xref: /openbmc/u-boot/drivers/usb/host/xhci.c (revision 8ee59472)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * USB HOST XHCI Controller stack
4  *
5  * Based on xHCI host controller driver in linux-kernel
6  * by Sarah Sharp.
7  *
8  * Copyright (C) 2008 Intel Corp.
9  * Author: Sarah Sharp
10  *
11  * Copyright (C) 2013 Samsung Electronics Co.Ltd
12  * Authors: Vivek Gautam <gautam.vivek@samsung.com>
13  *	    Vikas Sajjan <vikas.sajjan@samsung.com>
14  */
15 
16 /**
17  * This file gives the xhci stack for usb3.0 looking into
18  * xhci specification Rev1.0 (5/21/10).
19  * The quirk devices support hasn't been given yet.
20  */
21 
22 #include <common.h>
23 #include <dm.h>
24 #include <asm/byteorder.h>
25 #include <usb.h>
26 #include <malloc.h>
27 #include <watchdog.h>
28 #include <asm/cache.h>
29 #include <asm/unaligned.h>
30 #include <linux/errno.h>
31 #include "xhci.h"
32 
33 #ifndef CONFIG_USB_MAX_CONTROLLER_COUNT
34 #define CONFIG_USB_MAX_CONTROLLER_COUNT 1
35 #endif
36 
37 static struct descriptor {
38 	struct usb_hub_descriptor hub;
39 	struct usb_device_descriptor device;
40 	struct usb_config_descriptor config;
41 	struct usb_interface_descriptor interface;
42 	struct usb_endpoint_descriptor endpoint;
43 	struct usb_ss_ep_comp_descriptor ep_companion;
44 } __attribute__ ((packed)) descriptor = {
45 	{
46 		0xc,		/* bDescLength */
47 		0x2a,		/* bDescriptorType: hub descriptor */
48 		2,		/* bNrPorts -- runtime modified */
49 		cpu_to_le16(0x8), /* wHubCharacteristics */
50 		10,		/* bPwrOn2PwrGood */
51 		0,		/* bHubCntrCurrent */
52 		{		/* Device removable */
53 		}		/* at most 7 ports! XXX */
54 	},
55 	{
56 		0x12,		/* bLength */
57 		1,		/* bDescriptorType: UDESC_DEVICE */
58 		cpu_to_le16(0x0300), /* bcdUSB: v3.0 */
59 		9,		/* bDeviceClass: UDCLASS_HUB */
60 		0,		/* bDeviceSubClass: UDSUBCLASS_HUB */
61 		3,		/* bDeviceProtocol: UDPROTO_SSHUBSTT */
62 		9,		/* bMaxPacketSize: 512 bytes  2^9 */
63 		0x0000,		/* idVendor */
64 		0x0000,		/* idProduct */
65 		cpu_to_le16(0x0100), /* bcdDevice */
66 		1,		/* iManufacturer */
67 		2,		/* iProduct */
68 		0,		/* iSerialNumber */
69 		1		/* bNumConfigurations: 1 */
70 	},
71 	{
72 		0x9,
73 		2,		/* bDescriptorType: UDESC_CONFIG */
74 		cpu_to_le16(0x1f), /* includes SS endpoint descriptor */
75 		1,		/* bNumInterface */
76 		1,		/* bConfigurationValue */
77 		0,		/* iConfiguration */
78 		0x40,		/* bmAttributes: UC_SELF_POWER */
79 		0		/* bMaxPower */
80 	},
81 	{
82 		0x9,		/* bLength */
83 		4,		/* bDescriptorType: UDESC_INTERFACE */
