1 /* 2 * From linux/include/uapi/linux/btrfs_tree.h 3 * 4 * SPDX-License-Identifier: GPL-2.0+ 5 */ 6 7 #ifndef __BTRFS_BTRFS_TREE_H__ 8 #define __BTRFS_BTRFS_TREE_H__ 9 10 #include <common.h> 11 12 #define BTRFS_VOL_NAME_MAX 255 13 #define BTRFS_NAME_MAX 255 14 #define BTRFS_LABEL_SIZE 256 15 #define BTRFS_FSID_SIZE 16 16 #define BTRFS_UUID_SIZE 16 17 18 /* 19 * This header contains the structure definitions and constants used 20 * by file system objects that can be retrieved using 21 * the BTRFS_IOC_SEARCH_TREE ioctl. That means basically anything that 22 * is needed to describe a leaf node's key or item contents. 23 */ 24 25 /* holds pointers to all of the tree roots */ 26 #define BTRFS_ROOT_TREE_OBJECTID 1ULL 27 28 /* stores information about which extents are in use, and reference counts */ 29 #define BTRFS_EXTENT_TREE_OBJECTID 2ULL 30 31 /* 32 * chunk tree stores translations from logical -> physical block numbering 33 * the super block points to the chunk tree 34 */ 35 #define BTRFS_CHUNK_TREE_OBJECTID 3ULL 36 37 /* 38 * stores information about which areas of a given device are in use. 39 * one per device. The tree of tree roots points to the device tree 40 */ 41 #define BTRFS_DEV_TREE_OBJECTID 4ULL 42 43 /* one per subvolume, storing files and directories */ 44 #define BTRFS_FS_TREE_OBJECTID 5ULL 45 46 /* directory objectid inside the root tree */ 47 #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL 48 49 /* holds checksums of all the data extents */ 50 #define BTRFS_CSUM_TREE_OBJECTID 7ULL 51 52 /* holds quota configuration and tracking */ 53 #define BTRFS_QUOTA_TREE_OBJECTID 8ULL 54 55 /* for storing items that use the BTRFS_UUID_KEY* types */ 56 #define BTRFS_UUID_TREE_OBJECTID 9ULL 57 58 /* tracks free space in block groups. */ 59 #define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL 60 61 /* device stats in the device tree */ 62 #define BTRFS_DEV_STATS_OBJECTID 0ULL 63 64 /* for storing balance parameters in the root tree */ 65 #define BTRFS_BALANCE_OBJECTID -4ULL 66 67 /* orhpan objectid for tracking unlinked/truncated files */ 68 #define BTRFS_ORPHAN_OBJECTID -5ULL 69 70 /* does write ahead logging to speed up fsyncs */ 71 #define BTRFS_TREE_LOG_OBJECTID -6ULL 72 #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL 73 74 /* for space balancing */ 75 #define BTRFS_TREE_RELOC_OBJECTID -8ULL 76 #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL 77 78 /* 79 * extent checksums all have this objectid 80 * this allows them to share the logging tree 81 * for fsyncs 82 */ 83 #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL 84 85 /* For storing free space cache */ 86 #define BTRFS_FREE_SPACE_OBJECTID -11ULL 87 88 /* 89 * The inode number assigned to the special inode for storing 90 * free ino cache 91 */ 92 #define BTRFS_FREE_INO_OBJECTID -12ULL 93 94 /* dummy objectid represents multiple objectids */ 95 #define BTRFS_MULTIPLE_OBJECTIDS -255ULL 96 97 /* 98 * All files have objectids in this range. 99 */ 100 #define BTRFS_FIRST_FREE_OBJECTID 256ULL 101 #define BTRFS_LAST_FREE_OBJECTID -256ULL 102 #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL 103 104 105 /* 106 * the device items go into the chunk tree. The key is in the form 107 * [ 1 BTRFS_DEV_ITEM_KEY device_id ] 108 */ 109 #define BTRFS_DEV_ITEMS_OBJECTID 1ULL 110 111 #define BTRFS_BTREE_INODE_OBJECTID 1 112 113 #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2 114 115 #define BTRFS_DEV_REPLACE_DEVID 0ULL 116 117 /* 118 * inode items have the data typically returned from stat and store other 119 * info about object characteristics. There is one for every file and dir in 120 * the FS 121 */ 122 #define BTRFS_INODE_ITEM_KEY 1 123 #define BTRFS_INODE_REF_KEY 12 124 #define BTRFS_INODE_EXTREF_KEY 13 125 #define BTRFS_XATTR_ITEM_KEY 24 126 #define BTRFS_ORPHAN_ITEM_KEY 48 127 /* reserve 2-15 close to the inode for later flexibility */ 128 129 /* 130 * dir items are the name -> inode pointers in a directory. There is one 131 * for every name in a directory. 