 const char *fname; 2861 struct dentry *dent; 2862 struct ubifs_debug_info *d = c->dbg; 2863 2864 if (!IS_ENABLED(CONFIG_DEBUG_FS)) 2865 return 0; 2866 2867 n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME, 2868 c->vi.ubi_num, c->vi.vol_id); 2869 if (n == UBIFS_DFS_DIR_LEN) { 2870 /* The array size is too small */ 2871 fname = UBIFS_DFS_DIR_NAME; 2872 dent = ERR_PTR(-EINVAL); 2873 goto out; 2874 } 2875 2876 fname = d->dfs_dir_name; 2877 dent = debugfs_create_dir(fname, dfs_rootdir); 2878 if (IS_ERR_OR_NULL(dent)) 2879 goto out; 2880 d->dfs_dir = dent; 2881 2882 fname = "dump_lprops"; 2883 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); 2884 if (IS_ERR_OR_NULL(dent)) 2885 goto out_remove; 2886 d->dfs_dump_lprops = dent; 2887 2888 fname = "dump_budg"; 2889 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); 2890 if (IS_ERR_OR_NULL(dent)) 2891 goto out_remove; 2892 d->dfs_dump_budg = dent; 2893 2894 fname = "dump_tnc"; 2895 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); 2896 if (IS_ERR_OR_NULL(dent)) 2897 goto out_remove; 2898 d->dfs_dump_tnc = dent; 2899 2900 fname = "chk_general"; 2901 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2902 &dfs_fops); 2903 if (IS_ERR_OR_NULL(dent)) 2904 goto out_remove; 2905 d->dfs_chk_gen = dent; 2906 2907 fname = "chk_index"; 2908 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2909 &dfs_fops); 2910 if (IS_ERR_OR_NULL(dent)) 2911 goto out_remove; 2912 d->dfs_chk_index = dent; 2913 2914 fname = "chk_orphans"; 2915 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2916 &dfs_fops); 2917 if (IS_ERR_OR_NULL(dent)) 2918 goto out_remove; 2919 d->dfs_chk_orph = dent; 2920 2921 fname = "chk_lprops"; 2922 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2923 &dfs_fops); 2924 if (IS_ERR_OR_NULL(dent)) 2925 goto out_remove; 2926 d->dfs_chk_lprops = dent; 2927 2928 fname = "chk_fs"; 2929 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2930 &dfs_fops); 2931 if (IS_ERR_OR_NULL(dent)) 2932 goto out_remove; 2933 d->dfs_chk_fs = dent; 2934 2935 fname = "tst_recovery"; 2936 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2937 &dfs_fops); 2938 if (IS_ERR_OR_NULL(dent)) 2939 goto out_remove; 2940 d->dfs_tst_rcvry = dent; 2941 2942 fname = "ro_error"; 2943 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2944 &dfs_fops); 2945 if (IS_ERR_OR_NULL(dent)) 2946 goto out_remove; 2947 d->dfs_ro_error = dent; 2948 2949 return 0; 2950 2951 out_remove: 2952 debugfs_remove_recursive(d->dfs_dir); 2953 out: 2954 err = dent ? PTR_ERR(dent) : -ENODEV; 2955 ubifs_err(c, "cannot create \"%s\" debugfs file or directory, error %d\n", 2956 fname, err); 2957 return err; 2958 } 2959 2960 /** 2961 * dbg_debugfs_exit_fs - remove all debugfs files. 2962 * @c: UBIFS file-system description object 2963 */ 2964 void dbg_debugfs_exit_fs(struct ubifs_info *c) 2965 { 2966 if (IS_ENABLED(CONFIG_DEBUG_FS)) 2967 debugfs_remove_recursive(c->dbg->dfs_dir); 2968 } 2969 2970 struct ubifs_global_debug_info ubifs_dbg; 2971 2972 static struct dentry *dfs_chk_gen; 2973 static struct dentry *dfs_chk_index; 2974 static struct dentry *dfs_chk_orph; 2975 static struct dentry *dfs_chk_lprops; 2976 static struct dentry *dfs_chk_fs; 2977 static struct dentry *dfs_tst_rcvry; 2978 2979 static ssize_t dfs_global_file_read(struct file *file, char __user *u, 2980 size_t count, loff_t *ppos) 2981 { 2982 struct dentry *dent = file->f_path.dentry; 2983 int val; 2984 2985 if (dent == dfs_chk_gen) 2986 val = ubifs_dbg.chk_gen; 2987 else if (dent == dfs_chk_index) 2988 val = ubifs_dbg.chk_index; 2989 else if (dent == dfs_chk_orph) 2990 val = ubifs_dbg.chk_orph; 2991 else if (dent == dfs_chk_lprops) 2992 val = ubifs_dbg.chk_lprops; 2993 else if (dent == dfs_chk_fs) 2994 val = ubifs_dbg.chk_fs; 2995 else if (dent == dfs_tst_rcvry) 2996 val = ubifs_dbg.tst_rcvry; 2997 else 2998 return -EINVAL; 2999 3000 return provide_user_output(val, u, count, ppos); 3001 } 3002 3003 