xref: /openbmc/u-boot/fs/btrfs/btrfs_tree.h (revision ae485b54)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * From linux/include/uapi/linux/btrfs_tree.h
4  */
5 
6 #ifndef __BTRFS_BTRFS_TREE_H__
7 #define __BTRFS_BTRFS_TREE_H__
8 
9 #include <common.h>
10 
11 #define BTRFS_VOL_NAME_MAX 255
12 #define BTRFS_NAME_MAX 255
13 #define BTRFS_LABEL_SIZE 256
14 #define BTRFS_FSID_SIZE 16
15 #define BTRFS_UUID_SIZE 16
16 
17 /*
18  * This header contains the structure definitions and constants used
19  * by file system objects that can be retrieved using
20  * the BTRFS_IOC_SEARCH_TREE ioctl.  That means basically anything that
21  * is needed to describe a leaf node's key or item contents.
22  */
23 
24 /* holds pointers to all of the tree roots */
25 #define BTRFS_ROOT_TREE_OBJECTID 1ULL
26 
27 /* stores information about which extents are in use, and reference counts */
28 #define BTRFS_EXTENT_TREE_OBJECTID 2ULL
29 
30 /*
31  * chunk tree stores translations from logical -> physical block numbering
32  * the super block points to the chunk tree
33  */
34 #define BTRFS_CHUNK_TREE_OBJECTID 3ULL
35 
36 /*
37  * stores information about which areas of a given device are in use.
38  * one per device.  The tree of tree roots points to the device tree
39  */
40 #define BTRFS_DEV_TREE_OBJECTID 4ULL
41 
42 /* one per subvolume, storing files and directories */
43 #define BTRFS_FS_TREE_OBJECTID 5ULL
44 
45 /* directory objectid inside the root tree */
46 #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
47 
48 /* holds checksums of all the data extents */
49 #define BTRFS_CSUM_TREE_OBJECTID 7ULL
50 
51 /* holds quota configuration and tracking */
52 #define BTRFS_QUOTA_TREE_OBJECTID 8ULL
53 
54 /* for storing items that use the BTRFS_UUID_KEY* types */
55 #define BTRFS_UUID_TREE_OBJECTID 9ULL
56 
57 /* tracks free space in block groups. */
58 #define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
59 
60 /* device stats in the device tree */
61 #define BTRFS_DEV_STATS_OBJECTID 0ULL
62 
63 /* for storing balance parameters in the root tree */
64 #define BTRFS_BALANCE_OBJECTID -4ULL
65 
66 /* orhpan objectid for tracking unlinked/truncated files */
67 #define BTRFS_ORPHAN_OBJECTID -5ULL
68 
69 /* does write ahead logging to speed up fsyncs */
70 #define BTRFS_TREE_LOG_OBJECTID -6ULL
71 #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
72 
73 /* for space balancing */
74 #define BTRFS_TREE_RELOC_OBJECTID -8ULL
75 #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
76 
77 /*
78  * extent checksums all have this objectid
79  * this allows them to share the logging tree
80  * for fsyncs
81  */
82 #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
83 
84 /* For storing free space cache */
85 #define BTRFS_FREE_SPACE_OBJECTID -11ULL
86 
87 /*
88  * The inode number assigned to the special inode for storing
89  * free ino cache
90  */
91 #define BTRFS_FREE_INO_OBJECTID -12ULL
92 
93 /* dummy objectid represents multiple objectids */
94 #define BTRFS_MULTIPLE_OBJECTIDS -255ULL
95 
96 /*
97  * All files have objectids in this range.