132 */ 133 #define BTRFS_DIR_LOG_ITEM_KEY 60 134 #define BTRFS_DIR_LOG_INDEX_KEY 72 135 #define BTRFS_DIR_ITEM_KEY 84 136 #define BTRFS_DIR_INDEX_KEY 96 137 /* 138 * extent data is for file data 139 */ 140 #define BTRFS_EXTENT_DATA_KEY 108 141 142 /* 143 * extent csums are stored in a separate tree and hold csums for 144 * an entire extent on disk. 145 */ 146 #define BTRFS_EXTENT_CSUM_KEY 128 147 148 /* 149 * root items point to tree roots. They are typically in the root 150 * tree used by the super block to find all the other trees 151 */ 152 #define BTRFS_ROOT_ITEM_KEY 132 153 154 /* 155 * root backrefs tie subvols and snapshots to the directory entries that 156 * reference them 157 */ 158 #define BTRFS_ROOT_BACKREF_KEY 144 159 160 /* 161 * root refs make a fast index for listing all of the snapshots and 162 * subvolumes referenced by a given root. They point directly to the 163 * directory item in the root that references the subvol 164 */ 165 #define BTRFS_ROOT_REF_KEY 156 166 167 /* 168 * extent items are in the extent map tree. These record which blocks 169 * are used, and how many references there are to each block 170 */ 171 #define BTRFS_EXTENT_ITEM_KEY 168 172 173 /* 174 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know 175 * the length, so we save the level in key->offset instead of the length. 176 */ 177 #define BTRFS_METADATA_ITEM_KEY 169 178 179 #define BTRFS_TREE_BLOCK_REF_KEY 176 180 181 #define BTRFS_EXTENT_DATA_REF_KEY 178 182 183 #define BTRFS_EXTENT_REF_V0_KEY 180 184 185 #define BTRFS_SHARED_BLOCK_REF_KEY 182 186 187 #define BTRFS_SHARED_DATA_REF_KEY 184 188 189 /* 190 * block groups give us hints into the extent allocation trees. Which 191 * blocks are free etc etc 192 */ 193 #define BTRFS_BLOCK_GROUP_ITEM_KEY 192 194 195 /* 196 * Every block group is represented in the free space tree by a free space info 197 * item, which stores some accounting information. It is keyed on 198 * (block_group_start, FREE_SPACE_INFO, block_group_length). 199 */ 200 #define BTRFS_FREE_SPACE_INFO_KEY 198 201 202 /* 203 * A free space extent tracks an extent of space that is free in a block group. 204 * It is keyed on (start, FREE_SPACE_EXTENT, length). 205 */ 206 #define BTRFS_FREE_SPACE_EXTENT_KEY 199 207 208 /* 209 * When a block group becomes very fragmented, we convert it to use bitmaps 210 * instead of extents. A free space bitmap is keyed on 211 * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with 212 * (length / sectorsize) bits. 213 */ 214 #define BTRFS_FREE_SPACE_BITMAP_KEY 200 215 216 #define BTRFS_DEV_EXTENT_KEY 204 217 #define BTRFS_DEV_ITEM_KEY 216 218 #define BTRFS_CHUNK_ITEM_KEY 228 219 220 /* 221 * Records the overall state of the qgroups. 222 * There's only one instance of this key present, 223 * (0, BTRFS_QGROUP_STATUS_KEY, 0) 224 */ 225 #define BTRFS_QGROUP_STATUS_KEY 240 226 /* 227 * Records the currently used space of the qgroup. 228 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid). 229 */ 230 #define BTRFS_QGROUP_INFO_KEY 242 231 /* 232 * Contains the user configured limits for the qgroup. 233 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid). 