xref: /openbmc/u-boot/fs/jffs2/mini_inflate.c (revision a3b36c84)
1 /*-------------------------------------------------------------------------
2  * Filename:      mini_inflate.c
3  * Version:       $Id: mini_inflate.c,v 1.3 2002/01/24 22:58:42 rfeany Exp $
4  * Copyright:     Copyright (C) 2001, Russ Dill
5  * Author:        Russ Dill <Russ.Dill@asu.edu>
6  * Description:   Mini inflate implementation (RFC 1951)
7  *-----------------------------------------------------------------------*/
8 /*
9  * SPDX-License-Identifier:	GPL-2.0+
10  */
11 
12 #include <config.h>
13 #include <jffs2/mini_inflate.h>
14 
15 /* The order that the code lengths in section 3.2.7 are in */
16 static unsigned char huffman_order[] = {16, 17, 18,  0,  8,  7,  9,  6, 10,  5,
17 					11,  4, 12,  3, 13,  2, 14,  1, 15};
18 
19 static inline void cramfs_memset(int *s, const int c, size n)
20 {
21 	n--;
22 	for (;n > 0; n--) s[n] = c;
23 	s[0] = c;
24 }
25 
26 /* associate a stream with a block of data and reset the stream */
27 static void init_stream(struct bitstream *stream, unsigned char *data,
28 			void *(*inflate_memcpy)(void *, const void *, size))
29 {
30 	stream->error = NO_ERROR;
31 	stream->memcpy = inflate_memcpy;
32 	stream->decoded = 0;
33 	stream->data = data;
34 	stream->bit = 0;	/* The first bit of the stream is the lsb of the
35 				 * first byte */
36 
37 	/* really sorry about all this initialization, think of a better way,
38 	 * let me know and it will get cleaned up */
39 	stream->codes.bits = 8;
40 	stream->codes.num_symbols = 19;
41 	stream->codes.lengths = stream->code_lengths;
42 	stream->codes.symbols = stream->code_symbols;
43 	stream->codes.count = stream->code_count;
44 	stream->codes.first = stream->code_first;
45 	stream->codes.pos = stream->code_pos;
46 
47 	stream->lengths.bits = 16;
48 	stream->lengths.num_symbols = 288;
49 	stream->lengths.lengths = stream->length_lengths;
50 	stream->lengths.symbols = stream->length_symbols;
51 	stream->lengths.count = stream->length_count;
52 	stream->lengths.first = stream->length_first;
53 	stream->lengths.pos = stream->length_pos;
54 
55 	stream->distance.bits = 16;
56 	stream->distance.num_symbols = 32;
57 	stream->distance.lengths = stream->distance_lengths;
58 	stream->distance.symbols = stream->distance_symbols;
59 	stream->distance.count = stream->distance_count;
60 	stream->distance.first = stream->distance_first;
61 	stream->distance.pos = stream->distance_pos;
62 
63 }
64 
65 /* pull 'bits' bits out of the stream. The last bit pulled it returned as the
66  * msb. (section 3.1.1)
67  */
68 static inline unsigned long pull_bits(struct bitstream *stream,
69 				      const unsigned int bits)
70 {
71 	unsigned long ret;
72 	int i;
73 
74 	ret = 0;
75 	for (i = 0; i < bits; i++) {
76 		ret += ((*(stream->data) >> stream->bit) & 1) << i;
77 
78 		/* if, before incrementing, we are on bit 7,
79 		 * go to the lsb of the next byte */
80 		if (stream->bit++ == 7) {
81 			stream->bit = 0;
82 			stream->data++;
83 		}
84 	}
85 	return ret;
86 }
87 
88 static inline int pull_bit(struct bitstream *stream)
89 {
90 	int ret = ((*(stream->data) >> stream->bit) & 1);
91 	if (stream->bit++ == 7) {
92 		stream->bit = 0;
93 		stream->data++;
94 	}
95 	return ret;
96 }
97 
98 /* discard bits up to the next whole byte */
99 static void discard_bits(struct bitstream *stream)
100 {
101 	if (stream->bit != 0) {
102 		stream->bit = 0;
103 		stream->data++;
104 	}
105 }
106 
107 /* No decompression, the data is all literals (section 3.2.4) */
108 static void decompress_none(struct bitstream *stream, unsigned char *dest)
109 {
110 	unsigned int length;
111 
112 	discard_bits(stream);
113 	length = *(stream->data++);
114 	length += *(stream->data++) << 8;
115 	pull_bits(stream, 16);	/* throw away the inverse of the size */
116 
117 	stream->decoded += length;
118 	stream->memcpy(dest, stream->data, length);
119 	stream->data += length;
120 }
121 
122 /* Read in a symbol from the stream (section 3.2.2) */
123 static int read_symbol(struct bitstream *stream, struct huffman_set *set)
124 {
125 	int bits = 0;
126 	int code = 0;
127 	while (!(set->count[bits] && code < set->first[bits] +
128 					     set->count[bits])) {
129 		code = (code << 1) + pull_bit(stream);
130 		if (++bits > set->bits) {
