1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * SPDX-License-Identifier: GPL-2.0+ 7 * 8 * Authors: Adrian Hunter 9 * Artem Bityutskiy (Битюцкий Артём) 10 */ 11 12 /* 13 * This file implements the budgeting sub-system which is responsible for UBIFS 14 * space management. 15 * 16 * Factors such as compression, wasted space at the ends of LEBs, space in other 17 * journal heads, the effect of updates on the index, and so on, make it 18 * impossible to accurately predict the amount of space needed. Consequently 19 * approximations are used. 20 */ 21 22 #include "ubifs.h" 23 #ifndef __UBOOT__ 24 #include <linux/writeback.h> 25 #else 26 #include <linux/err.h> 27 #endif 28 #include <linux/math64.h> 29 30 /* 31 * When pessimistic budget calculations say that there is no enough space, 32 * UBIFS starts writing back dirty inodes and pages, doing garbage collection, 33 * or committing. The below constant defines maximum number of times UBIFS 34 * repeats the operations. 35 */ 36 #define MAX_MKSPC_RETRIES 3 37 38 /* 39 * The below constant defines amount of dirty pages which should be written 40 * back at when trying to shrink the liability. 41 */ 42 #define NR_TO_WRITE 16 43 44 #ifndef __UBOOT__ 45 /** 46 * shrink_liability - write-back some dirty pages/inodes. 47 * @c: UBIFS file-system description object 48 * @nr_to_write: how many dirty pages to write-back 49 * 50 * This function shrinks UBIFS liability by means of writing back some amount 51 * of dirty inodes and their pages. 52 * 53 * Note, this function synchronizes even VFS inodes which are locked 54 * (@i_mutex) by the caller of the budgeting function, because write-back does 55 * not touch @i_mutex. 56 */ 57 static void shrink_liability(struct ubifs_info *c, int nr_to_write) 58 { 59 down_read(&c->vfs_sb->s_umount); 60 writeback_inodes_sb(c->vfs_sb, WB_REASON_FS_FREE_SPACE); 61 up_read(&c->vfs_sb->s_umount); 62 } 63 64 /** 65 * run_gc - run garbage collector. 66 * @c: UBIFS file-system description object 67 * 68 * This function runs garbage collector to make some more free space. Returns 69 * zero if a free LEB has been produced, %-EAGAIN if commit is required, and a 70 * negative error code in case of failure. 71 */ 72 static int run_gc(struct ubifs_info *c) 73 { 74 int err, lnum; 75 76 /* Make some free space by garbage-collecting dirty space */ 77 down_read(&c->commit_sem); 78 lnum = ubifs_garbage_collect(c, 1); 79 up_read(&c->commit_sem); 80 if (lnum < 0) 81 return lnum; 82 83 /* GC freed one LEB, return it to lprops */ 84 dbg_budg("GC freed LEB %d", lnum); 85 err = ubifs_return_leb(c, lnum); 86 if (err) 87 return err; 88 return 0; 89 } 90 91 /** 92 * get_liability - calculate current liability. 93 * @c: UBIFS file-system description object 94 * 95 * This function calculates and returns current UBIFS liability, i.e. the 96 * amount of bytes UBIFS has "promised" to write to the media. 97 */ 98 static long long get_liability(struct ubifs_info *c) 99 { 100 long long liab; 101 102 spin_lock(&c->space_lock); 103 liab = c->bi.idx_growth + c->bi.data_growth + c->bi.dd_growth; 104 spin_unlock(&c->space_lock); 105 return liab; 106 } 107 108 /** 109 * make_free_space - make more free space on the file-system. 110 * @c: UBIFS file-system description object 111 * 112 * This function is called when an operation cannot be budgeted because there 113 * is supposedly no free space. But in most cases there is some free space: 114 * o budgeting is pessimistic, so it always budgets more than it is actually 115 * needed, so shrinking the liability is one way to make free space - the 116 * cached data will take less space then it was budgeted for; 117 * o GC may turn some dark space into free space (budgeting treats dark space 118 * as not available); 119 * o commit may free some LEB, i.e., turn freeable LEBs into free LEBs. 120 * 121 * So this function tries to do the above. Returns %-EAGAIN if some free space 122 * was presumably made and the caller has to re-try budgeting the operation. 