1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * From linux/include/uapi/linux/btrfs_tree.h 4 */ 5 6 #ifndef __BTRFS_BTRFS_TREE_H__ 7 #define __BTRFS_BTRFS_TREE_H__ 8 9 #include <common.h> 10 11 #define BTRFS_VOL_NAME_MAX 255 12 #define BTRFS_NAME_MAX 255 13 #define BTRFS_LABEL_SIZE 256 14 #define BTRFS_FSID_SIZE 16 15 #define BTRFS_UUID_SIZE 16 16 17 /* 18 * This header contains the structure definitions and constants used 19 * by file system objects that can be retrieved using 20 * the BTRFS_IOC_SEARCH_TREE ioctl. That means basically anything that 21 * is needed to describe a leaf node's key or item contents. 22 */ 23 24 /* holds pointers to all of the tree roots */ 25 #define BTRFS_ROOT_TREE_OBJECTID 1ULL 26 27 /* stores information about which extents are in use, and reference counts */ 28 #define BTRFS_EXTENT_TREE_OBJECTID 2ULL 29 30 /* 31 * chunk tree stores translations from logical -> physical block numbering 32 * the super block points to the chunk tree 33 */ 34 #define BTRFS_CHUNK_TREE_OBJECTID 3ULL 35 36 /* 37 * stores information about which areas of a given device are in use. 38 * one per device. The tree of tree roots points to the device tree 39 */ 40 #define BTRFS_DEV_TREE_OBJECTID 4ULL 41 42 /* one per subvolume, storing files and directories */ 43 #define BTRFS_FS_TREE_OBJECTID 5ULL 44 45 /* directory objectid inside the root tree */ 46 #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL 47 48 /* holds checksums of all the data extents */ 49 #define BTRFS_CSUM_TREE_OBJECTID 7ULL 50 51 /* holds quota configuration and tracking */ 52 #define BTRFS_QUOTA_TREE_OBJECTID 8ULL 53 54 /* for storing items that use the BTRFS_UUID_KEY* types */ 55 #define BTRFS_UUID_TREE_OBJECTID 9ULL 56 57 /* tracks free space in block groups. */ 58 #define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL 59 60 /* device stats in the device tree */ 61 #define BTRFS_DEV_STATS_OBJECTID 0ULL 62 63 /* for storing balance parameters in the root tree */ 64 #define BTRFS_BALANCE_OBJECTID -4ULL 65 66 /* orhpan objectid for tracking unlinked/truncated files */ 67 #define BTRFS_ORPHAN_OBJECTID -5ULL 68 69 /* does write ahead logging to speed up fsyncs */ 70 #define BTRFS_TREE_LOG_OBJECTID -6ULL 71 #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL 72 73 /* for space balancing */ 74 #define BTRFS_TREE_RELOC_OBJECTID -8ULL 75 #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL 76 77 /* 78 * extent checksums all have this objectid 79 * this allows them to share the logging tree 80 * for fsyncs 81 */ 82 #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL 83 84 /* For storing free space cache */ 85 #define BTRFS_FREE_SPACE_OBJECTID -11ULL 86 87 /* 88 * The inode number assigned to the special inode for storing 89 * free ino cache 90 */ 91 #define BTRFS_FREE_INO_OBJECTID -12ULL 92 93 /* dummy objectid represents multiple objectids */ 94 #define BTRFS_MULTIPLE_OBJECTIDS -255ULL 95 96 /* 97 * All files have objectids in this range. 98 */ 99 #define BTRFS_FIRST_FREE_OBJECTID 256ULL 100 #define BTRFS_LAST_FREE_OBJECTID -256ULL 101 #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL 102 103 104 /* 105 * the device items go into the chunk tree. The key is in the form 106 * [ 1 BTRFS_DEV_ITEM_KEY device_id ] 107 */ 108 #define BTRFS_DEV_ITEMS_OBJECTID 1ULL 109 110 #define BTRFS_BTREE_INODE_OBJECTID 1 111 112 #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2 113 114 #define BTRFS_DEV_REPLACE_DEVID 0ULL 115 116 /* 117 * inode items have the data typically returned from stat and store other 118 * info about object characteristics. There is one for every file and dir in 119 * the FS 120 */ 121 #define BTRFS_INODE_ITEM_KEY 1 122 #define BTRFS_INODE_REF_KEY 12 123 #define BTRFS_INODE_EXTREF_KEY 13 124 #define BTRFS_XATTR_ITEM_KEY 24 125 #define BTRFS_ORPHAN_ITEM_KEY 48 126 /* reserve 2-15 close to the inode for later flexibility */ 127 128 /* 129 * dir items are the name -> inode pointers in a directory. There is one 130 * for every name in a directory. 