1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * SPDX-License-Identifier: GPL-2.0+ 7 * 8 * Authors: Adrian Hunter 9 * Artem Bityutskiy (Битюцкий Артём) 10 */ 11 12 /* 13 * This file implements the budgeting sub-system which is responsible for UBIFS 14 * space management. 15 * 16 * Factors such as compression, wasted space at the ends of LEBs, space in other 17 * journal heads, the effect of updates on the index, and so on, make it 18 * impossible to accurately predict the amount of space needed. Consequently 19 * approximations are used. 20 */ 21 22 #include "ubifs.h" 23 #define __UBOOT__ 24 #ifndef __UBOOT__ 25 #include <linux/writeback.h> 26 #else 27 #include <linux/err.h> 28 #endif 29 #include <linux/math64.h> 30 31 /* 32 * When pessimistic budget calculations say that there is no enough space, 33 * UBIFS starts writing back dirty inodes and pages, doing garbage collection, 34 * or committing. The below constant defines maximum number of times UBIFS 35 * repeats the operations. 36 */ 37 #define MAX_MKSPC_RETRIES 3 38 39 /* 40 * The below constant defines amount of dirty pages which should be written 41 * back at when trying to shrink the liability. 42 */ 43 #define NR_TO_WRITE 16 44 45 #ifndef __UBOOT__ 46 /** 47 * shrink_liability - write-back some dirty pages/inodes. 48 * @c: UBIFS file-system description object 49 * @nr_to_write: how many dirty pages to write-back 50 * 51 * This function shrinks UBIFS liability by means of writing back some amount 52 * of dirty inodes and their pages. 53 * 54 * Note, this function synchronizes even VFS inodes which are locked 55 * (@i_mutex) by the caller of the budgeting function, because write-back does 56 * not touch @i_mutex. 57 */ 58 static void shrink_liability(struct ubifs_info *c, int nr_to_write) 59 { 60 down_read(&c->vfs_sb->s_umount); 61 writeback_inodes_sb(c->vfs_sb, WB_REASON_FS_FREE_SPACE); 62 up_read(&c->vfs_sb->s_umount); 63 } 64 65 /** 66 * run_gc - run garbage collector. 67 * @c: UBIFS file-system description object 68 * 69 * This function runs garbage collector to make some more free space. Returns 70 * zero if a free LEB has been produced, %-EAGAIN if commit is required, and a 71 * negative error code in case of failure. 72 */ 73 static int run_gc(struct ubifs_info *c) 74 { 75 int err, lnum; 76 77 /* Make some free space by garbage-collecting dirty space */ 78 down_read(&c->commit_sem); 79 lnum = ubifs_garbage_collect(c, 1); 80 up_read(&c->commit_sem); 81 if (lnum < 0) 82 return lnum; 83 84 /* GC freed one LEB, return it to lprops */ 85 dbg_budg("GC freed LEB %d", lnum); 86 err = ubifs_return_leb(c, lnum); 87 if (err) 88 return err; 89 return 0; 90 } 91 92 /** 93 * get_liability - calculate current liability. 94 * @c: UBIFS file-system description object 95 * 96 * This function calculates and returns current UBIFS liability, i.e. the 97 * amount of bytes UBIFS has "promised" to write to the media. 98 */ 99 static long long get_liability(struct ubifs_info *c) 100 { 101 long long liab; 102 103 spin_lock(&c->space_lock); 104 liab = c->bi.idx_growth + c->bi.data_growth + c->bi.dd_growth; 105 spin_unlock(&c->space_lock); 106 return liab; 107 } 108 109 /** 110 * make_free_space - make more free space on the file-system. 111 * @c: UBIFS file-system description object 112 * 113 * This function is called when an operation cannot be budgeted because there 114 * is supposedly no free space. But in most cases there is some free space: 115 * o budgeting is pessimistic, so it always budgets more than it is actually 116 * needed, so shrinking the liability is one way to make free space - the 117 * cached data will take less space then it was budgeted for; 118 * o GC may turn some dark space into free space (budgeting treats dark space 119 * as not available); 120 * o commit may free some LEB, i.e., turn freeable LEBs into free LEBs. 121 * 122 * So this function tries to do the above. Returns %-EAGAIN if some free space 123 * was presumably made and the caller has to re-try budgeting the operation. 