234 */ 235 #define BTRFS_QGROUP_LIMIT_KEY 244 236 /* 237 * Records the child-parent relationship of qgroups. For 238 * each relation, 2 keys are present: 239 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid) 240 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid) 241 */ 242 #define BTRFS_QGROUP_RELATION_KEY 246 243 244 /* 245 * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY. 246 */ 247 #define BTRFS_BALANCE_ITEM_KEY 248 248 249 /* 250 * The key type for tree items that are stored persistently, but do not need to 251 * exist for extended period of time. The items can exist in any tree. 252 * 253 * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data] 254 * 255 * Existing items: 256 * 257 * - balance status item 258 * (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0) 259 */ 260 #define BTRFS_TEMPORARY_ITEM_KEY 248 261 262 /* 263 * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY 264 */ 265 #define BTRFS_DEV_STATS_KEY 249 266 267 /* 268 * The key type for tree items that are stored persistently and usually exist 269 * for a long period, eg. filesystem lifetime. The item kinds can be status 270 * information, stats or preference values. The item can exist in any tree. 271 * 272 * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data] 273 * 274 * Existing items: 275 * 276 * - device statistics, store IO stats in the device tree, one key for all 277 * stats 278 * (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0) 279 */ 280 #define BTRFS_PERSISTENT_ITEM_KEY 249 281 282 /* 283 * Persistantly stores the device replace state in the device tree. 284 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0). 285 */ 286 #define BTRFS_DEV_REPLACE_KEY 250 287 288 /* 289 * Stores items that allow to quickly map UUIDs to something else. 290 * These items are part of the filesystem UUID tree. 291 * The key is built like this: 292 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits). 293 */ 294 #if BTRFS_UUID_SIZE != 16 295 #error "UUID items require BTRFS_UUID_SIZE == 16!" 296 #endif 297 #define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */ 298 #define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to 299 * received subvols */ 300 301 /* 302 * string items are for debugging. They just store a short string of 303 * data in the FS 304 */ 305 #define BTRFS_STRING_ITEM_KEY 253 306 307 308 309 /* 32 bytes in various csum fields */ 310 #define BTRFS_CSUM_SIZE 32 311 312 /* csum types */ 313 #define BTRFS_CSUM_TYPE_CRC32 0 314 315 /* 316 * flags definitions for directory entry item type 317 * 318 * Used by: 319 * struct btrfs_dir_item.type 320 */ 321 #define BTRFS_FT_UNKNOWN 0 322 #define BTRFS_FT_REG_FILE 1 323 #define BTRFS_FT_DIR 2 324 #define BTRFS_FT_CHRDEV 3 325 #define BTRFS_FT_BLKDEV 4 326 #define BTRFS_FT_FIFO 5 327 #define BTRFS_FT_SOCK 6 328 #define BTRFS_FT_SYMLINK 7 329 #define BTRFS_FT_XATTR 8 330 #define BTRFS_FT_MAX 9 331 332 /* 333 * The key defines the order in the tree, and so it also defines (optimal) 334 * block layout. 335 * 336 * objectid corresponds to the inode number. 337 * 338 * type tells us things about the object, and is a kind of stream selector. 339 * so for a given inode, keys with type of 1 might refer to the inode data, 340 * type of 2 may point to file data in the btree and type == 3 may point to 341 * extents. 342 * 343 * offset is the starting byte offset for this key in the stream. 344 */ 345 346 struct btrfs_key { 347 __u64 objectid; 348 __u8 type; 349 __u64 offset; 350 } __attribute__ ((__packed__)); 351 352 struct btrfs_dev_item { 353 /* the internal btrfs device id */ 354 __u64 devid; 355 356 /* size of the device */ 357 __u64 total_bytes; 358 359 /* bytes used */ 360 __u64 bytes_used; 361 362 /* optimal io alignment for this device */ 363 __u32 io_align; 364 365 /* optimal io width for this device */ 366 __u32 io_width; 367 368 /* minimal io size for this device */ 369 __u32 sector_size; 370 371 /* type and info about this device */ 372 __u64 type; 373 374 /* expected generation for this device */ 375 __u64 generation; 376 377 /* 378 * starting byte of this partition on the device, 379 * to allow for stripe alignment in