123 * Returns %-ENOSPC if it couldn't do more free space, and other negative error 124 * codes on failures. 125 */ 126 static int make_free_space(struct ubifs_info *c) 127 { 128 int err, retries = 0; 129 long long liab1, liab2; 130 131 do { 132 liab1 = get_liability(c); 133 /* 134 * We probably have some dirty pages or inodes (liability), try 135 * to write them back. 136 */ 137 dbg_budg("liability %lld, run write-back", liab1); 138 shrink_liability(c, NR_TO_WRITE); 139 140 liab2 = get_liability(c); 141 if (liab2 < liab1) 142 return -EAGAIN; 143 144 dbg_budg("new liability %lld (not shrunk)", liab2); 145 146 /* Liability did not shrink again, try GC */ 147 dbg_budg("Run GC"); 148 err = run_gc(c); 149 if (!err) 150 return -EAGAIN; 151 152 if (err != -EAGAIN && err != -ENOSPC) 153 /* Some real error happened */ 154 return err; 155 156 dbg_budg("Run commit (retries %d)", retries); 157 err = ubifs_run_commit(c); 158 if (err) 159 return err; 160 } while (retries++ < MAX_MKSPC_RETRIES); 161 162 return -ENOSPC; 163 } 164 #endif 165 166 /** 167 * ubifs_calc_min_idx_lebs - calculate amount of LEBs for the index. 168 * @c: UBIFS file-system description object 169 * 170 * This function calculates and returns the number of LEBs which should be kept 171 * for index usage. 172 */ 173 int ubifs_calc_min_idx_lebs(struct ubifs_info *c) 174 { 175 int idx_lebs; 176 long long idx_size; 177 178 idx_size = c->bi.old_idx_sz + c->bi.idx_growth + c->bi.uncommitted_idx; 179 /* And make sure we have thrice the index size of space reserved */ 180 idx_size += idx_size << 1; 181 /* 182 * We do not maintain 'old_idx_size' as 'old_idx_lebs'/'old_idx_bytes' 183 * pair, nor similarly the two variables for the new index size, so we 184 * have to do this costly 64-bit division on fast-path. 185 */ 186 idx_lebs = div_u64(idx_size + c->idx_leb_size - 1, c->idx_leb_size); 187 /* 188 * The index head is not available for the in-the-gaps method, so add an 189 * extra LEB to compensate. 190 */ 191 idx_lebs += 1; 192 if (idx_lebs < MIN_INDEX_LEBS) 193 idx_lebs = MIN_INDEX_LEBS; 194 return idx_lebs; 195 } 196 197 #ifndef __UBOOT__ 198 /** 199 * ubifs_calc_available - calculate available FS space. 200 * @c: UBIFS file-system description object 201 * @min_idx_lebs: minimum number of LEBs reserved for the index 202 * 203 * This function calculates and returns amount of FS space available for use. 204 */ 205 long long ubifs_calc_available(const struct ubifs_info *c, int min_idx_lebs) 206 { 207 int subtract_lebs; 208 long long available; 209 210 available = c->main_bytes - c->lst.total_used; 211 212 /* 213 * Now 'available' contains theoretically available flash space 214 * assuming there is no index, so we have to subtract the space which 215 * is reserved for the index. 216 */ 217 subtract_lebs = min_idx_lebs; 218 219 /* Take into account that GC reserves one LEB for its own needs */ 220 subtract_lebs += 1; 221 222 /* 223 * The GC journal head LEB is not really accessible. And since 224 * different write types go to different heads, we may count only on 225 * one head's space. 