1 /* 2 * USB HOST XHCI Controller stack 3 * 4 * Based on xHCI host controller driver in linux-kernel 5 * by Sarah Sharp. 6 * 7 * Copyright (C) 2008 Intel Corp. 8 * Author: Sarah Sharp 9 * 10 * Copyright (C) 2013 Samsung Electronics Co.Ltd 11 * Authors: Vivek Gautam <gautam.vivek@samsung.com> 12 * Vikas Sajjan <vikas.sajjan@samsung.com> 13 * 14 * SPDX-License-Identifier: GPL-2.0+ 15 */ 16 17 /** 18 * This file gives the xhci stack for usb3.0 looking into 19 * xhci specification Rev1.0 (5/21/10). 20 * The quirk devices support hasn't been given yet. 21 */ 22 23 #include <common.h> 24 #include <dm.h> 25 #include <asm/byteorder.h> 26 #include <usb.h> 27 #include <malloc.h> 28 #include <watchdog.h> 29 #include <asm/cache.h> 30 #include <asm/unaligned.h> 31 #include <linux/errno.h> 32 #include "xhci.h" 33 34 #ifndef CONFIG_USB_MAX_CONTROLLER_COUNT 35 #define CONFIG_USB_MAX_CONTROLLER_COUNT 1 36 #endif 37 38 static struct descriptor { 39 struct usb_hub_descriptor hub; 40 struct usb_device_descriptor device; 41 struct usb_config_descriptor config; 42 struct usb_interface_descriptor interface; 43 struct usb_endpoint_descriptor endpoint; 44 struct usb_ss_ep_comp_descriptor ep_companion; 45 } __attribute__ ((packed)) descriptor = { 46 { 47 0xc, /* bDescLength */ 48 0x2a, /* bDescriptorType: hub descriptor */ 49 2, /* bNrPorts -- runtime modified */ 50 cpu_to_le16(0x8), /* wHubCharacteristics */ 51 10, /* bPwrOn2PwrGood */ 52 0, /* bHubCntrCurrent */ 53 { /* Device removable */ 54 } /* at most 7 ports! XXX */ 55 }, 56 { 57 0x12, /* bLength */ 58 1, /* bDescriptorType: UDESC_DEVICE */ 59 cpu_to_le16(0x0300), /* bcdUSB: v3.0 */ 60 9, /* bDeviceClass: UDCLASS_HUB */ 61 0, /* bDeviceSubClass: UDSUBCLASS_HUB */ 62 3, /* bDeviceProtocol: UDPROTO_SSHUBSTT */ 63 9, /* bMaxPacketSize: 512 bytes 2^9 */ 64 0x0000, /* idVendor */ 65 0x0000, /* idProduct */ 66 cpu_to_le16(0x0100), /* bcdDevice */ 67 1, /* iManufacturer */ 68 2, /* iProduct */ 69 0, /* iSerialNumber */ 70 1 /* bNumConfigurations: 1 */ 71 }, 72 { 73 0x9, 74 2, /* bDescriptorType: UDESC_CONFIG */ 75 cpu_to_le16(0x1f), /* includes SS endpoint descriptor */ 76 1, /* bNumInterface */ 77 1, /* bConfigurationValue */ 78 0, /* iConfiguration */ 79 0x40, /* bmAttributes: UC_SELF_POWER */ 80 0 /* bMaxPower */ 81 }, 82 { 83 0x9, /* bLength */ 84 4, /* bDescriptorType: UDESC_INTERFACE */ 85 0, /* bInterfaceNumber */ 86 0, /* bAlternateSetting */ 87 1, /* bNumEndpoints */ 88 9, /* bInterfaceClass: UICLASS_HUB */ 89 0, /* bInterfaceSubClass: UISUBCLASS_HUB */ 90 0, /* bInterfaceProtocol: UIPROTO_HSHUBSTT */ 91 0 /* iInterface */ 92 }, 93 { 94 0x7, /* bLength */ 95 5, /* bDescriptorType: UDESC_ENDPOINT */ 96 0x81, /* bEndpointAddress: IN endpoint 1 */ 97 3, /* bmAttributes: UE_INTERRUPT */ 98 8, /* wMaxPacketSize */ 99 255 /* bInterval */ 100 }, 101 { 102 0x06, /* ss_bLength */ 103 0x30, /* ss_bDescriptorType: SS EP Companion */ 104 0x00, /* ss_bMaxBurst: allows 1 TX between ACKs */ 105 /* ss_bmAttributes: 1 packet per service interval */ 106 0x00, 107 /* ss_wBytesPerInterval: 15 bits for max 15 ports */ 108 cpu_to_le16(0x02), 109 }, 110 }; 111 112 #ifndef CONFIG_DM_USB 113 static struct xhci_ctrl xhcic[CONFIG_USB_MAX_CONTROLLER_COUNT]; 114 #endif 115 116 struct xhci_ctrl *xhci_get_ctrl(struct usb_device *udev) 117 { 118 #ifdef CONFIG_DM_USB 119 struct udevice *dev; 120 121 /* Find the USB controller */ 122 for (dev = udev->dev; 123 device_get_uclass_id(dev) != UCLASS_USB; 124 dev = dev->parent) 125 ; 126 return dev_get_priv(dev); 127 #else 128 return udev->controller; 129 #endif 130 } 131 132 /** 133 * Waits for as per specified amount of time 134 * for the "result" to match with "done" 135 * 136 * @param ptr pointer to the register to be read 137 * @param mask mask for the value read 138 * @param done value to be campared with result 139 * @param usec time to wait till 140 * @return 0 if handshake is success else < 0 on failure 141 */ 142 static int handshake(uint32_t volatile *ptr, uint32_t mask, 143 uint32_t done, int usec) 144 { 145 uint32_t result; 146 147 do { 148 result = xhci_readl(ptr); 149 if (result == ~(uint32_t)0) 150 return -ENODEV; 151 result &= mask; 152 if (result == done) 153 return 0; 154 usec--; 155 udelay(1); 156 } while (usec > 0); 157 158 return -ETIMEDOUT; 159 } 160 161 /** 162 * Set the run bit and wait for the host to be running. 163 * 164 * @param hcor pointer to host controller operation registers 165 * @return status of the Handshake 166 */ 167 static int xhci_start(struct xhci_hcor *hcor) 168 { 169 u32 temp; 170 int ret; 171 172 puts("Starting the controller\n"); 173 temp = xhci_readl(&hcor->or_usbcmd); 174 temp |= (CMD_RUN); 175 xhci_writel(&hcor->or_usbcmd, temp); 176 177 /* 178 * Wait for the HCHalted Status bit to be 0 to indicate the host is 179 * running. 180 */ 181 ret = handshake(&hcor->or_usbsts, STS_HALT, 0, XHCI_MAX_HALT_USEC); 182 if (ret) 183 debug("Host took too long to start, " 184 "waited %u microseconds.\n", 185 XHCI_MAX_HALT_USEC); 186 return ret; 187 } 188 189 /** 190 * Resets the XHCI Controller 191 * 192 * @param hcor pointer to host controller operation registers 193 * @return -EBUSY if XHCI Controller is not halted else status of handshake 194 */ 195 static int xhci_reset(struct xhci_hcor *hcor) 196 { 197 u32 cmd; 198 u32 state; 199 int ret; 200 201 /* Halting the Host first */ 202 debug("// Halt the HC: %p\n", hcor); 203 state = xhci_readl(&hcor->or_usbsts) & STS_HALT; 204 if (!state) { 205 cmd = xhci_readl(&hcor->or_usbcmd); 206 cmd &= ~CMD_RUN; 207 xhci_writel(&hcor->or_usbcmd, cmd); 208 } 209 210 ret = handshake(&hcor->or_usbsts, 211 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC); 212 if (ret) { 213 printf("Host not halted after %u microseconds.