the future 380 */ 381 __u64 start_offset; 382 383 /* grouping information for allocation decisions */ 384 __u32 dev_group; 385 386 /* seek speed 0-100 where 100 is fastest */ 387 __u8 seek_speed; 388 389 /* bandwidth 0-100 where 100 is fastest */ 390 __u8 bandwidth; 391 392 /* btrfs generated uuid for this device */ 393 __u8 uuid[BTRFS_UUID_SIZE]; 394 395 /* uuid of FS who owns this device */ 396 __u8 fsid[BTRFS_UUID_SIZE]; 397 } __attribute__ ((__packed__)); 398 399 struct btrfs_stripe { 400 __u64 devid; 401 __u64 offset; 402 __u8 dev_uuid[BTRFS_UUID_SIZE]; 403 } __attribute__ ((__packed__)); 404 405 struct btrfs_chunk { 406 /* size of this chunk in bytes */ 407 __u64 length; 408 409 /* objectid of the root referencing this chunk */ 410 __u64 owner; 411 412 __u64 stripe_len; 413 __u64 type; 414 415 /* optimal io alignment for this chunk */ 416 __u32 io_align; 417 418 /* optimal io width for this chunk */ 419 __u32 io_width; 420 421 /* minimal io size for this chunk */ 422 __u32 sector_size; 423 424 /* 2^16 stripes is quite a lot, a second limit is the size of a single 425 * item in the btree 426 */ 427 __u16 num_stripes; 428 429 /* sub stripes only matter for raid10 */ 430 __u16 sub_stripes; 431 struct btrfs_stripe stripe; 432 /* additional stripes go here */ 433 } __attribute__ ((__packed__)); 434 435 #define BTRFS_FREE_SPACE_EXTENT 1 436 #define BTRFS_FREE_SPACE_BITMAP 2 437 438 struct btrfs_free_space_entry { 439 __u64 offset; 440 __u64 bytes; 441 __u8 type; 442 } __attribute__ ((__packed__)); 443 444 struct btrfs_free_space_header { 445 struct btrfs_key location; 446 __u64 generation; 447 __u64 num_entries; 448 __u64 num_bitmaps; 449 } __attribute__ ((__packed__)); 450 451 #define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0) 452 #define BTRFS_HEADER_FLAG_RELOC (1ULL << 1) 453 454 /* Super block flags */ 455 /* Errors detected */ 456 #define BTRFS_SUPER_FLAG_ERROR (1ULL << 2) 457 458 #define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32) 459 #define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33) 460 461 462 /* 463 * items in the extent btree are used to record the objectid of the 464 * owner of the block and the number of references 465 */ 466 467 struct btrfs_extent_item { 468 __u64 refs; 469 __u64 generation; 470 __u64 flags; 471 } __attribute__ ((__packed__)); 472 473 474 #define BTRFS_EXTENT_FLAG_DATA (1ULL << 0) 475 #define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1) 476 477 /* following flags only apply to tree blocks */ 478 479 /* use full backrefs for extent pointers in the block */ 480 #define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8) 481 482 /* 483 * this flag is only used internally by scrub and may be changed at any time 484 * it is only declared here to avoid collisions 485 */ 486 #define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48) 487 488 struct btrfs_tree_block_info { 489 struct btrfs_key key; 490 __u8 level; 491 } __attribute__ ((__packed__)); 492 493 struct btrfs_extent_data_ref { 494 __u64 root; 495 __u64 objectid; 496 __u64 offset; 497 __u32 count; 498 } __attribute__ ((__packed__)); 499 500 struct btrfs_shared_data_ref { 501 __u32 count; 502 } __attribute__ ((__packed__)); 503 504 struct btrfs_extent_inline_ref { 505 __u8 type; 506 __u64 offset; 507 } __attribute__ ((__packed__)); 508 509 /* dev extents record free space on individual devices. The owner 510 * field points back to the chunk allocation mapping tree that allocated 511 * the extent. The chunk tree uuid field is a way to double check the owner 512 */ 513 struct btrfs_dev_extent { 514 __u64 chunk_tree; 515 __u64 chunk_objectid; 516 __u64 chunk_offset; 517 __u64 length; 518 __u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 519 } __attribute__ ((__packed__)); 520 521 