98  */
99 #define BTRFS_FIRST_FREE_OBJECTID 256ULL
100 #define BTRFS_LAST_FREE_OBJECTID -256ULL
101 #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
102 
103 
104 /*
105  * the device items go into the chunk tree.  The key is in the form
106  * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
107  */
108 #define BTRFS_DEV_ITEMS_OBJECTID 1ULL
109 
110 #define BTRFS_BTREE_INODE_OBJECTID 1
111 
112 #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
113 
114 #define BTRFS_DEV_REPLACE_DEVID 0ULL
115 
116 /*
117  * inode items have the data typically returned from stat and store other
118  * info about object characteristics.  There is one for every file and dir in
119  * the FS
120  */
121 #define BTRFS_INODE_ITEM_KEY		1
122 #define BTRFS_INODE_REF_KEY		12
123 #define BTRFS_INODE_EXTREF_KEY		13
124 #define BTRFS_XATTR_ITEM_KEY		24
125 #define BTRFS_ORPHAN_ITEM_KEY		48
126 /* reserve 2-15 close to the inode for later flexibility */
127 
128 /*
129  * dir items are the name -> inode pointers in a directory.  There is one
130  * for every name in a directory.
131  */
132 #define BTRFS_DIR_LOG_ITEM_KEY  60
133 #define BTRFS_DIR_LOG_INDEX_KEY 72
134 #define BTRFS_DIR_ITEM_KEY	84
135 #define BTRFS_DIR_INDEX_KEY	96
136 /*
137  * extent data is for file data
138  */
139 #define BTRFS_EXTENT_DATA_KEY	108
140 
141 /*
142  * extent csums are stored in a separate tree and hold csums for
143  * an entire extent on disk.
144  */
145 #define BTRFS_EXTENT_CSUM_KEY	128
146 
147 /*
148  * root items point to tree roots.  They are typically in the root
149  * tree used by the super block to find all the other trees
150  */
151 #define BTRFS_ROOT_ITEM_KEY	132
152 
153 /*
154  * root backrefs tie subvols and snapshots to the directory entries that
155  * reference them
156  */
157 #define BTRFS_ROOT_BACKREF_KEY	144
158 
159 /*
160  * root refs make a fast index for listing all of the snapshots and
161  * subvolumes referenced by a given root.  They point directly to the
162  * directory item in the root that references the subvol
163  */
164 #define BTRFS_ROOT_REF_KEY	156
165 
166 /*
167  * extent items are in the extent map tree.  These record which blocks
168  * are used, and how many references there are to each block
169  */
170 #define BTRFS_EXTENT_ITEM_KEY	168
171 
172 /*
173  * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
174  * the length, so we save the level in key->offset instead of the length.
175  */
176 #define BTRFS_METADATA_ITEM_KEY	169
177 
178 #define BTRFS_TREE_BLOCK_REF_KEY	176
179 
180 #define BTRFS_EXTENT_DATA_REF_KEY	178
181 
182 #define BTRFS_EXTENT_REF_V0_KEY		180
183 
184 #define BTRFS_SHARED_BLOCK_REF_KEY	182
185 
186 #define BTRFS_SHARED_DATA_REF_KEY	184
187 
188 /*
189  * block groups give us hints into the extent allocation trees.  Which
190  * blocks are free etc etc
191  */
192 #define BTRFS_BLOCK_GROUP_ITEM_KEY 192
193 
194 /*
195  * Every block group is represented in the free space tree by a free space info
196  * item, which stores some accounting information. It is keyed on
197  * (block_group_start, FREE_SPACE_INFO, block_group_length).
198  */
199 #define BTRFS_FREE_SPACE_INFO_KEY 198
200 
201 /*
202  * A free space extent tracks an extent of space that is free in a block group.
203  * It is keyed on (start, FREE_SPACE_EXTENT, length).
204  */
205 #define BTRFS_FREE_SPACE_EXTENT_KEY 199
206 
207 /*
208  * When a block group becomes very fragmented, we convert it to use bitmaps
209  * instead of extents. A free space bitmap is keyed on
210  * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
211  * (length / sectorsize) bits.
212  */
213 #define BTRFS_FREE_SPACE_BITMAP_KEY 200
214 
215 #define BTRFS_DEV_EXTENT_KEY	204
216 #define BTRFS_DEV_ITEM_KEY	216
217 #define BTRFS_CHUNK_ITEM_KEY	228
218 
219 /*
220  * Records the overall state of the qgroups.