\n", 214 XHCI_MAX_HALT_USEC); 215 return -EBUSY; 216 } 217 218 debug("// Reset the HC\n"); 219 cmd = xhci_readl(&hcor->or_usbcmd); 220 cmd |= CMD_RESET; 221 xhci_writel(&hcor->or_usbcmd, cmd); 222 223 ret = handshake(&hcor->or_usbcmd, CMD_RESET, 0, XHCI_MAX_RESET_USEC); 224 if (ret) 225 return ret; 226 227 /* 228 * xHCI cannot write to any doorbells or operational registers other 229 * than status until the "Controller Not Ready" flag is cleared. 230 */ 231 return handshake(&hcor->or_usbsts, STS_CNR, 0, XHCI_MAX_RESET_USEC); 232 } 233 234 /** 235 * Used for passing endpoint bitmasks between the core and HCDs. 236 * Find the index for an endpoint given its descriptor. 237 * Use the return value to right shift 1 for the bitmask. 238 * 239 * Index = (epnum * 2) + direction - 1, 240 * where direction = 0 for OUT, 1 for IN. 241 * For control endpoints, the IN index is used (OUT index is unused), so 242 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 243 * 244 * @param desc USB enpdoint Descriptor 245 * @return index of the Endpoint 246 */ 247 static unsigned int xhci_get_ep_index(struct usb_endpoint_descriptor *desc) 248 { 249 unsigned int index; 250 251 if (usb_endpoint_xfer_control(desc)) 252 index = (unsigned int)(usb_endpoint_num(desc) * 2); 253 else 254 index = (unsigned int)((usb_endpoint_num(desc) * 2) - 255 (usb_endpoint_dir_in(desc) ? 0 : 1)); 256 257 return index; 258 } 259 260 /* 261 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of 262 * microframes, rounded down to nearest power of 2. 263 */ 264 static unsigned int xhci_microframes_to_exponent(unsigned int desc_interval, 265 unsigned int min_exponent, 266 unsigned int max_exponent) 267 { 268 unsigned int interval; 269 270 interval = fls(desc_interval) - 1; 271 interval = clamp_val(interval, min_exponent, max_exponent); 272 if ((1 << interval) != desc_interval) 273 debug("rounding interval to %d microframes, "\ 274 "ep desc says %d microframes\n", 275 1 << interval, desc_interval); 276 277 return interval; 278 } 279 280 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev, 281 struct usb_endpoint_descriptor *endpt_desc) 282 { 283 if (endpt_desc->bInterval == 0) 284 return 0; 285 286 return xhci_microframes_to_exponent(endpt_desc->bInterval, 0, 15); 287 } 288 289 static unsigned int xhci_parse_frame_interval(struct usb_device *udev, 290 struct usb_endpoint_descriptor *endpt_desc) 291 { 292 return xhci_microframes_to_exponent(endpt_desc->bInterval * 8, 3, 10); 293 } 294 295 /* 296 * Convert interval expressed as 2^(bInterval - 1) == interval into 297 * straight exponent value 2^n == interval. 298 */ 299 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev, 300 struct usb_endpoint_descriptor *endpt_desc) 301 { 302 unsigned int interval; 303 304 interval = clamp_val(endpt_desc->bInterval, 1, 16) - 1; 305 if (interval != endpt_desc->bInterval - 1) 306 debug("ep %#x - rounding interval to %d %sframes\n", 307 endpt_desc->bEndpointAddress, 1 << interval, 308 udev->speed == USB_SPEED_FULL ? "" : "micro"); 309 310 if (udev->speed == USB_SPEED_FULL) { 311 /* 312 * Full speed isoc endpoints specify interval in frames, 313 * not microframes. We are using microframes everywhere, 314 * so adjust accordingly. 315 */ 316 interval += 3; /* 1 frame = 2^3 uframes */ 317 } 318 319 return interval; 320 } 321 322 /* 323 * Return the polling or NAK interval. 324 * 325 * The polling interval is expressed in "microframes". If xHCI's Interval field 326 * is set to N, it will service the endpoint every 2^(Interval)*125us. 327 * 328 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval 329 * is set to 0. 330 */ 331 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev, 332 struct usb_endpoint_descriptor *endpt_desc) 333 { 334 unsigned int interval = 0; 335 336 switch (udev->speed) { 337 case USB_SPEED_HIGH: 338 /* Max NAK rate */ 339 if (usb_endpoint_xfer_control(endpt_desc) || 340 usb_endpoint_xfer_bulk(endpt_desc)) { 341 interval = xhci_parse_microframe_interval(udev, 342 endpt_desc); 343 break; 344 } 345 /* Fall through - SS and HS isoc/int have same decoding */ 346 347 case USB_SPEED_SUPER: 348 if (usb_endpoint_xfer_int(endpt_desc) || 349 usb_endpoint_xfer_isoc(endpt_desc)) { 350 interval = xhci_parse_exponent_interval(udev, 351 endpt_desc); 352 } 353 break; 354 355 case USB_SPEED_FULL: 356 if (usb_endpoint_xfer_isoc(endpt_desc)) { 357 interval = xhci_parse_exponent_interval(udev, 358 endpt_desc); 359 break; 360 } 361 /* 362 * Fall through for interrupt endpoint interval decoding 363 * since it uses the same rules as low speed interrupt 364 * endpoints. 365 */ 366 367 case USB_SPEED_LOW: 368 if (usb_endpoint_xfer_int(endpt_desc) || 369 usb_endpoint_xfer_isoc(endpt_desc)) { 370 interval = xhci_parse_frame_interval(udev, endpt_desc); 371 } 372 break; 373 374 default: 375 BUG(); 376 } 377 378 return interval; 379 } 380 381 /* 382 * The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps. 383 * High speed endpoint descriptors can define "the number of additional 384 * transaction opportunities per microframe", but that goes in the Max Burst 385 * endpoint context field. 386 */ 387 static u32 xhci_get_endpoint_mult(struct usb_device *udev, 388 struct usb_endpoint_descriptor *endpt_desc, 389 struct usb_ss_ep_comp_descriptor *ss_ep_comp_desc) 390 { 391 if (udev->speed < USB_SPEED_SUPER || 392 !usb_endpoint_xfer_isoc(endpt_desc)) 393 return 0; 394 395 return ss_ep_comp_desc->bmAttributes; 396 } 397 398 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev, 399 struct usb_endpoint_descriptor *endpt_desc, 400 struct usb_ss_ep_comp_descriptor *ss_ep_comp_desc) 401 { 402 /* Super speed and Plus have max burst in ep companion desc */ 403 if (udev->speed >= USB_SPEED_SUPER) 404 return ss_ep_comp_desc->bMaxBurst; 405 406 if (udev->speed == USB_SPEED_HIGH && 407 (usb_endpoint_xfer_isoc(endpt_desc) || 408 usb_endpoint_xfer_int(endpt_desc))) 409 return usb_endpoint_maxp_mult(endpt_desc) - 1; 410 411 return 0; 412 } 413 414 /* 415 * Return the maximum endpoint service interval time (ESIT) payload. 