static ssize_t dfs_global_file_write(struct file *file, const char __user *u, 3004 size_t count, loff_t *ppos) 3005 { 3006 struct dentry *dent = file->f_path.dentry; 3007 int val; 3008 3009 val = interpret_user_input(u, count); 3010 if (val < 0) 3011 return val; 3012 3013 if (dent == dfs_chk_gen) 3014 ubifs_dbg.chk_gen = val; 3015 else if (dent == dfs_chk_index) 3016 ubifs_dbg.chk_index = val; 3017 else if (dent == dfs_chk_orph) 3018 ubifs_dbg.chk_orph = val; 3019 else if (dent == dfs_chk_lprops) 3020 ubifs_dbg.chk_lprops = val; 3021 else if (dent == dfs_chk_fs) 3022 ubifs_dbg.chk_fs = val; 3023 else if (dent == dfs_tst_rcvry) 3024 ubifs_dbg.tst_rcvry = val; 3025 else 3026 return -EINVAL; 3027 3028 return count; 3029 } 3030 3031 static const struct file_operations dfs_global_fops = { 3032 .read = dfs_global_file_read, 3033 .write = dfs_global_file_write, 3034 .owner = THIS_MODULE, 3035 .llseek = no_llseek, 3036 }; 3037 3038 /** 3039 * dbg_debugfs_init - initialize debugfs file-system. 3040 * 3041 * UBIFS uses debugfs file-system to expose various debugging knobs to 3042 * user-space. This function creates "ubifs" directory in the debugfs 3043 * file-system. Returns zero in case of success and a negative error code in 3044 * case of failure. 3045 */ 3046 int dbg_debugfs_init(void) 3047 { 3048 int err; 3049 const char *fname; 3050 struct dentry *dent; 3051 3052 if (!IS_ENABLED(CONFIG_DEBUG_FS)) 3053 return 0; 3054 3055 fname = "ubifs"; 3056 dent = debugfs_create_dir(fname, NULL); 3057 if (IS_ERR_OR_NULL(dent)) 3058 goto out; 3059 dfs_rootdir = dent; 3060 3061 fname = "chk_general"; 3062 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3063 &dfs_global_fops); 3064 if (IS_ERR_OR_NULL(dent)) 3065 goto out_remove; 3066 dfs_chk_gen = dent; 3067 3068 fname = "chk_index"; 3069 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3070 &dfs_global_fops); 3071 if (IS_ERR_OR_NULL(dent)) 3072 goto out_remove; 3073 dfs_chk_index = dent; 3074 3075 fname = "chk_orphans"; 3076 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3077 &dfs_global_fops); 3078 if (IS_ERR_OR_NULL(dent)) 3079 goto out_remove; 3080 dfs_chk_orph = dent; 3081 3082 fname = "chk_lprops"; 3083 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3084 &dfs_global_fops); 3085 if (IS_ERR_OR_NULL(dent)) 3086 goto out_remove; 3087 dfs_chk_lprops = dent; 3088 3089 fname = "chk_fs"; 3090 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3091 &dfs_global_fops); 3092 if (IS_ERR_OR_NULL(dent)) 3093 goto out_remove; 3094 dfs_chk_fs = dent; 3095 3096 fname = "tst_recovery"; 3097 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3098 &dfs_global_fops); 3099 if (IS_ERR_OR_NULL(dent)) 3100 goto out_remove; 3101 dfs_tst_rcvry = dent; 3102 3103 return 0; 3104 3105 out_remove: 3106 debugfs_remove_recursive(dfs_rootdir); 3107 out: 3108 err = dent ? PTR_ERR(dent) : -ENODEV; 3109 pr_err("UBIFS error (pid %d): cannot create \"%s\" debugfs file or directory, error %d\n", 3110 current->pid, fname, err); 3111 return err; 3112 } 3113 3114 /** 3115 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system. 3116 */ 3117 void dbg_debugfs_exit(void) 3118 { 3119 if (IS_ENABLED(CONFIG_DEBUG_FS)) 3120 debugfs_remove_recursive(dfs_rootdir); 3121 } 3122 3123 /** 3124 * ubifs_debugging_init - initialize UBIFS debugging. 3125 * @c: UBIFS file-system description object 3126 * 3127 * This function initializes debugging-related data for the file system. 3128 * Returns zero in case of success and a negative error code in case of 3129 * failure. 3130 */ 3131 int ubifs_debugging_init(struct ubifs_info *c) 3132 { 3133 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL); 3134 if (!c->dbg) 3135 return -ENOMEM; 3136 3137 return 0; 3138 } 3139 3140 /** 3141 * ubifs_debugging_exit - free debugging data. 3142 * @c: UBIFS file-system description object 3143 */ 3144 void ubifs_debugging_exit(struct ubifs_info *c) 3145 { 3146 kfree(c->dbg); 3147 } 3148 #endif 3149