131 			/* error decoding (corrupted data?) */
132 			stream->error = CODE_NOT_FOUND;
133 			return -1;
134 		}
135 	}
136 	return set->symbols[set->pos[bits] + code - set->first[bits]];
137 }
138 
139 /* decompress a stream of data encoded with the passed length and distance
140  * huffman codes */
141 static void decompress_huffman(struct bitstream *stream, unsigned char *dest)
142 {
143 	struct huffman_set *lengths = &(stream->lengths);
144 	struct huffman_set *distance = &(stream->distance);
145 
146 	int symbol, length, dist, i;
147 
148 	do {
149 		if ((symbol = read_symbol(stream, lengths)) < 0) return;
150 		if (symbol < 256) {
151 			*(dest++) = symbol; /* symbol is a literal */
152 			stream->decoded++;
153 		} else if (symbol > 256) {
154 			/* Determine the length of the repitition
155 			 * (section 3.2.5) */
156 			if (symbol < 265) length = symbol - 254;
157 			else if (symbol == 285) length = 258;
158 			else {
159 				length = pull_bits(stream, (symbol - 261) >> 2);
160 				length += (4 << ((symbol - 261) >> 2)) + 3;
161 				length += ((symbol - 1) % 4) <<
162 					  ((symbol - 261) >> 2);
163 			}
164 
165 			/* Determine how far back to go */
166 			if ((symbol = read_symbol(stream, distance)) < 0)
167 				return;
168 			if (symbol < 4) dist = symbol + 1;
169 			else {
170 				dist = pull_bits(stream, (symbol - 2) >> 1);
171 				dist += (2 << ((symbol - 2) >> 1)) + 1;
172 				dist += (symbol % 2) << ((symbol - 2) >> 1);
173 			}
174 			stream->decoded += length;
175 			for (i = 0; i < length; i++) {
176 				*dest = dest[-dist];
177 				dest++;
178 			}
179 		}
180 	} while (symbol != 256); /* 256 is the end of the data block */
181 }
182 
183 /* Fill the lookup tables (section 3.2.2) */
184 static void fill_code_tables(struct huffman_set *set)
185 {
186 	int code = 0, i, length;
187 
188 	/* fill in the first code of each bit length, and the pos pointer */
189 	set->pos[0] = 0;
190 	for (i = 1; i < set->bits; i++) {
191 		code = (code + set->count[i - 1]) << 1;
192 		set->first[i] = code;
193 		set->pos[i] = set->pos[i - 1] + set->count[i - 1];
194 	}
195 
196 	/* Fill in the table of symbols in order of their huffman code */
197 	for (i = 0; i < set->num_symbols; i++) {
198 		if ((length = set->lengths[i]))
199 			set->symbols[set->pos[length]++] = i;
200 	}
201 
202 	/* reset the pos pointer */
203 	for (i = 1; i < set->bits; i++) set->pos[i] -= set->count[i];
204 }
205 
206 static void init_code_tables(struct huffman_set *set)
207 {
208 	cramfs_memset(set->lengths, 0, set->num_symbols);
209 	cramfs_memset(set->count, 0, set->bits);
210 	cramfs_memset(set->first, 0, set->bits);
211 }
212 
213 /* read in the huffman codes for dynamic decoding (section 3.2.7) */
214 static void decompress_dynamic(struct bitstream *stream, unsigned char *dest)
215 {
216 	/* I tried my best to minimize the memory footprint here, while still
217 	 * keeping up performance. I really dislike the _lengths[] tables, but
218 	 * I see no way of eliminating them without a sizable performance
219 	 * impact. The first struct table keeps track of stats on each bit
220 	 * length. The _length table keeps a record of the bit length of each
221 	 * symbol. The _symbols table is for looking up symbols by the huffman
222 	 * code (the pos element points to the first place in the symbol table
223 	 * where that bit length occurs). I also hate the initization of these
224 	 * structs, if someone knows how to compact these, lemme know. */
225 
226 	struct huffman_set *codes = &(stream->codes);
227 	struct huffman_set *lengths = &(stream->lengths);
228 	struct huffman_set *distance = &(stream->distance);
229 
230 	int hlit = pull_bits(stream, 5) + 257;
231 	int hdist = pull_bits(stream, 5) + 1;
232 	int hclen = pull_bits(stream, 4) + 4;
233 	int length, curr_code, symbol, i, last_code;
234 
235 	last_code = 0;
236 
237 	init_code_tables(codes);
238 	init_code_tables(lengths);
239 	init_code_tables(distance);
240 
241 	/* fill in the count of each bit length' as well as the lengths
242 	 * table */
243 	for (i = 0; i < hclen; i++) {
244 		length = pull_bits(stream, 3);
245 		codes->lengths[huffman_order[i]] = length;
246 		if (length) codes->count[length]++;
247 
248 	}
249 	fill_code_tables(codes);
250 
251 	/* Do the same for the length codes, being carefull of wrap through