131 */ 132 #define BTRFS_DIR_LOG_ITEM_KEY 60 133 #define BTRFS_DIR_LOG_INDEX_KEY 72 134 #define BTRFS_DIR_ITEM_KEY 84 135 #define BTRFS_DIR_INDEX_KEY 96 136 /* 137 * extent data is for file data 138 */ 139 #define BTRFS_EXTENT_DATA_KEY 108 140 141 /* 142 * extent csums are stored in a separate tree and hold csums for 143 * an entire extent on disk. 144 */ 145 #define BTRFS_EXTENT_CSUM_KEY 128 146 147 /* 148 * root items point to tree roots. They are typically in the root 149 * tree used by the super block to find all the other trees 150 */ 151 #define BTRFS_ROOT_ITEM_KEY 132 152 153 /* 154 * root backrefs tie subvols and snapshots to the directory entries that 155 * reference them 156 */ 157 #define BTRFS_ROOT_BACKREF_KEY 144 158 159 /* 160 * root refs make a fast index for listing all of the snapshots and 161 * subvolumes referenced by a given root. They point directly to the 162 * directory item in the root that references the subvol 163 */ 164 #define BTRFS_ROOT_REF_KEY 156 165 166 /* 167 * extent items are in the extent map tree. These record which blocks 168 * are used, and how many references there are to each block 169 */ 170 #define BTRFS_EXTENT_ITEM_KEY 168 171 172 /* 173 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know 174 * the length, so we save the level in key->offset instead of the length. 175 */ 176 #define BTRFS_METADATA_ITEM_KEY 169 177 178 #define BTRFS_TREE_BLOCK_REF_KEY 176 179 180 #define BTRFS_EXTENT_DATA_REF_KEY 178 181 182 #define BTRFS_EXTENT_REF_V0_KEY 180 183 184 #define BTRFS_SHARED_BLOCK_REF_KEY 182 185 186 #define BTRFS_SHARED_DATA_REF_KEY 184 187 188 /* 189 * block groups give us hints into the extent allocation trees. Which 190 * blocks are free etc etc 191 */ 192 #define BTRFS_BLOCK_GROUP_ITEM_KEY 192 193 194 /* 195 * Every block group is represented in the free space tree by a free space info 196 * item, which stores some accounting information. It is keyed on 197 * (block_group_start, FREE_SPACE_INFO, block_group_length). 198 */ 199 #define BTRFS_FREE_SPACE_INFO_KEY 198 200 201 /* 202 * A free space extent tracks an extent of space that is free in a block group. 203 * It is keyed on (start, FREE_SPACE_EXTENT, length). 204 */ 205 #define BTRFS_FREE_SPACE_EXTENT_KEY 199 206 207 /* 208 * When a block group becomes very fragmented, we convert it to use bitmaps 209 * instead of extents. A free space bitmap is keyed on 210 * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with 211 * (length / sectorsize) bits. 212 */ 213 #define BTRFS_FREE_SPACE_BITMAP_KEY 200 214 215 #define BTRFS_DEV_EXTENT_KEY 204 216 #define BTRFS_DEV_ITEM_KEY 216 217 #define BTRFS_CHUNK_ITEM_KEY 228 218 219 /* 220 * Records the overall state of the qgroups. 221 * There's only one instance of this key present, 222 * (0, BTRFS_QGROUP_STATUS_KEY, 0) 223 */ 224 #define BTRFS_QGROUP_STATUS_KEY 240 225 /* 226 * Records the currently used space of the qgroup. 227 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid). 228 */ 229 #define BTRFS_QGROUP_INFO_KEY 242 230 /* 231 * Contains the user configured limits for the qgroup. 232 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid). 