416 * Basically, this is the maxpacket size, multiplied by the burst size 417 * and mult size. 418 */ 419 static u32 xhci_get_max_esit_payload(struct usb_device *udev, 420 struct usb_endpoint_descriptor *endpt_desc, 421 struct usb_ss_ep_comp_descriptor *ss_ep_comp_desc) 422 { 423 int max_burst; 424 int max_packet; 425 426 /* Only applies for interrupt or isochronous endpoints */ 427 if (usb_endpoint_xfer_control(endpt_desc) || 428 usb_endpoint_xfer_bulk(endpt_desc)) 429 return 0; 430 431 /* SuperSpeed Isoc ep with less than 48k per esit */ 432 if (udev->speed >= USB_SPEED_SUPER) 433 return le16_to_cpu(ss_ep_comp_desc->wBytesPerInterval); 434 435 max_packet = usb_endpoint_maxp(endpt_desc); 436 max_burst = usb_endpoint_maxp_mult(endpt_desc); 437 438 /* A 0 in max burst means 1 transfer per ESIT */ 439 return max_packet * max_burst; 440 } 441 442 /** 443 * Issue a configure endpoint command or evaluate context command 444 * and wait for it to finish. 445 * 446 * @param udev pointer to the Device Data Structure 447 * @param ctx_change flag to indicate the Context has changed or NOT 448 * @return 0 on success, -1 on failure 449 */ 450 static int xhci_configure_endpoints(struct usb_device *udev, bool ctx_change) 451 { 452 struct xhci_container_ctx *in_ctx; 453 struct xhci_virt_device *virt_dev; 454 struct xhci_ctrl *ctrl = xhci_get_ctrl(udev); 455 union xhci_trb *event; 456 457 virt_dev = ctrl->devs[udev->slot_id]; 458 in_ctx = virt_dev->in_ctx; 459 460 xhci_flush_cache((uintptr_t)in_ctx->bytes, in_ctx->size); 461 xhci_queue_command(ctrl, in_ctx->bytes, udev->slot_id, 0, 462 ctx_change ? TRB_EVAL_CONTEXT : TRB_CONFIG_EP); 463 event = xhci_wait_for_event(ctrl, TRB_COMPLETION); 464 BUG_ON(TRB_TO_SLOT_ID(le32_to_cpu(event->event_cmd.flags)) 465 != udev->slot_id); 466 467 switch (GET_COMP_CODE(le32_to_cpu(event->event_cmd.status))) { 468 case COMP_SUCCESS: 469 debug("Successful %s command\n", 470 ctx_change ? "Evaluate Context" : "Configure Endpoint"); 471 break; 472 default: 473 printf("ERROR: %s command returned completion code %d.\n", 474 ctx_change ? "Evaluate Context" : "Configure Endpoint", 475 GET_COMP_CODE(le32_to_cpu(event->event_cmd.status))); 476 return -EINVAL; 477 } 478 479 xhci_acknowledge_event(ctrl); 480 481 return 0; 482 } 483 484 /** 485 * Configure the endpoint, programming the device contexts. 486 * 487 * @param udev pointer to the USB device structure 488 * @return returns the status of the xhci_configure_endpoints 489 */ 490 static int xhci_set_configuration(struct usb_device *udev) 491 { 492 struct xhci_container_ctx *in_ctx; 493 struct xhci_container_ctx *out_ctx; 494 struct xhci_input_control_ctx *ctrl_ctx; 495 struct xhci_slot_ctx *slot_ctx; 496 struct xhci_ep_ctx *ep_ctx[MAX_EP_CTX_NUM]; 497 int cur_ep; 498 int max_ep_flag = 0; 499 int ep_index; 500 unsigned int dir; 501 unsigned int ep_type; 502 struct xhci_ctrl *ctrl = xhci_get_ctrl(udev); 503 int num_of_ep; 504 int ep_flag = 0; 505 u64 trb_64 = 0; 506 int slot_id = udev->slot_id; 507 struct xhci_virt_device *virt_dev = ctrl->devs[slot_id]; 508 struct usb_interface *ifdesc; 509 u32 max_esit_payload; 510 unsigned int interval; 511 unsigned int mult; 512 unsigned int max_burst; 513 unsigned int avg_trb_len; 514 unsigned int err_count = 0; 515 516 out_ctx = virt_dev->out_ctx; 517 in_ctx = virt_dev->in_ctx; 518 519 num_of_ep = udev->config.if_desc[0].no_of_ep; 520 ifdesc = &udev->config.if_desc[0]; 521 522 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 523 /* Initialize the input context control */ 524 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG); 525 ctrl_ctx->drop_flags = 0; 526 527 /* EP_FLAG gives values 1 & 4 for EP1OUT and EP2IN */ 528 for (cur_ep = 0; cur_ep < num_of_ep; cur_ep++) { 529 ep_flag = xhci_get_ep_index(&ifdesc->ep_desc[cur_ep]); 530 ctrl_ctx->add_flags |= cpu_to_le32(1 << (ep_flag + 1)); 531 if (max_ep_flag < ep_flag) 532 max_ep_flag = ep_flag; 533 } 534 535 xhci_inval_cache((uintptr_t)out_ctx->bytes, out_ctx->size); 536 537 /* slot context */ 538 xhci_slot_copy(ctrl, in_ctx, out_ctx); 539 slot_ctx = xhci_get_slot_ctx(ctrl, in_ctx); 540 slot_ctx->dev_info &= ~(LAST_CTX_MASK); 541 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(max_ep_flag + 1) | 0); 542 543 xhci_endpoint_copy(ctrl, in_ctx, out_ctx, 0); 544 545 /* filling up ep contexts */ 546 for (cur_ep = 0; cur_ep < num_of_ep; cur_ep++) { 547 struct usb_endpoint_descriptor *endpt_desc = NULL; 548 struct usb_ss_ep_comp_descriptor *ss_ep_comp_desc = NULL; 549 550 endpt_desc = &ifdesc->ep_desc[cur_ep]; 551 ss_ep_comp_desc = &ifdesc->ss_ep_comp_desc[cur_ep]; 552 trb_64 = 0; 553 554 /* 555 * Get values to fill the endpoint context, mostly from ep 556 * descriptor. The average TRB buffer lengt for bulk endpoints 557 * is unclear as we have no clue on scatter gather list entry 558 * size. For Isoc and Int, set it to max available. 559 * See xHCI 1.1 spec 4.14.1.1 for details. 