124 * Returns %-ENOSPC if it couldn't do more free space, and other negative error 125 * codes on failures. 126 */ 127 static int make_free_space(struct ubifs_info *c) 128 { 129 int err, retries = 0; 130 long long liab1, liab2; 131 132 do { 133 liab1 = get_liability(c); 134 /* 135 * We probably have some dirty pages or inodes (liability), try 136 * to write them back. 137 */ 138 dbg_budg("liability %lld, run write-back", liab1); 139 shrink_liability(c, NR_TO_WRITE); 140 141 liab2 = get_liability(c); 142 if (liab2 < liab1) 143 return -EAGAIN; 144 145 dbg_budg("new liability %lld (not shrunk)", liab2); 146 147 /* Liability did not shrink again, try GC */ 148 dbg_budg("Run GC"); 149 err = run_gc(c); 150 if (!err) 151 return -EAGAIN; 152 153 if (err != -EAGAIN && err != -ENOSPC) 154 /* Some real error happened */ 155 return err; 156 157 dbg_budg("Run commit (retries %d)", retries); 158 err = ubifs_run_commit(c); 159 if (err) 160 return err; 161 } while (retries++ < MAX_MKSPC_RETRIES); 162 163 return -ENOSPC; 164 } 165 #endif 166 167 /** 168 * ubifs_calc_min_idx_lebs - calculate amount of LEBs for the index. 169 * @c: UBIFS file-system description object 170 * 171 * This function calculates and returns the number of LEBs which should be kept 172 * for index usage. 173 */ 174 int ubifs_calc_min_idx_lebs(struct ubifs_info *c) 175 { 176 int idx_lebs; 177 long long idx_size; 178 179 idx_size = c->bi.old_idx_sz + c->bi.idx_growth + c->bi.uncommitted_idx; 180 /* And make sure we have thrice the index size of space reserved */ 181 idx_size += idx_size << 1; 182 /* 183 * We do not maintain 'old_idx_size' as 'old_idx_lebs'/'old_idx_bytes' 184 * pair, nor similarly the two variables for the new index size, so we 185 * have to do this costly 64-bit division on fast-path. 186 */ 187 idx_lebs = div_u64(idx_size + c->idx_leb_size - 1, c->idx_leb_size); 188 /* 189 * The index head is not available for the in-the-gaps method, so add an 190 * extra LEB to compensate. 191 */ 192 idx_lebs += 1; 193 if (idx_lebs < MIN_INDEX_LEBS) 194 idx_lebs = MIN_INDEX_LEBS; 195 return idx_lebs; 196 } 197 198 #ifndef __UBOOT__ 199 /** 200 * ubifs_calc_available - calculate available FS space. 201 * @c: UBIFS file-system description object 202 * @min_idx_lebs: minimum number of LEBs reserved for the index 203 * 204 * This function calculates and returns amount of FS space available for use. 205 */ 206 long long ubifs_calc_available(const struct ubifs_info *c, int min_idx_lebs) 207 { 208 int subtract_lebs; 209 long long available; 210 211 available = c->main_bytes - c->lst.total_used; 212 213 /* 214 * Now 'available' contains theoretically available flash space 215 * assuming there is no index, so we have to subtract the space which 216 * is reserved for the index. 217 */ 218 subtract_lebs = min_idx_lebs; 219 220 /* Take into account that GC reserves one LEB for its own needs */ 221 subtract_lebs += 1; 222 223 /* 224 * The GC journal head LEB is not really accessible. And since 225 * different write types go to different heads, we may count only on 226 * one head's space. 