233 */ 234 #define BTRFS_QGROUP_LIMIT_KEY 244 235 /* 236 * Records the child-parent relationship of qgroups. For 237 * each relation, 2 keys are present: 238 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid) 239 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid) 240 */ 241 #define BTRFS_QGROUP_RELATION_KEY 246 242 243 /* 244 * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY. 245 */ 246 #define BTRFS_BALANCE_ITEM_KEY 248 247 248 /* 249 * The key type for tree items that are stored persistently, but do not need to 250 * exist for extended period of time. The items can exist in any tree. 251 * 252 * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data] 253 * 254 * Existing items: 255 * 256 * - balance status item 257 * (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0) 258 */ 259 #define BTRFS_TEMPORARY_ITEM_KEY 248 260 261 /* 262 * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY 263 */ 264 #define BTRFS_DEV_STATS_KEY 249 265 266 /* 267 * The key type for tree items that are stored persistently and usually exist 268 * for a long period, eg. filesystem lifetime. The item kinds can be status 269 * information, stats or preference values. The item can exist in any tree. 270 * 271 * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data] 272 * 273 * Existing items: 274 * 275 * - device statistics, store IO stats in the device tree, one key for all 276 * stats 277 * (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0) 278 */ 279 #define BTRFS_PERSISTENT_ITEM_KEY 249 280 281 /* 282 * Persistantly stores the device replace state in the device tree. 283 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0). 284 */ 285 #define BTRFS_DEV_REPLACE_KEY 250 286 287 /* 288 * Stores items that allow to quickly map UUIDs to something else. 289 * These items are part of the filesystem UUID tree. 290 * The key is built like this: 291 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits). 292 */ 293 #if BTRFS_UUID_SIZE != 16 294 #error "UUID items require BTRFS_UUID_SIZE == 16!" 295 #endif 296 #define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */ 297 #define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to 298 * received subvols */ 299 300 /* 301 * string items are for debugging. They just store a short string of 302 * data in the FS 303 */ 304 #define BTRFS_STRING_ITEM_KEY 253 305 306 307 308 /* 32 bytes in various csum fields */ 309 #define BTRFS_CSUM_SIZE 32 310 311 /* csum types */ 312 #define BTRFS_CSUM_TYPE_CRC32 0 313 314 /* 315 * flags definitions for directory entry item type 316 * 317 * Used by: 318 * struct btrfs_dir_item.type 319 */ 320 #define BTRFS_FT_UNKNOWN 0 321 #define BTRFS_FT_REG_FILE 1 322 #define BTRFS_FT_DIR 2 323 #define BTRFS_FT_CHRDEV 3 324 #define BTRFS_FT_BLKDEV 4 325 #define BTRFS_FT_FIFO 5 326 #define BTRFS_FT_SOCK 6 327 #define BTRFS_FT_SYMLINK 7 328 #define BTRFS_FT_XATTR 8 329 #define BTRFS_FT_MAX 9 330 331 /* 332 * The key defines the order in the tree, and so it also defines (optimal) 333 * block layout. 334 * 335 * objectid corresponds to the inode number. 336 * 337 * type tells us things about the object, and is a kind of stream selector. 338 * so for a given inode, keys with type of 1 might refer to the inode data, 339 * type of 2 may point to file data in the btree and type == 3 may point to 340 * extents. 341 * 342 * offset is the starting byte offset for this key in the stream. 343 */ 344 345 struct btrfs_key { 346 __u64 objectid; 347 __u8 type; 348 __u64 offset; 349 } __attribute__ ((__packed__)); 350 351 struct btrfs_dev_item { 352 /* the internal btrfs device id */ 353 __u64 devid; 354 355 /* size of the device */ 356 __u64 total_bytes; 357 358 /* bytes used */ 359 __u64 bytes_used; 360 361 /* optimal io alignment for this device */ 362 __u32 io_align; 363 364 /* optimal io width for this device */ 365 __u32 io_width; 366 367 /* minimal io size for this device */ 368 __u32 sector_size; 369 370 /* type and info about this device */ 371 __u64 type; 372 373 /* expected generation for this device */ 374 __u64 generation; 375 376 /* 377 * starting byte of this partition on the device, 378 * to allow for stripe alignment in