560 */ 561 max_esit_payload = xhci_get_max_esit_payload(udev, endpt_desc, 562 ss_ep_comp_desc); 563 interval = xhci_get_endpoint_interval(udev, endpt_desc); 564 mult = xhci_get_endpoint_mult(udev, endpt_desc, 565 ss_ep_comp_desc); 566 max_burst = xhci_get_endpoint_max_burst(udev, endpt_desc, 567 ss_ep_comp_desc); 568 avg_trb_len = max_esit_payload; 569 570 ep_index = xhci_get_ep_index(endpt_desc); 571 ep_ctx[ep_index] = xhci_get_ep_ctx(ctrl, in_ctx, ep_index); 572 573 /* Allocate the ep rings */ 574 virt_dev->eps[ep_index].ring = xhci_ring_alloc(1, true); 575 if (!virt_dev->eps[ep_index].ring) 576 return -ENOMEM; 577 578 /*NOTE: ep_desc[0] actually represents EP1 and so on */ 579 dir = (((endpt_desc->bEndpointAddress) & (0x80)) >> 7); 580 ep_type = (((endpt_desc->bmAttributes) & (0x3)) | (dir << 2)); 581 582 ep_ctx[ep_index]->ep_info = 583 cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) | 584 EP_INTERVAL(interval) | EP_MULT(mult)); 585 586 ep_ctx[ep_index]->ep_info2 = 587 cpu_to_le32(ep_type << EP_TYPE_SHIFT); 588 ep_ctx[ep_index]->ep_info2 |= 589 cpu_to_le32(MAX_PACKET 590 (get_unaligned(&endpt_desc->wMaxPacketSize))); 591 592 /* Allow 3 retries for everything but isoc, set CErr = 3 */ 593 if (!usb_endpoint_xfer_isoc(endpt_desc)) 594 err_count = 3; 595 ep_ctx[ep_index]->ep_info2 |= 596 cpu_to_le32(MAX_BURST(max_burst) | 597 ERROR_COUNT(err_count)); 598 599 trb_64 = (uintptr_t) 600 virt_dev->eps[ep_index].ring->enqueue; 601 ep_ctx[ep_index]->deq = cpu_to_le64(trb_64 | 602 virt_dev->eps[ep_index].ring->cycle_state); 603 604 /* 605 * xHCI spec 6.2.3: 606 * 'Average TRB Length' should be 8 for control endpoints. 607 */ 608 if (usb_endpoint_xfer_control(endpt_desc)) 609 avg_trb_len = 8; 610 ep_ctx[ep_index]->tx_info = 611 cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) | 612 EP_AVG_TRB_LENGTH(avg_trb_len)); 613 } 614 615 return xhci_configure_endpoints(udev, false); 616 } 617 618 /** 619 * Issue an Address Device command (which will issue a SetAddress request to 620 * the device). 621 * 622 * @param udev pointer to the Device Data Structure 623 * @return 0 if successful else error code on failure 624 */ 625 static int xhci_address_device(struct usb_device *udev, int root_portnr) 626 { 627 int ret = 0; 628 struct xhci_ctrl *ctrl = xhci_get_ctrl(udev); 629 struct xhci_slot_ctx *slot_ctx; 630 struct xhci_input_control_ctx *ctrl_ctx; 631 struct xhci_virt_device *virt_dev; 632 int slot_id = udev->slot_id; 633 union xhci_trb *event; 634 635 virt_dev = ctrl->devs[slot_id]; 636 637 /* 638 * This is the first Set Address since device plug-in 639 * so setting up the slot context. 640 */ 641 debug("Setting up addressable devices %p\n", ctrl->dcbaa); 642 xhci_setup_addressable_virt_dev(ctrl, udev, root_portnr); 643 644 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); 645 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 646 ctrl_ctx->drop_flags = 0; 647 648 xhci_queue_command(ctrl, (void *)ctrl_ctx, slot_id, 0, TRB_ADDR_DEV); 649 event = xhci_wait_for_event(ctrl, TRB_COMPLETION); 650 BUG_ON(TRB_TO_SLOT_ID(le32_to_cpu(event->event_cmd.flags)) != slot_id); 651 652 switch (GET_COMP_CODE(le32_to_cpu(event->event_cmd.status))) { 653 case COMP_CTX_STATE: 654 case COMP_EBADSLT: 655 printf("Setup ERROR: address device command for slot %d.\n", 656 slot_id); 657 ret = -EINVAL; 658 break; 659 case COMP_TX_ERR: 660 puts("Device not responding to set address.\n"); 661 ret = -EPROTO; 662 break; 663 case COMP_DEV_ERR: 664 puts("ERROR: Incompatible device" 665 "for address device command.\n"); 666 ret = -ENODEV; 667 break; 668 case COMP_SUCCESS: 669 debug("Successful Address Device command\n"); 670 udev->status = 0; 671 break; 672 default: 673 printf("ERROR: unexpected command completion code 0x%x.\n", 674 GET_COMP_CODE(le32_to_cpu(event->event_cmd.status))); 675 ret = -EINVAL; 676 break; 677 } 678 679 xhci_acknowledge_event(ctrl); 680 681 if (ret < 0) 682 /* 683 * TODO: Unsuccessful Address Device command shall leave the 684 * slot in default state. So, issue Disable Slot command now. 685 */ 686 return ret; 687 688 xhci_inval_cache((uintptr_t)virt_dev->out_ctx->bytes, 689 virt_dev->out_ctx->size); 690 slot_ctx = xhci_get_slot_ctx(ctrl, virt_dev->out_ctx); 691 692 debug("xHC internal address is: %d\n", 693 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK); 694 695 return 0; 696 } 697 698 /** 699 * Issue Enable slot command to the controller to allocate 700 * device slot and assign the slot id. It fails if the xHC 701 * ran out of device slots, the Enable Slot command timed out, 702 * or allocating memory failed. 703 * 704 * @param udev pointer to the Device Data Structure 705 * @return Returns 0 on succes else return error code on failure 706 */ 707 static int _xhci_alloc_device(struct usb_device *udev) 708 { 709 struct xhci_ctrl *ctrl = xhci_get_ctrl(udev); 710 union xhci_trb *event; 711 int ret; 712 713 /* 714 * Root hub will be first device to be initailized. 715 * If this device is root-hub, don't do any xHC related 716 * stuff. 717 */ 718 if (ctrl->rootdev == 0) { 719 udev->speed = USB_SPEED_SUPER; 720 return 0; 721 } 722 723 xhci_queue_command(ctrl, NULL, 0, 0, TRB_ENABLE_SLOT); 724 event = xhci_wait_for_event(ctrl, TRB_COMPLETION); 725 BUG_ON(GET_COMP_CODE(le32_to_cpu(event->event_cmd.status)) 726 != COMP_SUCCESS); 727 728 udev->slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->event_cmd.flags)); 729 730 xhci_acknowledge_event(ctrl); 731 732 ret = xhci_alloc_virt_device(ctrl, udev->slot_id); 733 if (ret < 0) { 734 /* 735 * TODO: Unsuccessful Address Device command shall leave 736 * the slot in default. So, issue Disable Slot command now. 737 */ 738 puts("Could not allocate xHCI USB device data structures\n"); 739 return ret; 740 } 741 742 return 0; 743 } 744 745 #ifndef CONFIG_DM_USB 746 int usb_alloc_device(struct usb_device *udev) 747 { 748 return _xhci_alloc_device(udev); 749 } 750 #endif 751 752 /* 753 * Full speed devices may have a max packet size greater than 8 bytes, but the 754 * USB core doesn't know that until it reads the first 8 bytes of the 755 * descriptor. If the usb_device's max packet size changes after that point, 756 * we need to issue an evaluate context command and wait on it. 757 * 758 * @param udev pointer to the Device Data Structure 759 * @return returns the status of the xhci_configure_endpoints 760 */ 761 int xhci_check_maxpacket(struct usb_device *udev) 762 { 763 struct xhci_ctrl *ctrl = xhci_get_ctrl(udev); 764 unsigned int slot_id = udev->slot_id; 765 int ep_index = 0; /* control endpoint */ 766 struct xhci_container_ctx *in_ctx; 767 struct xhci_container_ctx *out_ctx; 768 struct xhci_input_control_ctx *ctrl_ctx; 769 struct xhci_ep_ctx *ep_ctx; 770 int max_packet_size; 771 int hw_max_packet_size; 772 int ret = 0; 773 774 out_ctx = ctrl->devs[slot_id]->out_ctx; 775 xhci_inval_cache((uintptr_t)out_ctx->bytes, out_ctx->size); 776 777 ep_ctx = xhci_get_ep_ctx(ctrl, out_ctx, ep_index); 778 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2)); 779 max_packet_size = udev->epmaxpacketin[0]; 780 if (hw_max_packet_size != max_packet_size) { 781 debug("Max Packet Size for ep 0 changed.