227 */ 228 subtract_lebs += c->jhead_cnt - 1; 229 230 /* We also reserve one LEB for deletions, which bypass budgeting */ 231 subtract_lebs += 1; 232 233 available -= (long long)subtract_lebs * c->leb_size; 234 235 /* Subtract the dead space which is not available for use */ 236 available -= c->lst.total_dead; 237 238 /* 239 * Subtract dark space, which might or might not be usable - it depends 240 * on the data which we have on the media and which will be written. If 241 * this is a lot of uncompressed or not-compressible data, the dark 242 * space cannot be used. 243 */ 244 available -= c->lst.total_dark; 245 246 /* 247 * However, there is more dark space. The index may be bigger than 248 * @min_idx_lebs. Those extra LEBs are assumed to be available, but 249 * their dark space is not included in total_dark, so it is subtracted 250 * here. 251 */ 252 if (c->lst.idx_lebs > min_idx_lebs) { 253 subtract_lebs = c->lst.idx_lebs - min_idx_lebs; 254 available -= subtract_lebs * c->dark_wm; 255 } 256 257 /* The calculations are rough and may end up with a negative number */ 258 return available > 0 ? available : 0; 259 } 260 261 /** 262 * can_use_rp - check whether the user is allowed to use reserved pool. 263 * @c: UBIFS file-system description object 264 * 265 * UBIFS has so-called "reserved pool" which is flash space reserved 266 * for the superuser and for uses whose UID/GID is recorded in UBIFS superblock. 267 * This function checks whether current user is allowed to use reserved pool. 268 * Returns %1 current user is allowed to use reserved pool and %0 otherwise. 269 */ 270 static int can_use_rp(struct ubifs_info *c) 271 { 272 if (uid_eq(current_fsuid(), c->rp_uid) || capable(CAP_SYS_RESOURCE) || 273 (!gid_eq(c->rp_gid, GLOBAL_ROOT_GID) && in_group_p(c->rp_gid))) 274 return 1; 275 return 0; 276 } 277 278 /** 279 * do_budget_space - reserve flash space for index and data growth. 280 * @c: UBIFS file-system description object 281 * 282 * This function makes sure UBIFS has enough free LEBs for index growth and 283 * data. 284 * 285 * When budgeting index space, UBIFS reserves thrice as many LEBs as the index 286 * would take if it was consolidated and written to the flash. This guarantees 287 * that the "in-the-gaps" commit method always succeeds and UBIFS will always 288 * be able to commit dirty index. So this function basically adds amount of 289 * budgeted index space to the size of the current index, multiplies this by 3, 290 * and makes sure this does not exceed the amount of free LEBs. 291 * 292 * Notes about @c->bi.min_idx_lebs and @c->lst.idx_lebs variables: 293 * o @c->lst.idx_lebs is the number of LEBs the index currently uses. It might 294 * be large, because UBIFS does not do any index consolidation as long as 295 * there is free space. IOW, the index may take a lot of LEBs, but the LEBs 296 * will contain a lot of dirt. 297 * o @c->bi.min_idx_lebs is the number of LEBS the index presumably takes. IOW, 298 * the index may be consolidated to take up to @c->bi.min_idx_lebs LEBs. 299 * 300 * This function returns zero in case of success, and %-ENOSPC in case of 301 * failure. 302 */ 303 static int do_budget_space(struct ubifs_info *c) 304 { 305 long long outstanding, available; 306 int lebs, rsvd_idx_lebs, min_idx_lebs; 307 308 /* First budget index space */ 309 min_idx_lebs = ubifs_calc_min_idx_lebs(c); 310 311 /* Now 'min_idx_lebs' contains number of LEBs to reserve */ 312 if (min_idx_lebs > c->lst.idx_lebs) 313 rsvd_idx_lebs = min_idx_lebs - c->lst.idx_lebs; 314 else 315 rsvd_idx_lebs = 0; 316 317 /* 318 * The number of LEBs that are available to be used by the index is: 319 * 320 * @c->lst.empty_lebs + @c->freeable_cnt + @c->idx_gc_cnt - 321 * @c->lst.taken_empty_lebs 322 * 323 * @c->lst.empty_lebs are available because they are empty. 