226 */ 227 subtract_lebs += c->jhead_cnt - 1; 228 229 /* We also reserve one LEB for deletions, which bypass budgeting */ 230 subtract_lebs += 1; 231 232 available -= (long long)subtract_lebs * c->leb_size; 233 234 /* Subtract the dead space which is not available for use */ 235 available -= c->lst.total_dead; 236 237 /* 238 * Subtract dark space, which might or might not be usable - it depends 239 * on the data which we have on the media and which will be written. If 240 * this is a lot of uncompressed or not-compressible data, the dark 241 * space cannot be used. 242 */ 243 available -= c->lst.total_dark; 244 245 /* 246 * However, there is more dark space. The index may be bigger than 247 * @min_idx_lebs. Those extra LEBs are assumed to be available, but 248 * their dark space is not included in total_dark, so it is subtracted 249 * here. 250 */ 251 if (c->lst.idx_lebs > min_idx_lebs) { 252 subtract_lebs = c->lst.idx_lebs - min_idx_lebs; 253 available -= subtract_lebs * c->dark_wm; 254 } 255 256 /* The calculations are rough and may end up with a negative number */ 257 return available > 0 ? available : 0; 258 } 259 260 /** 261 * can_use_rp - check whether the user is allowed to use reserved pool. 262 * @c: UBIFS file-system description object 263 * 264 * UBIFS has so-called "reserved pool" which is flash space reserved 265 * for the superuser and for uses whose UID/GID is recorded in UBIFS superblock. 266 * This function checks whether current user is allowed to use reserved pool. 267 * Returns %1 current user is allowed to use reserved pool and %0 otherwise. 268 */ 269 static int can_use_rp(struct ubifs_info *c) 270 { 271 if (uid_eq(current_fsuid(), c->rp_uid) || capable(CAP_SYS_RESOURCE) || 272 (!gid_eq(c->rp_gid, GLOBAL_ROOT_GID) && in_group_p(c->rp_gid))) 273 return 1; 274 return 0; 275 } 276 277 /** 278 * do_budget_space - reserve flash space for index and data growth. 279 * @c: UBIFS file-system description object 280 * 281 * This function makes sure UBIFS has enough free LEBs for index growth and 282 * data. 283 * 284 * When budgeting index space, UBIFS reserves thrice as many LEBs as the index 285 * would take if it was consolidated and written to the flash. This guarantees 286 * that the "in-the-gaps" commit method always succeeds and UBIFS will always 287 * be able to commit dirty index. So this function basically adds amount of 288 * budgeted index space to the size of the current index, multiplies this by 3, 289 * and makes sure this does not exceed the amount of free LEBs. 290 * 291 * Notes about @c->bi.min_idx_lebs and @c->lst.idx_lebs variables: 292 * o @c->lst.idx_lebs is the number of LEBs the index currently uses. It might 293 * be large, because UBIFS does not do any index consolidation as long as 294 * there is free space. IOW, the index may take a lot of LEBs, but the LEBs 295 * will contain a lot of dirt. 296 * o @c->bi.min_idx_lebs is the number of LEBS the index presumably takes. IOW, 297 * the index may be consolidated to take up to @c->bi.min_idx_lebs LEBs. 298 * 299 * This function returns zero in case of success, and %-ENOSPC in case of 300 * failure. 301 */ 302 static int do_budget_space(struct ubifs_info *c) 303 { 304 long long outstanding, available; 305 int lebs, rsvd_idx_lebs, min_idx_lebs; 306 307 /* First budget index space */ 308 min_idx_lebs = ubifs_calc_min_idx_lebs(c); 309 310 /* Now 'min_idx_lebs' contains number of LEBs to reserve */ 311 if (min_idx_lebs > c->lst.idx_lebs) 312 rsvd_idx_lebs = min_idx_lebs - c->lst.idx_lebs; 313 else 314 rsvd_idx_lebs = 0; 315 316 /* 317 * The number of LEBs that are available to be used by the index is: 318 * 319 * @c->lst.empty_lebs + @c->freeable_cnt + @c->idx_gc_cnt - 320 * @c->lst.taken_empty_lebs 321 * 322 * @c->lst.empty_lebs are available because they are empty. 