221  * There's only one instance of this key present,
222  * (0, BTRFS_QGROUP_STATUS_KEY, 0)
223  */
224 #define BTRFS_QGROUP_STATUS_KEY         240
225 /*
226  * Records the currently used space of the qgroup.
227  * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
228  */
229 #define BTRFS_QGROUP_INFO_KEY           242
230 /*
231  * Contains the user configured limits for the qgroup.
232  * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
233  */
234 #define BTRFS_QGROUP_LIMIT_KEY          244
235 /*
236  * Records the child-parent relationship of qgroups. For
237  * each relation, 2 keys are present:
238  * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
239  * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
240  */
241 #define BTRFS_QGROUP_RELATION_KEY       246
242 
243 /*
244  * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
245  */
246 #define BTRFS_BALANCE_ITEM_KEY	248
247 
248 /*
249  * The key type for tree items that are stored persistently, but do not need to
250  * exist for extended period of time. The items can exist in any tree.
251  *
252  * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
253  *
254  * Existing items:
255  *
256  * - balance status item
257  *   (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
258  */
259 #define BTRFS_TEMPORARY_ITEM_KEY	248
260 
261 /*
262  * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
263  */
264 #define BTRFS_DEV_STATS_KEY		249
265 
266 /*
267  * The key type for tree items that are stored persistently and usually exist
268  * for a long period, eg. filesystem lifetime. The item kinds can be status
269  * information, stats or preference values. The item can exist in any tree.
270  *
271  * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
272  *
273  * Existing items:
274  *
275  * - device statistics, store IO stats in the device tree, one key for all
276  *   stats
277  *   (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
278  */
279 #define BTRFS_PERSISTENT_ITEM_KEY	249
280 
281 /*
282  * Persistantly stores the device replace state in the device tree.
283  * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
284  */
285 #define BTRFS_DEV_REPLACE_KEY	250
286 
287 /*
288  * Stores items that allow to quickly map UUIDs to something else.
289  * These items are part of the filesystem UUID tree.
290  * The key is built like this:
291  * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
292  */
293 #if BTRFS_UUID_SIZE != 16
294 #error "UUID items require BTRFS_UUID_SIZE == 16!"
295 #endif
296 #define BTRFS_UUID_KEY_SUBVOL	251	/* for UUIDs assigned to subvols */
297 #define BTRFS_UUID_KEY_RECEIVED_SUBVOL	252	/* for UUIDs assigned to
298 						 * received subvols */
299 
300 /*
301  * string items are for debugging.  They just store a short string of
302  * data in the FS
303  */
304 #define BTRFS_STRING_ITEM_KEY	253
305 
306 
307 
308 /* 32 bytes in various csum fields */
309 #define BTRFS_CSUM_SIZE 32
310 
311 /* csum types */
312 #define BTRFS_CSUM_TYPE_CRC32	0
313 
314 /*
315  * flags definitions for directory entry item type
316  *
317  * Used by:
318  * struct btrfs_dir_item.type
319  */
320 #define BTRFS_FT_UNKNOWN	0
321 #define BTRFS_FT_REG_FILE	1
322 #define BTRFS_FT_DIR		2
323 #define BTRFS_FT_CHRDEV		3
324 #define BTRFS_FT_BLKDEV		4
325 #define BTRFS_FT_FIFO		5
326 #define BTRFS_FT_SOCK		6
327 #define BTRFS_FT_SYMLINK	7
328 #define BTRFS_FT_XATTR		8
329 #define BTRFS_FT_MAX		9
330 
331 /*
332  * The key defines the order in the tree, and so it also defines (optimal)
333  * block layout.
334  *
335  * objectid corresponds to the inode number.
336  *
337  * type tells us things about the object, and is a kind of stream selector.
338  * so for a given inode, keys with type of 1 might refer to the inode data,
339  * type of 2 may point to file data in the btree and type == 3 may point to
340  * extents.
341  *
342  * offset is the starting byte offset for this key in the stream.