324 * @c->freeable_cnt are available because they contain only free and 325 * dirty space, @c->idx_gc_cnt are available because they are index 326 * LEBs that have been garbage collected and are awaiting the commit 327 * before they can be used. And the in-the-gaps method will grab these 328 * if it needs them. @c->lst.taken_empty_lebs are empty LEBs that have 329 * already been allocated for some purpose. 330 * 331 * Note, @c->idx_gc_cnt is included to both @c->lst.empty_lebs (because 332 * these LEBs are empty) and to @c->lst.taken_empty_lebs (because they 333 * are taken until after the commit). 334 * 335 * Note, @c->lst.taken_empty_lebs may temporarily be higher by one 336 * because of the way we serialize LEB allocations and budgeting. See a 337 * comment in 'ubifs_find_free_space()'. 338 */ 339 lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt - 340 c->lst.taken_empty_lebs; 341 if (unlikely(rsvd_idx_lebs > lebs)) { 342 dbg_budg("out of indexing space: min_idx_lebs %d (old %d), rsvd_idx_lebs %d", 343 min_idx_lebs, c->bi.min_idx_lebs, rsvd_idx_lebs); 344 return -ENOSPC; 345 } 346 347 available = ubifs_calc_available(c, min_idx_lebs); 348 outstanding = c->bi.data_growth + c->bi.dd_growth; 349 350 if (unlikely(available < outstanding)) { 351 dbg_budg("out of data space: available %lld, outstanding %lld", 352 available, outstanding); 353 return -ENOSPC; 354 } 355 356 if (available - outstanding <= c->rp_size && !can_use_rp(c)) 357 return -ENOSPC; 358 359 c->bi.min_idx_lebs = min_idx_lebs; 360 return 0; 361 } 362 363 /** 364 * calc_idx_growth - calculate approximate index growth from budgeting request. 365 * @c: UBIFS file-system description object 366 * @req: budgeting request 367 * 368 * For now we assume each new node adds one znode. But this is rather poor 369 * approximation, though. 370 */ 371 static int calc_idx_growth(const struct ubifs_info *c, 372 const struct ubifs_budget_req *req) 373 { 374 int znodes; 375 376 znodes = req->new_ino + (req->new_page << UBIFS_BLOCKS_PER_PAGE_SHIFT) + 377 req->new_dent; 378 return znodes * c->max_idx_node_sz; 379 } 380 381 /** 382 * calc_data_growth - calculate approximate amount of new data from budgeting 383 * request. 384 * @c: UBIFS file-system description object 385 * @req: budgeting request 386 */ 387 static int calc_data_growth(const struct ubifs_info *c, 388 const struct ubifs_budget_req *req) 389 { 390 int data_growth; 391 392 data_growth = req->new_ino ? c->bi.inode_budget : 0; 393 if (req->new_page) 394 data_growth += c->bi.page_budget; 395 if (req->new_dent) 396 data_growth += c->bi.dent_budget; 397 data_growth += req->new_ino_d; 398 return data_growth; 399 } 400 401 /** 402 * calc_dd_growth - calculate approximate amount of data which makes other data 403 * dirty from budgeting request. 404 * @c: UBIFS file-system description object 405 * @req: budgeting request 406 */ 407 static int calc_dd_growth(const struct ubifs_info *c, 408 const struct ubifs_budget_req *req) 409 { 410 int dd_growth; 411 412 dd_growth = req->dirtied_page ? c->bi.page_budget : 0; 413 414 if (req->dirtied_ino) 415 dd_growth += c->bi.inode_budget << (req->dirtied_ino - 1); 416 if (req->mod_dent) 417 dd_growth += c->bi.dent_budget; 418 dd_growth += req->dirtied_ino_d; 419 return dd_growth; 420 } 421 422 /** 423 * ubifs_budget_space - ensure there is enough space to complete an operation. 424 * @c: UBIFS file-system description object 425 * @req: budget request 426 * 427 * This function allocates budget for an operation. It uses pessimistic 428 * approximation of how much flash space the operation needs. The goal of this 429 * function is to make sure UBIFS always has flash space to flush all dirty 430 * pages, dirty inodes, and dirty znodes (liability). This function may force 431 * commit, garbage-collection or write-back. Returns zero in case of success, 432 * %-ENOSPC if there is no free space and other negative error codes in case of 433 * failures. 