the future 379 */ 380 __u64 start_offset; 381 382 /* grouping information for allocation decisions */ 383 __u32 dev_group; 384 385 /* seek speed 0-100 where 100 is fastest */ 386 __u8 seek_speed; 387 388 /* bandwidth 0-100 where 100 is fastest */ 389 __u8 bandwidth; 390 391 /* btrfs generated uuid for this device */ 392 __u8 uuid[BTRFS_UUID_SIZE]; 393 394 /* uuid of FS who owns this device */ 395 __u8 fsid[BTRFS_UUID_SIZE]; 396 } __attribute__ ((__packed__)); 397 398 struct btrfs_stripe { 399 __u64 devid; 400 __u64 offset; 401 __u8 dev_uuid[BTRFS_UUID_SIZE]; 402 } __attribute__ ((__packed__)); 403 404 struct btrfs_chunk { 405 /* size of this chunk in bytes */ 406 __u64 length; 407 408 /* objectid of the root referencing this chunk */ 409 __u64 owner; 410 411 __u64 stripe_len; 412 __u64 type; 413 414 /* optimal io alignment for this chunk */ 415 __u32 io_align; 416 417 /* optimal io width for this chunk */ 418 __u32 io_width; 419 420 /* minimal io size for this chunk */ 421 __u32 sector_size; 422 423 /* 2^16 stripes is quite a lot, a second limit is the size of a single 424 * item in the btree 425 */ 426 __u16 num_stripes; 427 428 /* sub stripes only matter for raid10 */ 429 __u16 sub_stripes; 430 struct btrfs_stripe stripe; 431 /* additional stripes go here */ 432 } __attribute__ ((__packed__)); 433 434 #define BTRFS_FREE_SPACE_EXTENT 1 435 #define BTRFS_FREE_SPACE_BITMAP 2 436 437 struct btrfs_free_space_entry { 438 __u64 offset; 439 __u64 bytes; 440 __u8 type; 441 } __attribute__ ((__packed__)); 442 443 struct btrfs_free_space_header { 444 struct btrfs_key location; 445 __u64 generation; 446 __u64 num_entries; 447 __u64 num_bitmaps; 448 } __attribute__ ((__packed__)); 449 450 #define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0) 451 #define BTRFS_HEADER_FLAG_RELOC (1ULL << 1) 452 453 /* Super block flags */ 454 /* Errors detected */ 455 #define BTRFS_SUPER_FLAG_ERROR (1ULL << 2) 456 457 #define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32) 458 #define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33) 459 460 461 /* 462 * items in the extent btree are used to record the objectid of the 463 * owner of the block and the number of references 464 */ 465 466 struct btrfs_extent_item { 467 __u64 refs; 468 __u64 generation; 469 __u64 flags; 470 } __attribute__ ((__packed__)); 471 472 473 #define BTRFS_EXTENT_FLAG_DATA (1ULL << 0) 474 #define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1) 475 476 /* following flags only apply to tree blocks */ 477 478 /* use full backrefs for extent pointers in the block */ 479 #define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8) 480 481 /* 482 * this flag is only used internally by scrub and may be changed at any time 483 * it is only declared here to avoid collisions 484 */ 485 #define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48) 486 487 struct btrfs_tree_block_info { 488 struct btrfs_key key; 489 __u8 level; 490 } __attribute__ ((__packed__)); 491 492 struct btrfs_extent_data_ref { 493 __u64 root; 494 __u64 objectid; 495 __u64 offset; 496 __u32 count; 497 } __attribute__ ((__packed__)); 498 499 struct btrfs_shared_data_ref { 500 __u32 count; 501 } __attribute__ ((__packed__)); 502 503 struct btrfs_extent_inline_ref { 504 __u8 type; 505 __u64 offset; 506 } __attribute__ ((__packed__)); 507 508 /* dev extents record free space on individual devices. The owner 509 * field points back to the chunk allocation mapping tree that allocated 510 * the extent. The chunk tree uuid field is a way to double check the owner 511 */ 512 struct btrfs_dev_extent { 513 __u64 chunk_tree; 514 __u64 chunk_objectid; 515 __u64 chunk_offset; 516 __u64 length; 517 __u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 518 } __attribute__ ((__packed__)); 519 