\n"); 782 debug("Max packet size in usb_device = %d\n", max_packet_size); 783 debug("Max packet size in xHCI HW = %d\n", hw_max_packet_size); 784 debug("Issuing evaluate context command.\n"); 785 786 /* Set up the modified control endpoint 0 */ 787 xhci_endpoint_copy(ctrl, ctrl->devs[slot_id]->in_ctx, 788 ctrl->devs[slot_id]->out_ctx, ep_index); 789 in_ctx = ctrl->devs[slot_id]->in_ctx; 790 ep_ctx = xhci_get_ep_ctx(ctrl, in_ctx, ep_index); 791 ep_ctx->ep_info2 &= cpu_to_le32(~((0xffff & MAX_PACKET_MASK) 792 << MAX_PACKET_SHIFT)); 793 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size)); 794 795 /* 796 * Set up the input context flags for the command 797 * FIXME: This won't work if a non-default control endpoint 798 * changes max packet sizes. 799 */ 800 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 801 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG); 802 ctrl_ctx->drop_flags = 0; 803 804 ret = xhci_configure_endpoints(udev, true); 805 } 806 return ret; 807 } 808 809 /** 810 * Clears the Change bits of the Port Status Register 811 * 812 * @param wValue request value 813 * @param wIndex request index 814 * @param addr address of posrt status register 815 * @param port_status state of port status register 816 * @return none 817 */ 818 static void xhci_clear_port_change_bit(u16 wValue, 819 u16 wIndex, volatile uint32_t *addr, u32 port_status) 820 { 821 char *port_change_bit; 822 u32 status; 823 824 switch (wValue) { 825 case USB_PORT_FEAT_C_RESET: 826 status = PORT_RC; 827 port_change_bit = "reset"; 828 break; 829 case USB_PORT_FEAT_C_CONNECTION: 830 status = PORT_CSC; 831 port_change_bit = "connect"; 832 break; 833 case USB_PORT_FEAT_C_OVER_CURRENT: 834 status = PORT_OCC; 835 port_change_bit = "over-current"; 836 break; 837 case USB_PORT_FEAT_C_ENABLE: 838 status = PORT_PEC; 839 port_change_bit = "enable/disable"; 840 break; 841 case USB_PORT_FEAT_C_SUSPEND: 842 status = PORT_PLC; 843 port_change_bit = "suspend/resume"; 844 break; 845 default: 846 /* Should never happen */ 847 return; 848 } 849 850 /* Change bits are all write 1 to clear */ 851 xhci_writel(addr, port_status | status); 852 853 port_status = xhci_readl(addr); 854 debug("clear port %s change, actual port %d status = 0x%x\n", 855 port_change_bit, wIndex, port_status); 856 } 857 858 /** 859 * Save Read Only (RO) bits and save read/write bits where 860 * writing a 0 clears the bit and writing a 1 sets the bit (RWS). 861 * For all other types (RW1S, RW1CS, RW, and RZ), writing a '0' has no effect. 862 * 863 * @param state state of the Port Status and Control Regsiter 864 * @return a value that would result in the port being in the 865 * same state, if the value was written to the port 866 * status control register. 867 */ 868 static u32 xhci_port_state_to_neutral(u32 state) 869 { 870 /* Save read-only status and port state */ 871 return (state & XHCI_PORT_RO) | (state & XHCI_PORT_RWS); 872 } 873 874 /** 875 * Submits the Requests to the XHCI Host Controller 876 * 877 * @param udev pointer to the USB device structure 878 * @param pipe contains the DIR_IN or OUT , devnum 879 * @param buffer buffer to be read/written based on the request 880 * @return returns 0 if successful else -1 on failure 881 */ 882 static int xhci_submit_root(struct usb_device *udev, unsigned long pipe, 883 void *buffer, struct devrequest *req) 884 { 885 uint8_t tmpbuf[4]; 886 u16 typeReq; 887 void *srcptr = NULL; 888 int len, srclen; 889 uint32_t reg; 890 volatile uint32_t *status_reg; 891 struct xhci_ctrl *ctrl = xhci_get_ctrl(udev); 892 struct xhci_hccr *hccr = ctrl->hccr; 893 struct xhci_hcor *hcor = ctrl->hcor; 894 int max_ports = HCS_MAX_PORTS(xhci_readl(&hccr->cr_hcsparams1)); 895 896 if ((req->requesttype & USB_RT_PORT) && 897 le16_to_cpu(req->index) > max_ports) { 898 printf("The request port(%d) exceeds maximum port number\n", 899 le16_to_cpu(req->index) - 1); 900 return -EINVAL; 901 } 902 903 status_reg = (volatile uint32_t *) 904 (&hcor->portregs[le16_to_cpu(req->index) - 1].or_portsc); 905 srclen = 0; 906 907 typeReq = req->request | req->requesttype << 8; 908 909 switch (typeReq) { 910 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 911 switch (le16_to_cpu(req->value) >> 8) { 912 case USB_DT_DEVICE: 913 debug("USB_DT_DEVICE request\n"); 914 srcptr = &descriptor.device; 915 srclen = 0x12; 916 break; 917 case USB_DT_CONFIG: 918 debug("USB_DT_CONFIG config\n"); 919 srcptr = &descriptor.config; 920 srclen = 0x19; 921 break; 922 case USB_DT_STRING: 923 debug("USB_DT_STRING config\n"); 924 switch (le16_to_cpu(req->value) & 0xff) { 925 case 0: /* Language */ 926 srcptr = "\4\3\11\4"; 927 srclen = 4; 928 break; 929 case 1: /* Vendor String */ 930 srcptr = "\16\3U\0-\0B\0o\0o\0t\0"; 931 srclen = 14; 932 break; 933 case 2: /* Product Name */ 934 srcptr = "\52\3X\0H\0C\0I\0 " 935 "\0H\0o\0s\0t\0 " 936 "\0C\0o\0n\0t\0r\0o\0l\0l\0e\0r\0"; 937 srclen = 42; 938 break; 939 default: 940 printf("unknown value DT_STRING %x\n", 941 le16_to_cpu(req->value)); 942 goto unknown; 943 } 944 break; 945 default: 946 printf("unknown value %x\n", le16_to_cpu(req->value)); 947 goto unknown; 948 } 949 break; 950 case USB_REQ_GET_DESCRIPTOR | ((USB_DIR_IN | USB_RT_HUB) << 8): 951 switch (le16_to_cpu(req->value) >> 8) { 952 case USB_DT_HUB: 