323 * @c->freeable_cnt are available because they contain only free and 324 * dirty space, @c->idx_gc_cnt are available because they are index 325 * LEBs that have been garbage collected and are awaiting the commit 326 * before they can be used. And the in-the-gaps method will grab these 327 * if it needs them. @c->lst.taken_empty_lebs are empty LEBs that have 328 * already been allocated for some purpose. 329 * 330 * Note, @c->idx_gc_cnt is included to both @c->lst.empty_lebs (because 331 * these LEBs are empty) and to @c->lst.taken_empty_lebs (because they 332 * are taken until after the commit). 333 * 334 * Note, @c->lst.taken_empty_lebs may temporarily be higher by one 335 * because of the way we serialize LEB allocations and budgeting. See a 336 * comment in 'ubifs_find_free_space()'. 337 */ 338 lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt - 339 c->lst.taken_empty_lebs; 340 if (unlikely(rsvd_idx_lebs > lebs)) { 341 dbg_budg("out of indexing space: min_idx_lebs %d (old %d), rsvd_idx_lebs %d", 342 min_idx_lebs, c->bi.min_idx_lebs, rsvd_idx_lebs); 343 return -ENOSPC; 344 } 345 346 available = ubifs_calc_available(c, min_idx_lebs); 347 outstanding = c->bi.data_growth + c->bi.dd_growth; 348 349 if (unlikely(available < outstanding)) { 350 dbg_budg("out of data space: available %lld, outstanding %lld", 351 available, outstanding); 352 return -ENOSPC; 353 } 354 355 if (available - outstanding <= c->rp_size && !can_use_rp(c)) 356 return -ENOSPC; 357 358 c->bi.min_idx_lebs = min_idx_lebs; 359 return 0; 360 } 361 362 /** 363 * calc_idx_growth - calculate approximate index growth from budgeting request. 364 * @c: UBIFS file-system description object 365 * @req: budgeting request 366 * 367 * For now we assume each new node adds one znode. But this is rather poor 368 * approximation, though. 369 */ 370 static int calc_idx_growth(const struct ubifs_info *c, 371 const struct ubifs_budget_req *req) 372 { 373 int znodes; 374 375 znodes = req->new_ino + (req->new_page << UBIFS_BLOCKS_PER_PAGE_SHIFT) + 376 req->new_dent; 377 return znodes * c->max_idx_node_sz; 378 } 379 380 /** 381 * calc_data_growth - calculate approximate amount of new data from budgeting 382 * request. 383 * @c: UBIFS file-system description object 384 * @req: budgeting request 385 */ 386 static int calc_data_growth(const struct ubifs_info *c, 387 const struct ubifs_budget_req *req) 388 { 389 int data_growth; 390 391 data_growth = req->new_ino ? c->bi.inode_budget : 0; 392 if (req->new_page) 393 data_growth += c->bi.page_budget; 394 if (req->new_dent) 395 data_growth += c->bi.dent_budget; 396 data_growth += req->new_ino_d; 397 return data_growth; 398 } 399 400 /** 401 * calc_dd_growth - calculate approximate amount of data which makes other data 402 * dirty from budgeting request. 403 * @c: UBIFS file-system description object 404 * @req: budgeting request 405 */ 406 static int calc_dd_growth(const struct ubifs_info *c, 407 const struct ubifs_budget_req *req) 408 { 409 int dd_growth; 410 411 dd_growth = req->dirtied_page ? c->bi.page_budget : 0; 412 413 if (req->dirtied_ino) 414 dd_growth += c->bi.inode_budget << (req->dirtied_ino - 1); 415 if (req->mod_dent) 416 dd_growth += c->bi.dent_budget; 417 dd_growth += req->dirtied_ino_d; 418 return dd_growth; 419 } 420 421 /** 422 * ubifs_budget_space - ensure there is enough space to complete an operation. 423 * @c: UBIFS file-system description object 424 * @req: budget request 425 * 426 * This function allocates budget for an operation. It uses pessimistic 427 * approximation of how much flash space the operation needs. The goal of this 428 * function is to make sure UBIFS always has flash space to flush all dirty 429 * pages, dirty inodes, and dirty znodes (liability). This function may force 430 * commit, garbage-collection or write-back. Returns zero in case of success, 431 * %-ENOSPC if there is no free space and other negative error codes in case of 432 * failures. 