520 struct btrfs_inode_ref { 521 __u64 index; 522 __u16 name_len; 523 /* name goes here */ 524 } __attribute__ ((__packed__)); 525 526 struct btrfs_inode_extref { 527 __u64 parent_objectid; 528 __u64 index; 529 __u16 name_len; 530 __u8 name[0]; 531 /* name goes here */ 532 } __attribute__ ((__packed__)); 533 534 struct btrfs_timespec { 535 __u64 sec; 536 __u32 nsec; 537 } __attribute__ ((__packed__)); 538 539 struct btrfs_inode_item { 540 /* nfs style generation number */ 541 __u64 generation; 542 /* transid that last touched this inode */ 543 __u64 transid; 544 __u64 size; 545 __u64 nbytes; 546 __u64 block_group; 547 __u32 nlink; 548 __u32 uid; 549 __u32 gid; 550 __u32 mode; 551 __u64 rdev; 552 __u64 flags; 553 554 /* modification sequence number for NFS */ 555 __u64 sequence; 556 557 /* 558 * a little future expansion, for more than this we can 559 * just grow the inode item and version it 560 */ 561 __u64 reserved[4]; 562 struct btrfs_timespec atime; 563 struct btrfs_timespec ctime; 564 struct btrfs_timespec mtime; 565 struct btrfs_timespec otime; 566 } __attribute__ ((__packed__)); 567 568 struct btrfs_dir_log_item { 569 __u64 end; 570 } __attribute__ ((__packed__)); 571 572 struct btrfs_dir_item { 573 struct btrfs_key location; 574 __u64 transid; 575 __u16 data_len; 576 __u16 name_len; 577 __u8 type; 578 } __attribute__ ((__packed__)); 579 580 #define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0) 581 582 /* 583 * Internal in-memory flag that a subvolume has been marked for deletion but 584 * still visible as a directory 585 */ 586 #define BTRFS_ROOT_SUBVOL_DEAD (1ULL << 48) 587 588 struct btrfs_root_item { 589 struct btrfs_inode_item inode; 590 __u64 generation; 591 __u64 root_dirid; 592 __u64 bytenr; 593 __u64 byte_limit; 594 __u64 bytes_used; 595 __u64 last_snapshot; 596 __u64 flags; 597 __u32 refs; 598 struct btrfs_key drop_progress; 599 __u8 drop_level; 600 __u8 level; 601 602 /* 603 * The following fields appear after subvol_uuids+subvol_times 604 * were introduced. 605 */ 606 607 /* 608 * This generation number is used to test if the new fields are valid 609 * and up to date while reading the root item. Every time the root item 610 * is written out, the "generation" field is copied into this field. If 611 * anyone ever mounted the fs with an older kernel, we will have 612 * mismatching generation values here and thus must invalidate the 613 * new fields. See btrfs_update_root and btrfs_find_last_root for 614 * details. 615 * the offset of generation_v2 is also used as the start for the memset 616 * when invalidating the fields. 617 */ 618 __u64 generation_v2; 619 __u8 uuid[BTRFS_UUID_SIZE]; 620 __u8 parent_uuid[BTRFS_UUID_SIZE]; 621 __u8 received_uuid[BTRFS_UUID_SIZE]; 622 __u64 ctransid; /* updated when an inode changes */ 623 __u64 otransid; /* trans when created */ 624 __u64 stransid; /* trans when sent. non-zero for received subvol */ 625 __u64 rtransid; /* trans when received. non-zero for received subvol */ 626 struct btrfs_timespec ctime; 627 struct btrfs_timespec otime; 628 struct btrfs_timespec stime; 629 struct btrfs_timespec rtime; 630 __u64 reserved[8]; /* for future */ 631 } __attribute__ ((__packed__)); 632 633 /* 634 * this is used for both forward and backward root refs 635 */ 636 struct btrfs_root_ref { 637 __u64 dirid; 638 __u64 sequence; 639 __u16 name_len; 640 } __attribute__ ((__packed__)); 641 642 #define BTRFS_FILE_EXTENT_INLINE 0 643 #define BTRFS_FILE_EXTENT_REG 1 644 #define BTRFS_FILE_EXTENT_PREALLOC 2 645 646 enum btrfs_compression_type { 647 BTRFS_COMPRESS_NONE = 0, 648 BTRFS_COMPRESS_ZLIB = 1, 649 BTRFS_COMPRESS_LZO = 2, 650 BTRFS_COMPRESS_TYPES = 2, 651 BTRFS_COMPRESS_LAST = 3, 652 }; 653 654 struct btrfs_file_extent_item { 655 /* 656 * transaction id that created this extent 657 */ 658 __u64 generation; 659 /* 660 * max number of bytes to hold this extent in ram 661 * when we split a compressed extent we can't know how big 662 * each of the resulting pieces will be. So, this is 663 * an upper limit on the size of the extent in ram instead of 664 * an exact limit. 