343  */
344 
345 struct btrfs_key {
346 	__u64 objectid;
347 	__u8 type;
348 	__u64 offset;
349 } __attribute__ ((__packed__));
350 
351 struct btrfs_dev_item {
352 	/* the internal btrfs device id */
353 	__u64 devid;
354 
355 	/* size of the device */
356 	__u64 total_bytes;
357 
358 	/* bytes used */
359 	__u64 bytes_used;
360 
361 	/* optimal io alignment for this device */
362 	__u32 io_align;
363 
364 	/* optimal io width for this device */
365 	__u32 io_width;
366 
367 	/* minimal io size for this device */
368 	__u32 sector_size;
369 
370 	/* type and info about this device */
371 	__u64 type;
372 
373 	/* expected generation for this device */
374 	__u64 generation;
375 
376 	/*
377 	 * starting byte of this partition on the device,
378 	 * to allow for stripe alignment in the future
379 	 */
380 	__u64 start_offset;
381 
382 	/* grouping information for allocation decisions */
383 	__u32 dev_group;
384 
385 	/* seek speed 0-100 where 100 is fastest */
386 	__u8 seek_speed;
387 
388 	/* bandwidth 0-100 where 100 is fastest */
389 	__u8 bandwidth;
390 
391 	/* btrfs generated uuid for this device */
392 	__u8 uuid[BTRFS_UUID_SIZE];
393 
394 	/* uuid of FS who owns this device */
395 	__u8 fsid[BTRFS_UUID_SIZE];
396 } __attribute__ ((__packed__));
397 
398 struct btrfs_stripe {
399 	__u64 devid;
400 	__u64 offset;
401 	__u8 dev_uuid[BTRFS_UUID_SIZE];
402 } __attribute__ ((__packed__));
403 
404 struct btrfs_chunk {
405 	/* size of this chunk in bytes */
406 	__u64 length;
407 
408 	/* objectid of the root referencing this chunk */
409 	__u64 owner;
410 
411 	__u64 stripe_len;
412 	__u64 type;
413 
414 	/* optimal io alignment for this chunk */
415 	__u32 io_align;
416 
417 	/* optimal io width for this chunk */
418 	__u32 io_width;
419 
420 	/* minimal io size for this chunk */
421 	__u32 sector_size;
422 
423 	/* 2^16 stripes is quite a lot, a second limit is the size of a single
424 	 * item in the btree
425 	 */
426 	__u16 num_stripes;
427 
428 	/* sub stripes only matter for raid10 */
429 	__u16 sub_stripes;
430 	struct btrfs_stripe stripe;
431 	/* additional stripes go here */
432 } __attribute__ ((__packed__));
433 
434 #define BTRFS_FREE_SPACE_EXTENT	1
435 #define BTRFS_FREE_SPACE_BITMAP	2
436 
437 struct btrfs_free_space_entry {
438 	__u64 offset;
439 	__u64 bytes;
440 	__u8 type;
441 } __attribute__ ((__packed__));
442 
443 struct btrfs_free_space_header {
444 	struct btrfs_key location;
445 	__u64 generation;
446 	__u64 num_entries;
447 	__u64 num_bitmaps;
448 } __attribute__ ((__packed__));
449 
450 #define BTRFS_HEADER_FLAG_WRITTEN	(1ULL << 0)
451 #define BTRFS_HEADER_FLAG_RELOC		(1ULL << 1)
452 
453 /* Super block flags */
454 /* Errors detected */
455 #define BTRFS_SUPER_FLAG_ERROR		(1ULL << 2)
456 
457 #define BTRFS_SUPER_FLAG_SEEDING	(1ULL << 32)
458 #define BTRFS_SUPER_FLAG_METADUMP	(1ULL << 33)
459 
460 
461 /*
462  * items in the extent btree are used to record the objectid of the
463  * owner of the block and the number of references
464  */
465 
466 struct btrfs_extent_item {
467 	__u64 refs;
468 	__u64 generation;
469 	__u64 flags;
470 } __attribute__ ((__packed__));
471 
472 
473 #define BTRFS_EXTENT_FLAG_DATA		(1ULL << 0)
474 #define BTRFS_EXTENT_FLAG_TREE_BLOCK	(1ULL << 1)
475 
476 /* following flags only apply to tree blocks */
477 