434 */ 435 int ubifs_budget_space(struct ubifs_info *c, struct ubifs_budget_req *req) 436 { 437 int uninitialized_var(cmt_retries), uninitialized_var(wb_retries); 438 int err, idx_growth, data_growth, dd_growth, retried = 0; 439 440 ubifs_assert(req->new_page <= 1); 441 ubifs_assert(req->dirtied_page <= 1); 442 ubifs_assert(req->new_dent <= 1); 443 ubifs_assert(req->mod_dent <= 1); 444 ubifs_assert(req->new_ino <= 1); 445 ubifs_assert(req->new_ino_d <= UBIFS_MAX_INO_DATA); 446 ubifs_assert(req->dirtied_ino <= 4); 447 ubifs_assert(req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4); 448 ubifs_assert(!(req->new_ino_d & 7)); 449 ubifs_assert(!(req->dirtied_ino_d & 7)); 450 451 data_growth = calc_data_growth(c, req); 452 dd_growth = calc_dd_growth(c, req); 453 if (!data_growth && !dd_growth) 454 return 0; 455 idx_growth = calc_idx_growth(c, req); 456 457 again: 458 spin_lock(&c->space_lock); 459 ubifs_assert(c->bi.idx_growth >= 0); 460 ubifs_assert(c->bi.data_growth >= 0); 461 ubifs_assert(c->bi.dd_growth >= 0); 462 463 if (unlikely(c->bi.nospace) && (c->bi.nospace_rp || !can_use_rp(c))) { 464 dbg_budg("no space"); 465 spin_unlock(&c->space_lock); 466 return -ENOSPC; 467 } 468 469 c->bi.idx_growth += idx_growth; 470 c->bi.data_growth += data_growth; 471 c->bi.dd_growth += dd_growth; 472 473 err = do_budget_space(c); 474 if (likely(!err)) { 475 req->idx_growth = idx_growth; 476 req->data_growth = data_growth; 477 req->dd_growth = dd_growth; 478 spin_unlock(&c->space_lock); 479 return 0; 480 } 481 482 /* Restore the old values */ 483 c->bi.idx_growth -= idx_growth; 484 c->bi.data_growth -= data_growth; 485 c->bi.dd_growth -= dd_growth; 486 spin_unlock(&c->space_lock); 487 488 if (req->fast) { 489 dbg_budg("no space for fast budgeting"); 490 return err; 491 } 492 493 err = make_free_space(c); 494 cond_resched(); 495 if (err == -EAGAIN) { 496 dbg_budg("try again"); 497 goto again; 498 } else if (err == -ENOSPC) { 499 if (!retried) { 500 retried = 1; 501 dbg_budg("-ENOSPC, but anyway try once again"); 502 goto again; 503 } 504 dbg_budg("FS is full, -ENOSPC"); 505 c->bi.nospace = 1; 506 if (can_use_rp(c) || c->rp_size == 0) 507 c->bi.nospace_rp = 1; 508 smp_wmb(); 509 } else 510 ubifs_err("cannot budget space, error %d", err); 511 return err; 512 } 513 514 /** 515 * ubifs_release_budget - release budgeted free space. 516 * @c: UBIFS file-system description object 517 * @req: budget request 518 * 519 * This function releases the space budgeted by 'ubifs_budget_space()'. Note, 520 * since the index changes (which were budgeted for in @req->idx_growth) will 521 * only be written to the media on commit, this function moves the index budget 522 * from @c->bi.idx_growth to @c->bi.uncommitted_idx. The latter will be zeroed 523 * by the commit operation. 524 */ 525 void ubifs_release_budget(struct ubifs_info *c, struct ubifs_budget_req *req) 526 { 527 ubifs_assert(req->new_page <= 1); 528 ubifs_assert(req->dirtied_page <= 1); 529 ubifs_assert(req->new_dent <= 1); 530 ubifs_assert(req->mod_dent <= 1); 531 ubifs_assert(req->new_ino <= 1); 532 ubifs_assert(req->new_ino_d <= UBIFS_MAX_INO_DATA); 533 ubifs_assert(req->dirtied_ino <= 4); 534 ubifs_assert(req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4); 535 ubifs_assert(!(req->new_ino_d & 7)); 536 ubifs_assert(!