struct btrfs_inode_ref { 522 __u64 index; 523 __u16 name_len; 524 /* name goes here */ 525 } __attribute__ ((__packed__)); 526 527 struct btrfs_inode_extref { 528 __u64 parent_objectid; 529 __u64 index; 530 __u16 name_len; 531 __u8 name[0]; 532 /* name goes here */ 533 } __attribute__ ((__packed__)); 534 535 struct btrfs_timespec { 536 __u64 sec; 537 __u32 nsec; 538 } __attribute__ ((__packed__)); 539 540 struct btrfs_inode_item { 541 /* nfs style generation number */ 542 __u64 generation; 543 /* transid that last touched this inode */ 544 __u64 transid; 545 __u64 size; 546 __u64 nbytes; 547 __u64 block_group; 548 __u32 nlink; 549 __u32 uid; 550 __u32 gid; 551 __u32 mode; 552 __u64 rdev; 553 __u64 flags; 554 555 /* modification sequence number for NFS */ 556 __u64 sequence; 557 558 /* 559 * a little future expansion, for more than this we can 560 * just grow the inode item and version it 561 */ 562 __u64 reserved[4]; 563 struct btrfs_timespec atime; 564 struct btrfs_timespec ctime; 565 struct btrfs_timespec mtime; 566 struct btrfs_timespec otime; 567 } __attribute__ ((__packed__)); 568 569 struct btrfs_dir_log_item { 570 __u64 end; 571 } __attribute__ ((__packed__)); 572 573 struct btrfs_dir_item { 574 struct btrfs_key location; 575 __u64 transid; 576 __u16 data_len; 577 __u16 name_len; 578 __u8 type; 579 } __attribute__ ((__packed__)); 580 581 #define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0) 582 583 /* 584 * Internal in-memory flag that a subvolume has been marked for deletion but 585 * still visible as a directory 586 */ 587 #define BTRFS_ROOT_SUBVOL_DEAD (1ULL << 48) 588 589 struct btrfs_root_item { 590 struct btrfs_inode_item inode; 591 __u64 generation; 592 __u64 root_dirid; 593 __u64 bytenr; 594 __u64 byte_limit; 595 __u64 bytes_used; 596 __u64 last_snapshot; 597 __u64 flags; 598 __u32 refs; 599 struct btrfs_key drop_progress; 600 __u8 drop_level; 601 __u8 level; 602 603 /* 604 * The following fields appear after subvol_uuids+subvol_times 605 * were introduced. 606 */ 607 608 /* 609 * This generation number is used to test if the new fields are valid 610 * and up to date while reading the root item. Every time the root item 611 * is written out, the "generation" field is copied into this field. If 612 * anyone ever mounted the fs with an older kernel, we will have 613 * mismatching generation values here and thus must invalidate the 614 * new fields. See btrfs_update_root and btrfs_find_last_root for 615 * details. 616 * the offset of generation_v2 is also used as the start for the memset 617 * when invalidating the fields. 618 */ 619 __u64 generation_v2; 620 __u8 uuid[BTRFS_UUID_SIZE]; 621 __u8 parent_uuid[BTRFS_UUID_SIZE]; 622 __u8 received_uuid[BTRFS_UUID_SIZE]; 623 __u64 ctransid; /* updated when an inode changes */ 624 __u64 otransid; /* trans when created */ 625 __u64 stransid; /* trans when sent. non-zero for received subvol */ 626 __u64 rtransid; /* trans when received. non-zero for received subvol */ 627 struct btrfs_timespec ctime; 628 struct btrfs_timespec otime; 629 struct btrfs_timespec stime; 630 struct btrfs_timespec rtime; 631 __u64 reserved[8]; /* for future */ 632 } __attribute__ ((__packed__)); 633 634 /* 635 * this is used for both forward and backward root refs 636 */ 637 struct btrfs_root_ref { 638 __u64 dirid; 639 __u64 sequence; 640 __u16 name_len; 641 } __attribute__ ((__packed__)); 642 643 #define BTRFS_FILE_EXTENT_INLINE 0 644 #define BTRFS_FILE_EXTENT_REG 1 645 #define BTRFS_FILE_EXTENT_PREALLOC 2 646 647 enum btrfs_compression_type { 648 BTRFS_COMPRESS_NONE = 0, 649 BTRFS_COMPRESS_ZLIB = 1, 650 BTRFS_COMPRESS_LZO = 2, 651 BTRFS_COMPRESS_TYPES = 2, 652 BTRFS_COMPRESS_LAST = 3, 653 }; 654 655 struct btrfs_file_extent_item { 656 /* 657 * transaction id that created this extent 658 */ 659 __u64 generation; 660 /* 661 * max number of bytes to hold this extent in ram 662 * when we split a compressed extent we can't know how big 663 * each of the resulting pieces will be. So, this is 664 * an upper limit on the size of the extent in ram instead of 665 * an exact limit. 