478 /* use full backrefs for extent pointers in the block */
479 #define BTRFS_BLOCK_FLAG_FULL_BACKREF	(1ULL << 8)
480 
481 /*
482  * this flag is only used internally by scrub and may be changed at any time
483  * it is only declared here to avoid collisions
484  */
485 #define BTRFS_EXTENT_FLAG_SUPER		(1ULL << 48)
486 
487 struct btrfs_tree_block_info {
488 	struct btrfs_key key;
489 	__u8 level;
490 } __attribute__ ((__packed__));
491 
492 struct btrfs_extent_data_ref {
493 	__u64 root;
494 	__u64 objectid;
495 	__u64 offset;
496 	__u32 count;
497 } __attribute__ ((__packed__));
498 
499 struct btrfs_shared_data_ref {
500 	__u32 count;
501 } __attribute__ ((__packed__));
502 
503 struct btrfs_extent_inline_ref {
504 	__u8 type;
505 	__u64 offset;
506 } __attribute__ ((__packed__));
507 
508 /* dev extents record free space on individual devices.  The owner
509  * field points back to the chunk allocation mapping tree that allocated
510  * the extent.  The chunk tree uuid field is a way to double check the owner
511  */
512 struct btrfs_dev_extent {
513 	__u64 chunk_tree;
514 	__u64 chunk_objectid;
515 	__u64 chunk_offset;
516 	__u64 length;
517 	__u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
518 } __attribute__ ((__packed__));
519 
520 struct btrfs_inode_ref {
521 	__u64 index;
522 	__u16 name_len;
523 	/* name goes here */
524 } __attribute__ ((__packed__));
525 
526 struct btrfs_inode_extref {
527 	__u64 parent_objectid;
528 	__u64 index;
529 	__u16 name_len;
530 	__u8   name[0];
531 	/* name goes here */
532 } __attribute__ ((__packed__));
533 
534 struct btrfs_timespec {
535 	__u64 sec;
536 	__u32 nsec;
537 } __attribute__ ((__packed__));
538 
539 struct btrfs_inode_item {
540 	/* nfs style generation number */
541 	__u64 generation;
542 	/* transid that last touched this inode */
543 	__u64 transid;
544 	__u64 size;
545 	__u64 nbytes;
546 	__u64 block_group;
547 	__u32 nlink;
548 	__u32 uid;
549 	__u32 gid;
550 	__u32 mode;
551 	__u64 rdev;
552 	__u64 flags;
553 
554 	/* modification sequence number for NFS */
555 	__u64 sequence;
556 
557 	/*
558 	 * a little future expansion, for more than this we can
559 	 * just grow the inode item and version it
560 	 */
561 	__u64 reserved[4];
562 	struct btrfs_timespec atime;
563 	struct btrfs_timespec ctime;
564 	struct btrfs_timespec mtime;
565 	struct btrfs_timespec otime;
566 } __attribute__ ((__packed__));
567 
568 struct btrfs_dir_log_item {
569 	__u64 end;
570 } __attribute__ ((__packed__));
571 
572 struct btrfs_dir_item {
573 	struct btrfs_key location;
574 	__u64 transid;
575 	__u16 data_len;
576 	__u16 name_len;
577 	__u8 type;
578 } __attribute__ ((__packed__));
579 
580 #define BTRFS_ROOT_SUBVOL_RDONLY	(1ULL << 0)
581 
582 /*
583  * Internal in-memory flag that a subvolume has been marked for deletion but
584  * still visible as a directory
585  */
586 #define BTRFS_ROOT_SUBVOL_DEAD		(1ULL << 48)
587 
588 struct btrfs_root_item {
589 	struct btrfs_inode_item inode;
590 	__u64 generation;
591 	__u64 root_dirid;
592 	__u64 bytenr;
593 	__u64 byte_limit;
594 	__u64 bytes_used;
595 	__u64 last_snapshot;
596 	__u64 flags;
597 	__u32 refs;
598 	struct btrfs_key drop_progress;
599 	__u8 drop_level;
600 	__u8 level;
601 
602 	/*
603 	 * The following fields appear after subvol_uuids+subvol_times
604 	 * were introduced.