(req->dirtied_ino_d & 7)); 537 if (!req->recalculate) { 538 ubifs_assert(req->idx_growth >= 0); 539 ubifs_assert(req->data_growth >= 0); 540 ubifs_assert(req->dd_growth >= 0); 541 } 542 543 if (req->recalculate) { 544 req->data_growth = calc_data_growth(c, req); 545 req->dd_growth = calc_dd_growth(c, req); 546 req->idx_growth = calc_idx_growth(c, req); 547 } 548 549 if (!req->data_growth && !req->dd_growth) 550 return; 551 552 c->bi.nospace = c->bi.nospace_rp = 0; 553 smp_wmb(); 554 555 spin_lock(&c->space_lock); 556 c->bi.idx_growth -= req->idx_growth; 557 c->bi.uncommitted_idx += req->idx_growth; 558 c->bi.data_growth -= req->data_growth; 559 c->bi.dd_growth -= req->dd_growth; 560 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 561 562 ubifs_assert(c->bi.idx_growth >= 0); 563 ubifs_assert(c->bi.data_growth >= 0); 564 ubifs_assert(c->bi.dd_growth >= 0); 565 ubifs_assert(c->bi.min_idx_lebs < c->main_lebs); 566 ubifs_assert(!(c->bi.idx_growth & 7)); 567 ubifs_assert(!(c->bi.data_growth & 7)); 568 ubifs_assert(!(c->bi.dd_growth & 7)); 569 spin_unlock(&c->space_lock); 570 } 571 572 /** 573 * ubifs_convert_page_budget - convert budget of a new page. 574 * @c: UBIFS file-system description object 575 * 576 * This function converts budget which was allocated for a new page of data to 577 * the budget of changing an existing page of data. The latter is smaller than 578 * the former, so this function only does simple re-calculation and does not 579 * involve any write-back. 580 */ 581 void ubifs_convert_page_budget(struct ubifs_info *c) 582 { 583 spin_lock(&c->space_lock); 584 /* Release the index growth reservation */ 585 c->bi.idx_growth -= c->max_idx_node_sz << UBIFS_BLOCKS_PER_PAGE_SHIFT; 586 /* Release the data growth reservation */ 587 c->bi.data_growth -= c->bi.page_budget; 588 /* Increase the dirty data growth reservation instead */ 589 c->bi.dd_growth += c->bi.page_budget; 590 /* And re-calculate the indexing space reservation */ 591 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 592 spin_unlock(&c->space_lock); 593 } 594 595 /** 596 * ubifs_release_dirty_inode_budget - release dirty inode budget. 597 * @c: UBIFS file-system description object 598 * @ui: UBIFS inode to release the budget for 599 * 600 * This function releases budget corresponding to a dirty inode. It is usually 601 * called when after the inode has been written to the media and marked as 602 * clean. It also causes the "no space" flags to be cleared. 603 */ 604 void ubifs_release_dirty_inode_budget(struct ubifs_info *c, 605 struct ubifs_inode *ui) 606 { 607 struct ubifs_budget_req req; 608 609 memset(&req, 0, sizeof(struct ubifs_budget_req)); 610 /* The "no space" flags will be cleared because dd_growth is > 0 */ 611 req.dd_growth = c->bi.inode_budget + ALIGN(ui->data_len, 8); 612 ubifs_release_budget(c, &req); 613 } 614 #endif 615 616 /** 617 * ubifs_reported_space - calculate reported free space. 618 * @c: the UBIFS file-system description object 619 * @free: amount of free space 620 * 621 * This function calculates amount of free space which will be reported to 622 * user-space. User-space application tend to expect that if the file-system 623 * (e.g., via the 'statfs()' call) reports that it has N bytes available, they 624 * are able to write a file of size N. UBIFS attaches node headers to each data 625 * node and it has to write indexing nodes as well. This introduces additional 626 * overhead, and UBIFS has to report slightly less free space to meet the above 627 * expectations. 628 * 629 * This function assumes free space is made up of uncompressed data nodes and 630 * full index nodes (one per data node, tripled because we always allow enough 631 * space to write the index thrice). 