433 */ 434 int ubifs_budget_space(struct ubifs_info *c, struct ubifs_budget_req *req) 435 { 436 int uninitialized_var(cmt_retries), uninitialized_var(wb_retries); 437 int err, idx_growth, data_growth, dd_growth, retried = 0; 438 439 ubifs_assert(req->new_page <= 1); 440 ubifs_assert(req->dirtied_page <= 1); 441 ubifs_assert(req->new_dent <= 1); 442 ubifs_assert(req->mod_dent <= 1); 443 ubifs_assert(req->new_ino <= 1); 444 ubifs_assert(req->new_ino_d <= UBIFS_MAX_INO_DATA); 445 ubifs_assert(req->dirtied_ino <= 4); 446 ubifs_assert(req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4); 447 ubifs_assert(!(req->new_ino_d & 7)); 448 ubifs_assert(!(req->dirtied_ino_d & 7)); 449 450 data_growth = calc_data_growth(c, req); 451 dd_growth = calc_dd_growth(c, req); 452 if (!data_growth && !dd_growth) 453 return 0; 454 idx_growth = calc_idx_growth(c, req); 455 456 again: 457 spin_lock(&c->space_lock); 458 ubifs_assert(c->bi.idx_growth >= 0); 459 ubifs_assert(c->bi.data_growth >= 0); 460 ubifs_assert(c->bi.dd_growth >= 0); 461 462 if (unlikely(c->bi.nospace) && (c->bi.nospace_rp || !can_use_rp(c))) { 463 dbg_budg("no space"); 464 spin_unlock(&c->space_lock); 465 return -ENOSPC; 466 } 467 468 c->bi.idx_growth += idx_growth; 469 c->bi.data_growth += data_growth; 470 c->bi.dd_growth += dd_growth; 471 472 err = do_budget_space(c); 473 if (likely(!err)) { 474 req->idx_growth = idx_growth; 475 req->data_growth = data_growth; 476 req->dd_growth = dd_growth; 477 spin_unlock(&c->space_lock); 478 return 0; 479 } 480 481 /* Restore the old values */ 482 c->bi.idx_growth -= idx_growth; 483 c->bi.data_growth -= data_growth; 484 c->bi.dd_growth -= dd_growth; 485 spin_unlock(&c->space_lock); 486 487 if (req->fast) { 488 dbg_budg("no space for fast budgeting"); 489 return err; 490 } 491 492 err = make_free_space(c); 493 cond_resched(); 494 if (err == -EAGAIN) { 495 dbg_budg("try again"); 496 goto again; 497 } else if (err == -ENOSPC) { 498 if (!retried) { 499 retried = 1; 500 dbg_budg("-ENOSPC, but anyway try once again"); 501 goto again; 502 } 503 dbg_budg("FS is full, -ENOSPC"); 504 c->bi.nospace = 1; 505 if (can_use_rp(c) || c->rp_size == 0) 506 c->bi.nospace_rp = 1; 507 smp_wmb(); 508 } else 509 ubifs_err("cannot budget space, error %d", err); 510 return err; 511 } 512 513 /** 514 * ubifs_release_budget - release budgeted free space. 515 * @c: UBIFS file-system description object 516 * @req: budget request 517 * 518 * This function releases the space budgeted by 'ubifs_budget_space()'. Note, 519 * since the index changes (which were budgeted for in @req->idx_growth) will 520 * only be written to the media on commit, this function moves the index budget 521 * from @c->bi.idx_growth to @c->bi.uncommitted_idx. The latter will be zeroed 522 * by the commit operation. 523 */ 524 void ubifs_release_budget(struct ubifs_info *c, struct ubifs_budget_req *req) 525 { 526 ubifs_assert(req->new_page <= 1); 527 ubifs_assert(req->dirtied_page <= 1); 528 ubifs_assert(req->new_dent <= 1); 529 ubifs_assert(req->mod_dent <= 1); 530 ubifs_assert(req->new_ino <= 1); 531 ubifs_assert(req->new_ino_d <= UBIFS_MAX_INO_DATA); 532 ubifs_assert(req->dirtied_ino <= 4); 533 ubifs_assert(req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4); 534 ubifs_assert(!(req->new_ino_d & 7)); 535 ubifs_assert(!