605 	 */
606 
607 	/*
608 	 * This generation number is used to test if the new fields are valid
609 	 * and up to date while reading the root item. Every time the root item
610 	 * is written out, the "generation" field is copied into this field. If
611 	 * anyone ever mounted the fs with an older kernel, we will have
612 	 * mismatching generation values here and thus must invalidate the
613 	 * new fields. See btrfs_update_root and btrfs_find_last_root for
614 	 * details.
615 	 * the offset of generation_v2 is also used as the start for the memset
616 	 * when invalidating the fields.
617 	 */
618 	__u64 generation_v2;
619 	__u8 uuid[BTRFS_UUID_SIZE];
620 	__u8 parent_uuid[BTRFS_UUID_SIZE];
621 	__u8 received_uuid[BTRFS_UUID_SIZE];
622 	__u64 ctransid; /* updated when an inode changes */
623 	__u64 otransid; /* trans when created */
624 	__u64 stransid; /* trans when sent. non-zero for received subvol */
625 	__u64 rtransid; /* trans when received. non-zero for received subvol */
626 	struct btrfs_timespec ctime;
627 	struct btrfs_timespec otime;
628 	struct btrfs_timespec stime;
629 	struct btrfs_timespec rtime;
630 	__u64 reserved[8]; /* for future */
631 } __attribute__ ((__packed__));
632 
633 /*
634  * this is used for both forward and backward root refs
635  */
636 struct btrfs_root_ref {
637 	__u64 dirid;
638 	__u64 sequence;
639 	__u16 name_len;
640 } __attribute__ ((__packed__));
641 
642 #define BTRFS_FILE_EXTENT_INLINE 0
643 #define BTRFS_FILE_EXTENT_REG 1
644 #define BTRFS_FILE_EXTENT_PREALLOC 2
645 
646 enum btrfs_compression_type {
647 	BTRFS_COMPRESS_NONE  = 0,
648 	BTRFS_COMPRESS_ZLIB  = 1,
649 	BTRFS_COMPRESS_LZO   = 2,
650 	BTRFS_COMPRESS_TYPES = 2,
651 	BTRFS_COMPRESS_LAST  = 3,
652 };
653 
654 struct btrfs_file_extent_item {
655 	/*
656 	 * transaction id that created this extent
657 	 */
658 	__u64 generation;
659 	/*
660 	 * max number of bytes to hold this extent in ram
661 	 * when we split a compressed extent we can't know how big
662 	 * each of the resulting pieces will be.  So, this is
663 	 * an upper limit on the size of the extent in ram instead of
664 	 * an exact limit.
665 	 */
666 	__u64 ram_bytes;
667 
668 	/*
669 	 * 32 bits for the various ways we might encode the data,
670 	 * including compression and encryption.  If any of these
671 	 * are set to something a given disk format doesn't understand
672 	 * it is treated like an incompat flag for reading and writing,
673 	 * but not for stat.
674 	 */
675 	__u8 compression;
676 	__u8 encryption;
677 	__u16 other_encoding; /* spare for later use */
678 
679 	/* are we inline data or a real extent? */
680 	__u8 type;
681 
682 	/*
683 	 * disk space consumed by the extent, checksum blocks are included
684 	 * in these numbers
685 	 *
686 	 * At this offset in the structure, the inline extent data start.