953 case USB_DT_SS_HUB: 954 debug("USB_DT_HUB config\n"); 955 srcptr = &descriptor.hub; 956 srclen = 0x8; 957 break; 958 default: 959 printf("unknown value %x\n", le16_to_cpu(req->value)); 960 goto unknown; 961 } 962 break; 963 case USB_REQ_SET_ADDRESS | (USB_RECIP_DEVICE << 8): 964 debug("USB_REQ_SET_ADDRESS\n"); 965 ctrl->rootdev = le16_to_cpu(req->value); 966 break; 967 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: 968 /* Do nothing */ 969 break; 970 case USB_REQ_GET_STATUS | ((USB_DIR_IN | USB_RT_HUB) << 8): 971 tmpbuf[0] = 1; /* USB_STATUS_SELFPOWERED */ 972 tmpbuf[1] = 0; 973 srcptr = tmpbuf; 974 srclen = 2; 975 break; 976 case USB_REQ_GET_STATUS | ((USB_RT_PORT | USB_DIR_IN) << 8): 977 memset(tmpbuf, 0, 4); 978 reg = xhci_readl(status_reg); 979 if (reg & PORT_CONNECT) { 980 tmpbuf[0] |= USB_PORT_STAT_CONNECTION; 981 switch (reg & DEV_SPEED_MASK) { 982 case XDEV_FS: 983 debug("SPEED = FULLSPEED\n"); 984 break; 985 case XDEV_LS: 986 debug("SPEED = LOWSPEED\n"); 987 tmpbuf[1] |= USB_PORT_STAT_LOW_SPEED >> 8; 988 break; 989 case XDEV_HS: 990 debug("SPEED = HIGHSPEED\n"); 991 tmpbuf[1] |= USB_PORT_STAT_HIGH_SPEED >> 8; 992 break; 993 case XDEV_SS: 994 debug("SPEED = SUPERSPEED\n"); 995 tmpbuf[1] |= USB_PORT_STAT_SUPER_SPEED >> 8; 996 break; 997 } 998 } 999 if (reg & PORT_PE) 1000 tmpbuf[0] |= USB_PORT_STAT_ENABLE; 1001 if ((reg & PORT_PLS_MASK) == XDEV_U3) 1002 tmpbuf[0] |= USB_PORT_STAT_SUSPEND; 1003 if (reg & PORT_OC) 1004 tmpbuf[0] |= USB_PORT_STAT_OVERCURRENT; 1005 if (reg & PORT_RESET) 1006 tmpbuf[0] |= USB_PORT_STAT_RESET; 1007 if (reg & PORT_POWER) 1008 /* 1009 * XXX: This Port power bit (for USB 3.0 hub) 1010 * we are faking in USB 2.0 hub port status; 1011 * since there's a change in bit positions in 1012 * two: 1013 * USB 2.0 port status PP is at position[8] 1014 * USB 3.0 port status PP is at position[9] 1015 * So, we are still keeping it at position [8] 1016 */ 1017 tmpbuf[1] |= USB_PORT_STAT_POWER >> 8; 1018 if (reg & PORT_CSC) 1019 tmpbuf[2] |= USB_PORT_STAT_C_CONNECTION; 1020 if (reg & PORT_PEC) 1021 tmpbuf[2] |= USB_PORT_STAT_C_ENABLE; 1022 if (reg & PORT_OCC) 1023 tmpbuf[2] |= USB_PORT_STAT_C_OVERCURRENT; 1024 if (reg & PORT_RC) 1025 tmpbuf[2] |= USB_PORT_STAT_C_RESET; 1026 1027 srcptr = tmpbuf; 1028 srclen = 4; 1029 break; 1030 case USB_REQ_SET_FEATURE | ((USB_DIR_OUT | USB_RT_PORT) << 8): 1031 reg = xhci_readl(status_reg); 1032 reg = xhci_port_state_to_neutral(reg); 1033 switch (le16_to_cpu(req->value)) { 1034 case USB_PORT_FEAT_ENABLE: 1035 reg |= PORT_PE; 1036 xhci_writel(status_reg, reg); 1037 break; 1038 case USB_PORT_FEAT_POWER: 1039 reg |= PORT_POWER; 1040 xhci_writel(status_reg, reg); 1041 break; 1042 case USB_PORT_FEAT_RESET: 1043 reg |= PORT_RESET; 1044 xhci_writel(status_reg, reg); 1045 break; 1046 default: 1047 printf("unknown feature %x\n", le16_to_cpu(req->value)); 1048 goto unknown; 1049 } 1050 break; 1051 case USB_REQ_CLEAR_FEATURE | ((USB_DIR_OUT | USB_RT_PORT) << 8): 1052 reg = xhci_readl(status_reg); 1053 reg = xhci_port_state_to_neutral(reg); 1054 switch (le16_to_cpu(req->value)) { 1055 case USB_PORT_FEAT_ENABLE: 1056 reg &= ~PORT_PE; 1057 break; 1058 case USB_PORT_FEAT_POWER: 1059 reg &= ~PORT_POWER; 1060 break; 1061 case USB_PORT_FEAT_C_RESET: 1062 case USB_PORT_FEAT_C_CONNECTION: 1063 case USB_PORT_FEAT_C_OVER_CURRENT: 1064 case USB_PORT_FEAT_C_ENABLE: 1065 xhci_clear_port_change_bit((le16_to_cpu(req->value)), 1066 le16_to_cpu(req->index), 1067 status_reg, reg); 1068 break; 1069 default: 1070 printf("unknown feature %x\n", le16_to_cpu(req->value)); 1071 goto unknown; 1072 } 1073 xhci_writel(status_reg, reg); 1074 break; 1075 default: 1076 puts("Unknown request\n"); 1077 goto unknown; 1078 } 1079 1080 debug("scrlen = %d\n req->length = %d\n", 1081 srclen, le16_to_cpu(req->length)); 1082 1083 len = min(srclen, (int)le16_to_cpu(req->length)); 1084 1085 if (srcptr != NULL && len > 0) 1086 memcpy(buffer, srcptr, len); 1087 else 1088 debug("Len is 0\n"); 1089 1090 udev->act_len = len; 1091 udev->status = 0; 1092 1093 return 0; 1094 1095 unknown: 1096 udev->act_len = 0; 1097 udev->status = USB_ST_STALLED; 1098 1099 return -ENODEV; 1100 } 1101 1102 /** 1103 * Submits the INT request to XHCI Host cotroller 1104 * 1105 * @param udev pointer to the USB device 1106 * @param pipe contains the DIR_IN or OUT , devnum 1107 * @param buffer buffer to be read/written based on the request 1108 * @param length length of the buffer 1109 * @param interval interval of the interrupt 1110 * @return 0 1111 */ 1112 static int _xhci_submit_int_msg(struct usb_device *udev, unsigned long pipe, 1113 void *buffer, int length, int interval) 1114 { 1115 if (usb_pipetype(pipe) != PIPE_INTERRUPT) { 1116 printf("non-interrupt pipe (type=%lu)", usb_pipetype(pipe)); 1117 return -EINVAL; 1118 } 1119 1120 /* 1121 * xHCI uses normal TRBs for both bulk and interrupt. When the 1122 * interrupt endpoint is to be serviced, the xHC will consume 1123 * (at most) one TD. A TD (comprised of sg list entries) can 1124 * take several service intervals to transmit. 