(req->dirtied_ino_d & 7)); 536 if (!req->recalculate) { 537 ubifs_assert(req->idx_growth >= 0); 538 ubifs_assert(req->data_growth >= 0); 539 ubifs_assert(req->dd_growth >= 0); 540 } 541 542 if (req->recalculate) { 543 req->data_growth = calc_data_growth(c, req); 544 req->dd_growth = calc_dd_growth(c, req); 545 req->idx_growth = calc_idx_growth(c, req); 546 } 547 548 if (!req->data_growth && !req->dd_growth) 549 return; 550 551 c->bi.nospace = c->bi.nospace_rp = 0; 552 smp_wmb(); 553 554 spin_lock(&c->space_lock); 555 c->bi.idx_growth -= req->idx_growth; 556 c->bi.uncommitted_idx += req->idx_growth; 557 c->bi.data_growth -= req->data_growth; 558 c->bi.dd_growth -= req->dd_growth; 559 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 560 561 ubifs_assert(c->bi.idx_growth >= 0); 562 ubifs_assert(c->bi.data_growth >= 0); 563 ubifs_assert(c->bi.dd_growth >= 0); 564 ubifs_assert(c->bi.min_idx_lebs < c->main_lebs); 565 ubifs_assert(!(c->bi.idx_growth & 7)); 566 ubifs_assert(!(c->bi.data_growth & 7)); 567 ubifs_assert(!(c->bi.dd_growth & 7)); 568 spin_unlock(&c->space_lock); 569 } 570 571 /** 572 * ubifs_convert_page_budget - convert budget of a new page. 573 * @c: UBIFS file-system description object 574 * 575 * This function converts budget which was allocated for a new page of data to 576 * the budget of changing an existing page of data. The latter is smaller than 577 * the former, so this function only does simple re-calculation and does not 578 * involve any write-back. 579 */ 580 void ubifs_convert_page_budget(struct ubifs_info *c) 581 { 582 spin_lock(&c->space_lock); 583 /* Release the index growth reservation */ 584 c->bi.idx_growth -= c->max_idx_node_sz << UBIFS_BLOCKS_PER_PAGE_SHIFT; 585 /* Release the data growth reservation */ 586 c->bi.data_growth -= c->bi.page_budget; 587 /* Increase the dirty data growth reservation instead */ 588 c->bi.dd_growth += c->bi.page_budget; 589 /* And re-calculate the indexing space reservation */ 590 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 591 spin_unlock(&c->space_lock); 592 } 593 594 /** 595 * ubifs_release_dirty_inode_budget - release dirty inode budget. 596 * @c: UBIFS file-system description object 597 * @ui: UBIFS inode to release the budget for 598 * 599 * This function releases budget corresponding to a dirty inode. It is usually 600 * called when after the inode has been written to the media and marked as 601 * clean. It also causes the "no space" flags to be cleared. 602 */ 603 void ubifs_release_dirty_inode_budget(struct ubifs_info *c, 604 struct ubifs_inode *ui) 605 { 606 struct ubifs_budget_req req; 607 608 memset(&req, 0, sizeof(struct ubifs_budget_req)); 609 /* The "no space" flags will be cleared because dd_growth is > 0 */ 610 req.dd_growth = c->bi.inode_budget + ALIGN(ui->data_len, 8); 611 ubifs_release_budget(c, &req); 612 } 613 #endif 614 615 /** 616 * ubifs_reported_space - calculate reported free space. 617 * @c: the UBIFS file-system description object 618 * @free: amount of free space 619 * 620 * This function calculates amount of free space which will be reported to 621 * user-space. User-space application tend to expect that if the file-system 622 * (e.g., via the 'statfs()' call) reports that it has N bytes available, they 623 * are able to write a file of size N. UBIFS attaches node headers to each data 624 * node and it has to write indexing nodes as well. This introduces additional 625 * overhead, and UBIFS has to report slightly less free space to meet the above 626 * expectations. 627 * 628 * This function assumes free space is made up of uncompressed data nodes and 629 * full index nodes (one per data node, tripled because we always allow enough 630 * space to write the index thrice). 