666 */ 667 __u64 ram_bytes; 668 669 /* 670 * 32 bits for the various ways we might encode the data, 671 * including compression and encryption. If any of these 672 * are set to something a given disk format doesn't understand 673 * it is treated like an incompat flag for reading and writing, 674 * but not for stat. 675 */ 676 __u8 compression; 677 __u8 encryption; 678 __u16 other_encoding; /* spare for later use */ 679 680 /* are we inline data or a real extent? */ 681 __u8 type; 682 683 /* 684 * disk space consumed by the extent, checksum blocks are included 685 * in these numbers 686 * 687 * At this offset in the structure, the inline extent data start. 688 */ 689 __u64 disk_bytenr; 690 __u64 disk_num_bytes; 691 /* 692 * the logical offset in file blocks (no csums) 693 * this extent record is for. This allows a file extent to point 694 * into the middle of an existing extent on disk, sharing it 695 * between two snapshots (useful if some bytes in the middle of the 696 * extent have changed 697 */ 698 __u64 offset; 699 /* 700 * the logical number of file blocks (no csums included). This 701 * always reflects the size uncompressed and without encoding. 702 */ 703 __u64 num_bytes; 704 705 } __attribute__ ((__packed__)); 706 707 struct btrfs_csum_item { 708 __u8 csum; 709 } __attribute__ ((__packed__)); 710 711 /* different types of block groups (and chunks) */ 712 #define BTRFS_BLOCK_GROUP_DATA (1ULL << 0) 713 #define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1) 714 #define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2) 715 #define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3) 716 #define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4) 717 #define BTRFS_BLOCK_GROUP_DUP (1ULL << 5) 718 #define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6) 719 #define BTRFS_BLOCK_GROUP_RAID5 (1ULL << 7) 720 #define BTRFS_BLOCK_GROUP_RAID6 (1ULL << 8) 721 #define BTRFS_BLOCK_GROUP_RESERVED (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \ 722 BTRFS_SPACE_INFO_GLOBAL_RSV) 723 724 enum btrfs_raid_types { 725 BTRFS_RAID_RAID10, 726 BTRFS_RAID_RAID1, 727 BTRFS_RAID_DUP, 728 BTRFS_RAID_RAID0, 729 BTRFS_RAID_SINGLE, 730 BTRFS_RAID_RAID5, 731 BTRFS_RAID_RAID6, 732 BTRFS_NR_RAID_TYPES 733 }; 734 735 #define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \ 736 BTRFS_BLOCK_GROUP_SYSTEM | \ 737 BTRFS_BLOCK_GROUP_METADATA) 738 739 #define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \ 740 BTRFS_BLOCK_GROUP_RAID1 | \ 741 BTRFS_BLOCK_GROUP_RAID5 | \ 742 BTRFS_BLOCK_GROUP_RAID6 | \ 743 BTRFS_BLOCK_GROUP_DUP | \ 744 BTRFS_BLOCK_GROUP_RAID10) 745 #define BTRFS_BLOCK_GROUP_RAID56_MASK (BTRFS_BLOCK_GROUP_RAID5 | \ 746 BTRFS_BLOCK_GROUP_RAID6) 747 748 /* 749 * We need a bit for restriper to be able to tell when chunks of type 750 * SINGLE are available. This "extended" profile format is used in 751 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields 752 * (on-disk). The corresponding on-disk bit in chunk.type is reserved 753 * to avoid remappings between two formats in future. 754 */ 755 #define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48) 756 757 /* 758 * A fake block group type that is used to communicate global block reserve 759 * size to userspace via the SPACE_INFO ioctl. 760 */ 761 #define BTRFS_SPACE_INFO_GLOBAL_RSV (1ULL << 49) 762 763 #define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \ 764 BTRFS_AVAIL_ALLOC_BIT_SINGLE) 765 766 #endif /* __BTRFS_BTRFS_TREE_H__ */ 767