665 */ 666 __u64 ram_bytes; 667 668 /* 669 * 32 bits for the various ways we might encode the data, 670 * including compression and encryption. If any of these 671 * are set to something a given disk format doesn't understand 672 * it is treated like an incompat flag for reading and writing, 673 * but not for stat. 674 */ 675 __u8 compression; 676 __u8 encryption; 677 __u16 other_encoding; /* spare for later use */ 678 679 /* are we inline data or a real extent? */ 680 __u8 type; 681 682 /* 683 * disk space consumed by the extent, checksum blocks are included 684 * in these numbers 685 * 686 * At this offset in the structure, the inline extent data start. 687 */ 688 __u64 disk_bytenr; 689 __u64 disk_num_bytes; 690 /* 691 * the logical offset in file blocks (no csums) 692 * this extent record is for. This allows a file extent to point 693 * into the middle of an existing extent on disk, sharing it 694 * between two snapshots (useful if some bytes in the middle of the 695 * extent have changed 696 */ 697 __u64 offset; 698 /* 699 * the logical number of file blocks (no csums included). This 700 * always reflects the size uncompressed and without encoding. 701 */ 702 __u64 num_bytes; 703 704 } __attribute__ ((__packed__)); 705 706 struct btrfs_csum_item { 707 __u8 csum; 708 } __attribute__ ((__packed__)); 709 710 /* different types of block groups (and chunks) */ 711 #define BTRFS_BLOCK_GROUP_DATA (1ULL << 0) 712 #define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1) 713 #define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2) 714 #define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3) 715 #define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4) 716 #define BTRFS_BLOCK_GROUP_DUP (1ULL << 5) 717 #define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6) 718 #define BTRFS_BLOCK_GROUP_RAID5 (1ULL << 7) 719 #define BTRFS_BLOCK_GROUP_RAID6 (1ULL << 8) 720 #define BTRFS_BLOCK_GROUP_RESERVED (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \ 721 BTRFS_SPACE_INFO_GLOBAL_RSV) 722 723 enum btrfs_raid_types { 724 BTRFS_RAID_RAID10, 725 BTRFS_RAID_RAID1, 726 BTRFS_RAID_DUP, 727 BTRFS_RAID_RAID0, 728 BTRFS_RAID_SINGLE, 729 BTRFS_RAID_RAID5, 730 BTRFS_RAID_RAID6, 731 BTRFS_NR_RAID_TYPES 732 }; 733 734 #define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \ 735 BTRFS_BLOCK_GROUP_SYSTEM | \ 736 BTRFS_BLOCK_GROUP_METADATA) 737 738 #define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \ 739 BTRFS_BLOCK_GROUP_RAID1 | \ 740 BTRFS_BLOCK_GROUP_RAID5 | \ 741 BTRFS_BLOCK_GROUP_RAID6 | \ 742 BTRFS_BLOCK_GROUP_DUP | \ 743 BTRFS_BLOCK_GROUP_RAID10) 744 #define BTRFS_BLOCK_GROUP_RAID56_MASK (BTRFS_BLOCK_GROUP_RAID5 | \ 745 BTRFS_BLOCK_GROUP_RAID6) 746 747 /* 748 * We need a bit for restriper to be able to tell when chunks of type 749 * SINGLE are available. This "extended" profile format is used in 750 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields 751 * (on-disk). The corresponding on-disk bit in chunk.type is reserved 752 * to avoid remappings between two formats in future. 753 */ 754 #define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48) 755 756 /* 757 * A fake block group type that is used to communicate global block reserve 758 * size to userspace via the SPACE_INFO ioctl. 759 */ 760 #define BTRFS_SPACE_INFO_GLOBAL_RSV (1ULL << 49) 761 762 #define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \ 763 BTRFS_AVAIL_ALLOC_BIT_SINGLE) 764 765 #endif /* __BTRFS_BTRFS_TREE_H__ */ 766