631 * 632 * Note, the calculation is pessimistic, which means that most of the time 633 * UBIFS reports less space than it actually has. 634 */ 635 long long ubifs_reported_space(const struct ubifs_info *c, long long free) 636 { 637 int divisor, factor, f; 638 639 /* 640 * Reported space size is @free * X, where X is UBIFS block size 641 * divided by UBIFS block size + all overhead one data block 642 * introduces. The overhead is the node header + indexing overhead. 643 * 644 * Indexing overhead calculations are based on the following formula: 645 * I = N/(f - 1) + 1, where I - number of indexing nodes, N - number 646 * of data nodes, f - fanout. Because effective UBIFS fanout is twice 647 * as less than maximum fanout, we assume that each data node 648 * introduces 3 * @c->max_idx_node_sz / (@c->fanout/2 - 1) bytes. 649 * Note, the multiplier 3 is because UBIFS reserves thrice as more space 650 * for the index. 651 */ 652 f = c->fanout > 3 ? c->fanout >> 1 : 2; 653 factor = UBIFS_BLOCK_SIZE; 654 divisor = UBIFS_MAX_DATA_NODE_SZ; 655 divisor += (c->max_idx_node_sz * 3) / (f - 1); 656 free *= factor; 657 return div_u64(free, divisor); 658 } 659 660 #ifndef __UBOOT__ 661 /** 662 * ubifs_get_free_space_nolock - return amount of free space. 663 * @c: UBIFS file-system description object 664 * 665 * This function calculates amount of free space to report to user-space. 666 * 667 * Because UBIFS may introduce substantial overhead (the index, node headers, 668 * alignment, wastage at the end of LEBs, etc), it cannot report real amount of 669 * free flash space it has (well, because not all dirty space is reclaimable, 670 * UBIFS does not actually know the real amount). If UBIFS did so, it would 671 * bread user expectations about what free space is. Users seem to accustomed 672 * to assume that if the file-system reports N bytes of free space, they would 673 * be able to fit a file of N bytes to the FS. This almost works for 674 * traditional file-systems, because they have way less overhead than UBIFS. 675 * So, to keep users happy, UBIFS tries to take the overhead into account. 676 */ 677 long long ubifs_get_free_space_nolock(struct ubifs_info *c) 678 { 679 int rsvd_idx_lebs, lebs; 680 long long available, outstanding, free; 681 682 ubifs_assert(c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c)); 683 outstanding = c->bi.data_growth + c->bi.dd_growth; 684 available = ubifs_calc_available(c, c->bi.min_idx_lebs); 685 686 /* 687 * When reporting free space to user-space, UBIFS guarantees that it is 688 * possible to write a file of free space size. This means that for 689 * empty LEBs we may use more precise calculations than 690 * 'ubifs_calc_available()' is using. Namely, we know that in empty 691 * LEBs we would waste only @c->leb_overhead bytes, not @c->dark_wm. 692 * Thus, amend the available space. 693 * 694 * Note, the calculations below are similar to what we have in 695 * 'do_budget_space()', so refer there for comments. 696 */ 697 if (c->bi.min_idx_lebs > c->lst.idx_lebs) 698 rsvd_idx_lebs = c->bi.min_idx_lebs - c->lst.idx_lebs; 699 else 700 rsvd_idx_lebs = 0; 701 lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt - 702 c->lst.taken_empty_lebs; 703 lebs -= rsvd_idx_lebs; 704 available += lebs * (c->dark_wm - c->leb_overhead); 705 706 if (available > outstanding) 707 free = ubifs_reported_space(c, available - outstanding); 708 else 709 free = 0; 710 return free; 711 } 712 713 /** 714 * ubifs_get_free_space - return amount of free space. 715 * @c: UBIFS file-system description object 716 * 717 * This function calculates and returns amount of free space to report to 718 * user-space. 719 */ 720 long long ubifs_get_free_space(struct ubifs_info *c) 721 { 722 long long free; 723 724 spin_lock(&c->space_lock); 725 free = ubifs_get_free_space_nolock(c); 726 spin_unlock(&c->space_lock); 727 728 return free; 729 } 730 #endif 731