84 		0,		/* bInterfaceNumber */
85 		0,		/* bAlternateSetting */
86 		1,		/* bNumEndpoints */
87 		9,		/* bInterfaceClass: UICLASS_HUB */
88 		0,		/* bInterfaceSubClass: UISUBCLASS_HUB */
89 		0,		/* bInterfaceProtocol: UIPROTO_HSHUBSTT */
90 		0		/* iInterface */
91 	},
92 	{
93 		0x7,		/* bLength */
94 		5,		/* bDescriptorType: UDESC_ENDPOINT */
95 		0x81,		/* bEndpointAddress: IN endpoint 1 */
96 		3,		/* bmAttributes: UE_INTERRUPT */
97 		8,		/* wMaxPacketSize */
98 		255		/* bInterval */
99 	},
100 	{
101 		0x06,		/* ss_bLength */
102 		0x30,		/* ss_bDescriptorType: SS EP Companion */
103 		0x00,		/* ss_bMaxBurst: allows 1 TX between ACKs */
104 		/* ss_bmAttributes: 1 packet per service interval */
105 		0x00,
106 		/* ss_wBytesPerInterval: 15 bits for max 15 ports */
107 		cpu_to_le16(0x02),
108 	},
109 };
110 
111 #ifndef CONFIG_DM_USB
112 static struct xhci_ctrl xhcic[CONFIG_USB_MAX_CONTROLLER_COUNT];
113 #endif
114 
115 struct xhci_ctrl *xhci_get_ctrl(struct usb_device *udev)
116 {
117 #ifdef CONFIG_DM_USB
118 	struct udevice *dev;
119 
120 	/* Find the USB controller */
121 	for (dev = udev->dev;
122 	     device_get_uclass_id(dev) != UCLASS_USB;
123 	     dev = dev->parent)
124 		;
125 	return dev_get_priv(dev);
126 #else
127 	return udev->controller;
128 #endif
129 }
130 
131 /**
132  * Waits for as per specified amount of time
133  * for the "result" to match with "done"
134  *
135  * @param ptr	pointer to the register to be read
136  * @param mask	mask for the value read
137  * @param done	value to be campared with result
138  * @param usec	time to wait till
139  * @return 0 if handshake is success else < 0 on failure
140  */
141 static int handshake(uint32_t volatile *ptr, uint32_t mask,
142 					uint32_t done, int usec)
143 {
144 	uint32_t result;
145 
146 	do {
147 		result = xhci_readl(ptr);
148 		if (result == ~(uint32_t)0)
149 			return -ENODEV;
150 		result &= mask;
151 		if (result == done)
152 			return 0;
153 		usec--;
154 		udelay(1);
155 	} while (usec > 0);
156 
157 	return -ETIMEDOUT;
158 }
159 
160 /**
161  * Set the run bit and wait for the host to be running.
162  *
163  * @param hcor	pointer to host controller operation registers
164  * @return status of the Handshake
165  */
166 static int xhci_start(struct xhci_hcor *hcor)
167 {
168 	u32 temp;
169 	int ret;
170 
171 	puts("Starting the controller\n");
172 	temp = xhci_readl(&hcor->or_usbcmd);
173 	temp |= (CMD_RUN);
174 	xhci_writel(&hcor->or_usbcmd, temp);
175 
176 	/*
177 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
178 	 * running.