687 	 */
688 	__u64 disk_bytenr;
689 	__u64 disk_num_bytes;
690 	/*
691 	 * the logical offset in file blocks (no csums)
692 	 * this extent record is for.  This allows a file extent to point
693 	 * into the middle of an existing extent on disk, sharing it
694 	 * between two snapshots (useful if some bytes in the middle of the
695 	 * extent have changed
696 	 */
697 	__u64 offset;
698 	/*
699 	 * the logical number of file blocks (no csums included).  This
700 	 * always reflects the size uncompressed and without encoding.
701 	 */
702 	__u64 num_bytes;
703 
704 } __attribute__ ((__packed__));
705 
706 struct btrfs_csum_item {
707 	__u8 csum;
708 } __attribute__ ((__packed__));
709 
710 /* different types of block groups (and chunks) */
711 #define BTRFS_BLOCK_GROUP_DATA		(1ULL << 0)
712 #define BTRFS_BLOCK_GROUP_SYSTEM	(1ULL << 1)
713 #define BTRFS_BLOCK_GROUP_METADATA	(1ULL << 2)
714 #define BTRFS_BLOCK_GROUP_RAID0		(1ULL << 3)
715 #define BTRFS_BLOCK_GROUP_RAID1		(1ULL << 4)
716 #define BTRFS_BLOCK_GROUP_DUP		(1ULL << 5)
717 #define BTRFS_BLOCK_GROUP_RAID10	(1ULL << 6)
718 #define BTRFS_BLOCK_GROUP_RAID5         (1ULL << 7)
719 #define BTRFS_BLOCK_GROUP_RAID6         (1ULL << 8)
720 #define BTRFS_BLOCK_GROUP_RESERVED	(BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
721 					 BTRFS_SPACE_INFO_GLOBAL_RSV)
722 
723 enum btrfs_raid_types {
724 	BTRFS_RAID_RAID10,
725 	BTRFS_RAID_RAID1,
726 	BTRFS_RAID_DUP,
727 	BTRFS_RAID_RAID0,
728 	BTRFS_RAID_SINGLE,
729 	BTRFS_RAID_RAID5,
730 	BTRFS_RAID_RAID6,
731 	BTRFS_NR_RAID_TYPES
732 };
733 
734 #define BTRFS_BLOCK_GROUP_TYPE_MASK	(BTRFS_BLOCK_GROUP_DATA |    \
735 					 BTRFS_BLOCK_GROUP_SYSTEM |  \
736 					 BTRFS_BLOCK_GROUP_METADATA)
737 
738 #define BTRFS_BLOCK_GROUP_PROFILE_MASK	(BTRFS_BLOCK_GROUP_RAID0 |   \
739 					 BTRFS_BLOCK_GROUP_RAID1 |   \
740 					 BTRFS_BLOCK_GROUP_RAID5 |   \
741 					 BTRFS_BLOCK_GROUP_RAID6 |   \
742 					 BTRFS_BLOCK_GROUP_DUP |     \
743 					 BTRFS_BLOCK_GROUP_RAID10)
744 #define BTRFS_BLOCK_GROUP_RAID56_MASK	(BTRFS_BLOCK_GROUP_RAID5 |   \
745 					 BTRFS_BLOCK_GROUP_RAID6)
746 
747 /*
748  * We need a bit for restriper to be able to tell when chunks of type
749  * SINGLE are available.  This "extended" profile format is used in
750  * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
751  * (on-disk).  The corresponding on-disk bit in chunk.type is reserved
752  * to avoid remappings between two formats in future.
753  */
754 #define BTRFS_AVAIL_ALLOC_BIT_SINGLE	(1ULL << 48)
755 
756 /*
757  * A fake block group type that is used to communicate global block reserve
758  * size to userspace via the SPACE_INFO ioctl.
759  */
760 #define BTRFS_SPACE_INFO_GLOBAL_RSV	(1ULL << 49)
761 
762 #define BTRFS_EXTENDED_PROFILE_MASK	(BTRFS_BLOCK_GROUP_PROFILE_MASK | \
763 					 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
764 
765 #endif /* __BTRFS_BTRFS_TREE_H__ */
766