1125 */ 1126 return xhci_bulk_tx(udev, pipe, length, buffer); 1127 } 1128 1129 /** 1130 * submit the BULK type of request to the USB Device 1131 * 1132 * @param udev pointer to the USB device 1133 * @param pipe contains the DIR_IN or OUT , devnum 1134 * @param buffer buffer to be read/written based on the request 1135 * @param length length of the buffer 1136 * @return returns 0 if successful else -1 on failure 1137 */ 1138 static int _xhci_submit_bulk_msg(struct usb_device *udev, unsigned long pipe, 1139 void *buffer, int length) 1140 { 1141 if (usb_pipetype(pipe) != PIPE_BULK) { 1142 printf("non-bulk pipe (type=%lu)", usb_pipetype(pipe)); 1143 return -EINVAL; 1144 } 1145 1146 return xhci_bulk_tx(udev, pipe, length, buffer); 1147 } 1148 1149 /** 1150 * submit the control type of request to the Root hub/Device based on the devnum 1151 * 1152 * @param udev pointer to the USB device 1153 * @param pipe contains the DIR_IN or OUT , devnum 1154 * @param buffer buffer to be read/written based on the request 1155 * @param length length of the buffer 1156 * @param setup Request type 1157 * @param root_portnr Root port number that this device is on 1158 * @return returns 0 if successful else -1 on failure 1159 */ 1160 static int _xhci_submit_control_msg(struct usb_device *udev, unsigned long pipe, 1161 void *buffer, int length, 1162 struct devrequest *setup, int root_portnr) 1163 { 1164 struct xhci_ctrl *ctrl = xhci_get_ctrl(udev); 1165 int ret = 0; 1166 1167 if (usb_pipetype(pipe) != PIPE_CONTROL) { 1168 printf("non-control pipe (type=%lu)", usb_pipetype(pipe)); 1169 return -EINVAL; 1170 } 1171 1172 if (usb_pipedevice(pipe) == ctrl->rootdev) 1173 return xhci_submit_root(udev, pipe, buffer, setup); 1174 1175 if (setup->request == USB_REQ_SET_ADDRESS && 1176 (setup->requesttype & USB_TYPE_MASK) == USB_TYPE_STANDARD) 1177 return xhci_address_device(udev, root_portnr); 1178 1179 if (setup->request == USB_REQ_SET_CONFIGURATION && 1180 (setup->requesttype & USB_TYPE_MASK) == USB_TYPE_STANDARD) { 1181 ret = xhci_set_configuration(udev); 1182 if (ret) { 1183 puts("Failed to configure xHCI endpoint\n"); 1184 return ret; 1185 } 1186 } 1187 1188 return xhci_ctrl_tx(udev, pipe, setup, length, buffer); 1189 } 1190 1191 static int xhci_lowlevel_init(struct xhci_ctrl *ctrl) 1192 { 1193 struct xhci_hccr *hccr; 1194 struct xhci_hcor *hcor; 1195 uint32_t val; 1196 uint32_t val2; 1197 uint32_t reg; 1198 1199 hccr = ctrl->hccr; 1200 hcor = ctrl->hcor; 1201 /* 1202 * Program the Number of Device Slots Enabled field in the CONFIG 1203 * register with the max value of slots the HC can handle. 1204 */ 1205 val = (xhci_readl(&hccr->cr_hcsparams1) & HCS_SLOTS_MASK); 1206 val2 = xhci_readl(&hcor->or_config); 1207 val |= (val2 & ~HCS_SLOTS_MASK); 1208 xhci_writel(&hcor->or_config, val); 1209 1210 /* initializing xhci data structures */ 1211 if (xhci_mem_init(ctrl, hccr, hcor) < 0) 1212 return -ENOMEM; 1213 1214 reg = xhci_readl(&hccr->cr_hcsparams1); 1215 descriptor.hub.bNbrPorts = ((reg & HCS_MAX_PORTS_MASK) >> 1216 HCS_MAX_PORTS_SHIFT); 1217 printf("Register %x NbrPorts %d\n", reg, descriptor.hub.bNbrPorts); 1218 1219 /* Port Indicators */ 1220 reg = xhci_readl(&hccr->cr_hccparams); 1221 if (HCS_INDICATOR(reg)) 1222 put_unaligned(get_unaligned(&descriptor.hub.wHubCharacteristics) 1223 | 0x80, &descriptor.hub.wHubCharacteristics); 1224 1225 /* Port Power Control */ 1226 if (HCC_PPC(reg)) 1227 put_unaligned(get_unaligned(&descriptor.hub.wHubCharacteristics) 1228 | 0x01, &descriptor.hub.wHubCharacteristics); 1229 1230 if (xhci_start(hcor)) { 1231 xhci_reset(hcor); 1232 return -ENODEV; 1233 } 1234 1235 /* Zero'ing IRQ control register and IRQ pending register */ 1236 xhci_writel(&ctrl->ir_set->irq_control, 0x0); 1237 xhci_writel(&ctrl->ir_set->irq_pending, 0x0); 1238 1239 reg = HC_VERSION(xhci_readl(&hccr->cr_capbase)); 1240 printf("USB XHCI %x.%02x\n", reg >> 8, reg & 0xff); 1241 1242 return 0; 1243 } 1244 1245 static int xhci_lowlevel_stop(struct xhci_ctrl *ctrl) 1246 { 1247 u32 temp; 1248 1249 xhci_reset(ctrl->hcor); 1250 1251 debug("// Disabling event ring interrupts\n"); 1252 temp = xhci_readl(&ctrl->hcor->or_usbsts); 1253 xhci_writel(&ctrl->hcor->or_usbsts, temp & ~STS_EINT); 1254 temp = xhci_readl(&ctrl->ir_set->irq_pending); 1255 xhci_writel(&ctrl->ir_set->irq_pending, ER_IRQ_DISABLE(temp)); 1256 1257 return 0; 1258 } 1259 1260 #ifndef CONFIG_DM_USB 1261 int submit_control_msg(struct usb_device *udev, unsigned long pipe, 1262 void *buffer, int length, struct devrequest *setup) 1263 { 1264 struct usb_device *hop = udev; 1265 1266 if (hop->parent) 1267 while (hop->parent->parent) 1268 hop = hop->parent; 1269 1270 return _xhci_submit_control_msg(udev, pipe, buffer, length, setup, 1271 hop->portnr); 1272 } 1273 1274 int submit_bulk_msg(struct usb_device *udev, unsigned long pipe, void *buffer, 1275 int length) 1276 { 1277 return _xhci_submit_bulk_msg(udev, pipe, buffer, length); 1278 } 1279 1280 int submit_int_msg(struct usb_device *udev, unsigned long pipe, void *buffer, 1281 int length, int interval) 1282 { 1283 return _xhci_submit_int_msg(udev, pipe, buffer, length, interval); 1284 } 1285 1286 /** 1287 * Intialises the XHCI host controller 1288 * and allocates the necessary data structures 1289 * 1290 * @param index index to the host controller data structure 1291 * @return pointer to the intialised controller 1292 */ 1293 int usb_lowlevel_init(int index, enum usb_init_type init, void **controller) 1294 { 1295 struct xhci_hccr *hccr; 1296 struct xhci_hcor *hcor; 1297 struct xhci_ctrl *ctrl; 1298 int ret; 1299 1300 *controller = NULL; 1301 1302 if (xhci_hcd_init(index, &hccr, (struct xhci_hcor **)&hcor) != 0) 1303 return -ENODEV; 1304 1305 if (xhci_reset(hcor) != 0) 1306 return -ENODEV; 1307 1308 ctrl = &xhcic[index]; 1309 1310 ctrl->hccr = hccr; 1311 ctrl->hcor = hcor; 1312 1313 ret = xhci_lowlevel_init(ctrl); 1314 1315 if (ret) { 1316 ctrl->hccr = NULL; 1317 ctrl->hcor = NULL; 1318 } else { 1319 *controller = &xhcic[index]; 1320 } 1321 1322 return ret; 1323 } 1324 1325 /** 1326 * Stops the XHCI host controller 1327 * and cleans up all the related data structures 1328 * 1329 * @param index index to the host controller data structure 1330 * @return none 1331 */ 1332 int usb_lowlevel_stop(int index) 1333 { 1334 struct xhci_ctrl *ctrl = (xhcic + index); 1335 1336 if (ctrl->hcor) { 1337 xhci_lowlevel_stop(ctrl); 1338 xhci_hcd_stop(index); 1339 xhci_cleanup(ctrl); 1340 } 1341 1342 return 0; 1343 } 1344 #endif /* CONFIG_DM_USB */ 1345 1346 #ifdef CONFIG_DM_USB 1347 1348 static int xhci_submit_control_msg(struct udevice *dev, struct usb_device *udev, 1349 unsigned long pipe, void *buffer, int length, 1350 struct devrequest *setup) 1351 { 1352 struct usb_device *uhop; 1353 struct udevice *hub; 1354 int root_portnr = 0; 1355 1356 debug("%s: dev='%s', udev=%p, udev->dev='%s', portnr=%d\n", __func__, 1357 dev->name, udev, udev->dev->name, udev->portnr); 1358 hub = udev->dev; 1359 if (device_get_uclass_id(hub) == UCLASS_USB_HUB) { 1360 /* Figure out our port number on the root hub */ 1361 if (usb_hub_is_root_hub(hub)) { 1362 root_portnr = udev->portnr; 1363 } else { 1364 while (!usb_hub_is_root_hub(hub->parent)) 1365 hub = hub->parent; 1366 uhop = dev_get_parent_priv(hub); 1367 root_portnr = uhop->portnr; 1368 } 1369 } 1370 /* 1371 struct usb_device *hop = udev; 1372 1373 if (hop->parent) 1374 while (hop->parent->parent) 1375 hop = hop->parent; 1376 */ 1377 return _xhci_submit_control_msg(udev, pipe, buffer, length, setup, 1378 root_portnr); 1379 } 1380 1381 static int xhci_submit_bulk_msg(struct udevice *dev, struct usb_device *udev, 1382 unsigned long pipe, void *buffer, int length) 1383 { 1384 debug("%s: dev='%s', udev=%p\n", __func__, dev->name, udev); 1385 return _xhci_submit_bulk_msg(udev, pipe, buffer, length); 1386 } 1387 1388 static int xhci_submit_int_msg(struct udevice *dev, struct usb_device *udev, 1389 unsigned long pipe, void *buffer, int length, 1390 int interval) 1391 { 1392 debug("%s: dev='%s', udev=%p\n", __func__, dev->name, udev); 1393 return _xhci_submit_int_msg(udev, pipe, buffer, length, interval); 1394 } 1395 1396 static int xhci_alloc_device(struct udevice *dev, struct usb_device *udev) 1397 { 1398 debug("%s: dev='%s', udev=%p\n", __func__, dev->name, udev); 1399 return _xhci_alloc_device(udev); 1400 } 1401 1402 static int xhci_update_hub_device(struct udevice *dev, struct usb_device *udev) 1403 { 1404 struct xhci_ctrl *ctrl = dev_get_priv(dev); 1405 struct usb_hub_device *hub = dev_get_uclass_priv(udev->dev); 1406 struct xhci_virt_device *virt_dev; 1407 struct xhci_input_control_ctx *ctrl_ctx; 1408 struct xhci_container_ctx *out_ctx; 1409 struct xhci_container_ctx *in_ctx; 1410 struct xhci_slot_ctx *slot_ctx; 1411 int slot_id = udev->slot_id; 1412 unsigned think_time; 1413 1414 debug("%s: dev='%s', udev=%p\n", __func__, dev->name, udev); 1415 1416 /* Ignore root hubs */ 1417 if (usb_hub_is_root_hub(udev->dev)) 1418 return 0; 1419 1420 virt_dev = ctrl->devs[slot_id]; 1421 BUG_ON(!virt_dev); 1422 1423 out_ctx = virt_dev->out_ctx; 1424 in_ctx = virt_dev->in_ctx; 1425 1426 ctrl_ctx = xhci_get_input_control_ctx(in_ctx); 1427 /* Initialize the input context control */ 1428 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 1429 ctrl_ctx->drop_flags = 0; 1430 1431 xhci_inval_cache((uintptr_t)out_ctx->bytes, out_ctx->size); 1432 1433 /* slot context */ 1434 xhci_slot_copy(ctrl, in_ctx, out_ctx); 1435 slot_ctx = xhci_get_slot_ctx(ctrl, in_ctx); 1436 1437 /* Update hub related fields */ 1438 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB); 1439 if (hub->tt.multi && udev->speed == USB_SPEED_HIGH) 1440 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 1441 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(udev->maxchild)); 1442 /* 1443 * Set TT think time - convert from ns to FS bit times. 1444 * Note 8 FS bit times == (8 bits / 12000000 bps) ~= 666ns 1445 * 1446 * 0 = 8 FS bit times, 1 = 16 FS bit times, 1447 * 2 = 24 FS bit times, 3 = 32 FS bit times. 1448 * 1449 * This field shall be 0 if the device is not a high-spped hub. 1450 */ 1451 think_time = hub->tt.think_time; 1452 if (think_time != 0) 1453 think_time = (think_time / 666) - 1; 1454 if (udev->speed == USB_SPEED_HIGH) 1455 slot_ctx->tt_info |= cpu_to_le32(TT_THINK_TIME(think_time)); 1456 1457 return xhci_configure_endpoints(udev, false); 1458 } 1459 1460 static int xhci_get_max_xfer_size(struct udevice *dev, size_t *size) 1461 { 1462 /* 1463 * xHCD allocates one segment which includes 64 TRBs for each endpoint 1464 * and the last TRB in this segment is configured as a link TRB to form 1465 * a TRB ring. Each TRB can transfer up to 64K bytes, however data 1466 * buffers referenced by transfer TRBs shall not span 64KB boundaries. 1467 * Hence the maximum number of TRBs we can use in one transfer is 62. 1468 */ 1469 *size = (TRBS_PER_SEGMENT - 2) * TRB_MAX_BUFF_SIZE; 1470 1471 return 0; 1472 } 1473 1474 int xhci_register(struct udevice *dev, struct xhci_hccr *hccr, 1475 struct xhci_hcor *hcor) 1476 { 1477 struct xhci_ctrl *ctrl = dev_get_priv(dev); 1478 struct usb_bus_priv *priv = dev_get_uclass_priv(dev); 1479 int ret; 1480 1481 debug("%s: dev='%s', ctrl=%p, hccr=%p, hcor=%p\n", __func__, dev->name, 1482 ctrl, hccr, hcor); 1483 1484 ctrl->dev = dev; 1485 1486 /* 1487 * XHCI needs to issue a Address device command to setup 1488 * proper device context structures, before it can interact 1489 * with the device. So a get_descriptor will fail before any 1490 * of that is done for XHCI unlike EHCI. 1491 */ 1492 priv->desc_before_addr = false; 1493 1494 ret = xhci_reset(hcor); 1495 if (ret) 1496 goto err; 1497 1498 ctrl->hccr = hccr; 1499 ctrl->hcor = hcor; 1500 ret = xhci_lowlevel_init(ctrl); 1501 if (ret) 1502 goto err; 1503 1504 return 0; 1505 err: 1506 free(ctrl); 1507 debug("%s: failed, ret=%d\n", __func__, ret); 1508 return ret; 1509 } 1510 1511 int xhci_deregister(struct udevice *dev) 1512 { 1513 struct xhci_ctrl *ctrl = dev_get_priv(dev); 1514 1515 xhci_lowlevel_stop(ctrl); 1516 xhci_cleanup(ctrl); 1517 1518 return 0; 1519 } 1520 1521 struct dm_usb_ops xhci_usb_ops = { 1522 .control = xhci_submit_control_msg, 1523 .bulk = xhci_submit_bulk_msg, 1524 .interrupt = xhci_submit_int_msg, 1525 .alloc_device = xhci_alloc_device, 1526 .update_hub_device = xhci_update_hub_device, 1527 .get_max_xfer_size = xhci_get_max_xfer_size, 1528 }; 1529 1530 #endif 1531