252 	 * to the distance table */
253 	curr_code = 0;
254 	while (curr_code < hlit) {
255 		if ((symbol = read_symbol(stream, codes)) < 0) return;
256 		if (symbol == 0) {
257 			curr_code++;
258 			last_code = 0;
259 		} else if (symbol < 16) { /* Literal length */
260 			lengths->lengths[curr_code] =  last_code = symbol;
261 			lengths->count[symbol]++;
262 			curr_code++;
263 		} else if (symbol == 16) { /* repeat the last symbol 3 - 6
264 					    * times */
265 			length = 3 + pull_bits(stream, 2);
266 			for (;length; length--, curr_code++)
267 				if (curr_code < hlit) {
268 					lengths->lengths[curr_code] =
269 						last_code;
270 					lengths->count[last_code]++;
271 				} else { /* wrap to the distance table */
272 					distance->lengths[curr_code - hlit] =
273 						last_code;
274 					distance->count[last_code]++;
275 				}
276 		} else if (symbol == 17) { /* repeat a bit length 0 */
277 			curr_code += 3 + pull_bits(stream, 3);
278 			last_code = 0;
279 		} else { /* same, but more times */
280 			curr_code += 11 + pull_bits(stream, 7);
281 			last_code = 0;
282 		}
283 	}
284 	fill_code_tables(lengths);
285 
286 	/* Fill the distance table, don't need to worry about wrapthrough
287 	 * here */
288 	curr_code -= hlit;
289 	while (curr_code < hdist) {
290 		if ((symbol = read_symbol(stream, codes)) < 0) return;
291 		if (symbol == 0) {
292 			curr_code++;
293 			last_code = 0;
294 		} else if (symbol < 16) {
295 			distance->lengths[curr_code] = last_code = symbol;
296 			distance->count[symbol]++;
297 			curr_code++;
298 		} else if (symbol == 16) {
299 			length = 3 + pull_bits(stream, 2);
300 			for (;length; length--, curr_code++) {
301 				distance->lengths[curr_code] =
302 					last_code;
303 				distance->count[last_code]++;
304 			}
305 		} else if (symbol == 17) {
306 			curr_code += 3 + pull_bits(stream, 3);
307 			last_code = 0;
308 		} else {
309 			curr_code += 11 + pull_bits(stream, 7);
310 			last_code = 0;
311 		}
312 	}
313 	fill_code_tables(distance);
314 
315 	decompress_huffman(stream, dest);
316 }
317 
318 /* fill in the length and distance huffman codes for fixed encoding
319  * (section 3.2.6) */
320 static void decompress_fixed(struct bitstream *stream, unsigned char *dest)
321 {
322 	/* let gcc fill in the initial values */
323 	struct huffman_set *lengths = &(stream->lengths);
324 	struct huffman_set *distance = &(stream->distance);
325 
326 	cramfs_memset(lengths->count, 0, 16);
327 	cramfs_memset(lengths->first, 0, 16);
328 	cramfs_memset(lengths->lengths, 8, 144);
329 	cramfs_memset(lengths->lengths + 144, 9, 112);
330 	cramfs_memset(lengths->lengths + 256, 7, 24);
331 	cramfs_memset(lengths->lengths + 280, 8, 8);
332 	lengths->count[7] = 24;
333 	lengths->count[8] = 152;
334 	lengths->count[9] = 112;
335 
336 	cramfs_memset(distance->count, 0, 16);
337 	cramfs_memset(distance->first, 0, 16);
338 	cramfs_memset(distance->lengths, 5, 32);
339 	distance->count[5] = 32;
340 
341 
342 	fill_code_tables(lengths);
343 	fill_code_tables(distance);
344 
345 
346 	decompress_huffman(stream, dest);
347 }
348 
349 /* returns the number of bytes decoded, < 0 if there was an error. Note that
350  * this function assumes that the block starts on a byte boundry
351  * (non-compliant, but I don't see where this would happen). section 3.2.3 */
352 long decompress_block(unsigned char *dest, unsigned char *source,
353 		      void *(*inflate_memcpy)(void *, const void *, size))
354 {
355 	int bfinal, btype;
356 	struct bitstream stream;
357 
358 	init_stream(&stream, source, inflate_memcpy);
359 	do {
360 		bfinal = pull_bit(&stream);
361 		btype = pull_bits(&stream, 2);
362 		if (btype == NO_COMP) decompress_none(&stream, dest + stream.decoded);
363 		else if (btype == DYNAMIC_COMP)
364 			decompress_dynamic(&stream, dest + stream.decoded);
365 		else if (btype == FIXED_COMP) decompress_fixed(&stream, dest + stream.decoded);
366 		else stream.error = COMP_UNKNOWN;
367 	} while (!bfinal && !stream.error);
368 
369 #if 0
370 	putstr("decompress_block start\r\n");
371 	putLabeledWord("stream.error = ",stream.error);
372 	putLabeledWord("stream.decoded = ",stream.decoded);
373 	putLabeledWord("dest = ",dest);
374 	putstr("decompress_block end\r\n");
375 #endif
376 	return stream.error ? -stream.error : stream.decoded;
377 }
378