632 * 633 * Note, the calculation is pessimistic, which means that most of the time 634 * UBIFS reports less space than it actually has. 635 */ 636 long long ubifs_reported_space(const struct ubifs_info *c, long long free) 637 { 638 int divisor, factor, f; 639 640 /* 641 * Reported space size is @free * X, where X is UBIFS block size 642 * divided by UBIFS block size + all overhead one data block 643 * introduces. The overhead is the node header + indexing overhead. 644 * 645 * Indexing overhead calculations are based on the following formula: 646 * I = N/(f - 1) + 1, where I - number of indexing nodes, N - number 647 * of data nodes, f - fanout. Because effective UBIFS fanout is twice 648 * as less than maximum fanout, we assume that each data node 649 * introduces 3 * @c->max_idx_node_sz / (@c->fanout/2 - 1) bytes. 650 * Note, the multiplier 3 is because UBIFS reserves thrice as more space 651 * for the index. 652 */ 653 f = c->fanout > 3 ? c->fanout >> 1 : 2; 654 factor = UBIFS_BLOCK_SIZE; 655 divisor = UBIFS_MAX_DATA_NODE_SZ; 656 divisor += (c->max_idx_node_sz * 3) / (f - 1); 657 free *= factor; 658 return div_u64(free, divisor); 659 } 660 661 #ifndef __UBOOT__ 662 /** 663 * ubifs_get_free_space_nolock - return amount of free space. 664 * @c: UBIFS file-system description object 665 * 666 * This function calculates amount of free space to report to user-space. 667 * 668 * Because UBIFS may introduce substantial overhead (the index, node headers, 669 * alignment, wastage at the end of LEBs, etc), it cannot report real amount of 670 * free flash space it has (well, because not all dirty space is reclaimable, 671 * UBIFS does not actually know the real amount). If UBIFS did so, it would 672 * bread user expectations about what free space is. Users seem to accustomed 673 * to assume that if the file-system reports N bytes of free space, they would 674 * be able to fit a file of N bytes to the FS. This almost works for 675 * traditional file-systems, because they have way less overhead than UBIFS. 676 * So, to keep users happy, UBIFS tries to take the overhead into account. 677 */ 678 long long ubifs_get_free_space_nolock(struct ubifs_info *c) 679 { 680 int rsvd_idx_lebs, lebs; 681 long long available, outstanding, free; 682 683 ubifs_assert(c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c)); 684 outstanding = c->bi.data_growth + c->bi.dd_growth; 685 available = ubifs_calc_available(c, c->bi.min_idx_lebs); 686 687 /* 688 * When reporting free space to user-space, UBIFS guarantees that it is 689 * possible to write a file of free space size. This means that for 690 * empty LEBs we may use more precise calculations than 691 * 'ubifs_calc_available()' is using. Namely, we know that in empty 692 * LEBs we would waste only @c->leb_overhead bytes, not @c->dark_wm. 693 * Thus, amend the available space. 694 * 695 * Note, the calculations below are similar to what we have in 696 * 'do_budget_space()', so refer there for comments. 697 */ 698 if (c->bi.min_idx_lebs > c->lst.idx_lebs) 699 rsvd_idx_lebs = c->bi.min_idx_lebs - c->lst.idx_lebs; 700 else 701 rsvd_idx_lebs = 0; 702 lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt - 703 c->lst.taken_empty_lebs; 704 lebs -= rsvd_idx_lebs; 705 available += lebs * (c->dark_wm - c->leb_overhead); 706 707 if (available > outstanding) 708 free = ubifs_reported_space(c, available - outstanding); 709 else 710 free = 0; 711 return free; 712 } 713 714 /** 715 * ubifs_get_free_space - return amount of free space. 716 * @c: UBIFS file-system description object 717 * 718 * This function calculates and returns amount of free space to report to 719 * user-space. 720 */ 721 long long ubifs_get_free_space(struct ubifs_info *c) 722 { 723 long long free; 724 725 spin_lock(&c->space_lock); 726 free = ubifs_get_free_space_nolock(c); 727 spin_unlock(&c->space_lock); 728 729 return free; 730 } 731 #endif 732