179 	 */
180 	ret = handshake(&hcor->or_usbsts, STS_HALT, 0, XHCI_MAX_HALT_USEC);
181 	if (ret)
182 		debug("Host took too long to start, "
183 				"waited %u microseconds.\n",
184 				XHCI_MAX_HALT_USEC);
185 	return ret;
186 }
187 
188 /**
189  * Resets the XHCI Controller
190  *
191  * @param hcor	pointer to host controller operation registers
192  * @return -EBUSY if XHCI Controller is not halted else status of handshake
193  */
194 static int xhci_reset(struct xhci_hcor *hcor)
195 {
196 	u32 cmd;
197 	u32 state;
198 	int ret;
199 
200 	/* Halting the Host first */
201 	debug("// Halt the HC: %p\n", hcor);
202 	state = xhci_readl(&hcor->or_usbsts) & STS_HALT;
203 	if (!state) {
204 		cmd = xhci_readl(&hcor->or_usbcmd);
205 		cmd &= ~CMD_RUN;
206 		xhci_writel(&hcor->or_usbcmd, cmd);
207 	}
208 
209 	ret = handshake(&hcor->or_usbsts,
210 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
211 	if (ret) {
212 		printf("Host not halted after %u microseconds.\n",
213 				XHCI_MAX_HALT_USEC);
214 		return -EBUSY;
215 	}
216 
217 	debug("// Reset the HC\n");
218 	cmd = xhci_readl(&hcor->or_usbcmd);
219 	cmd |= CMD_RESET;
220 	xhci_writel(&hcor->or_usbcmd, cmd);
221 
222 	ret = handshake(&hcor->or_usbcmd, CMD_RESET, 0, XHCI_MAX_RESET_USEC);
223 	if (ret)
224 		return ret;
225 
226 	/*
227 	 * xHCI cannot write to any doorbells or operational registers other
228 	 * than status until the "Controller Not Ready" flag is cleared.
229 	 */
230 	return handshake(&hcor->or_usbsts, STS_CNR, 0, XHCI_MAX_RESET_USEC);
231 }
232 
233 /**
234  * Used for passing endpoint bitmasks between the core and HCDs.
235  * Find the index for an endpoint given its descriptor.
236  * Use the return value to right shift 1 for the bitmask.
237  *
238  * Index  = (epnum * 2) + direction - 1,
239  * where direction = 0 for OUT, 1 for IN.
240  * For control endpoints, the IN index is used (OUT index is unused), so
241  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
242  *
243  * @param desc	USB enpdoint Descriptor
244  * @return index of the Endpoint
245  */
246 static unsigned int xhci_get_ep_index(struct usb_endpoint_descriptor *desc)
247 {
248 	unsigned int index;
249 
250 	if (usb_endpoint_xfer_control(desc))
251 		index = (unsigned int)(usb_endpoint_num(desc) * 2);
252 	else
253 		index = (unsigned int)((usb_endpoint_num(desc) * 2) -
254 				(usb_endpoint_dir_in(desc) ? 0 : 1));
255 
256 	return index;
257 }
258 
259 /*
260  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
261  * microframes, rounded down to nearest power of 2.
262  */
263 static unsigned int xhci_microframes_to_exponent(unsigned int desc_interval,
264 						 unsigned int min_exponent,
265 						 unsigned int max_exponent)
266 {
267 	unsigned int interval;
268 
269 	interval = fls(desc_interval) - 1;
270 	interval = clamp_val(interval, min_exponent, max_exponent);
271 	if ((1 << interval) != desc_interval)
272 		debug("rounding interval to %d microframes, "\
273 		      "ep desc says %d microframes\n",
274 		      1 << interval, desc_interval);
275 
276 	return interval;
277 }
278 
279 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
280 	struct usb_endpoint_descriptor *endpt_desc)
281 {
282 	if (endpt_desc->bInterval == 0)
283 		return 0;
284 
285 	return xhci_microframes_to_exponent(endpt_desc->bInterval, 0, 15);
286 }
287 
288 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
289 	struct usb_endpoint_descriptor *endpt_desc)
290 {
291 	return xhci_microframes_to_exponent(endpt_desc->bInterval * 8, 3, 10);
292 }
293 
294 /*
295  * Convert interval expressed as 2^(bInterval - 1) == interval into
296  * straight exponent value 2^n == interval.
297  */
298 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
299 	struct usb_endpoint_descriptor *endpt_desc)
300 {
301 	unsigned int interval;
302 
303 	interval = clamp_val(endpt_desc->bInterval, 1, 16) - 1;
304 	if (interval != endpt_desc->bInterval - 1)
305 		debug("ep %#x - rounding interval to %d %sframes\n",
306 		      endpt_desc->bEndpointAddress, 1 << interval,
307 		      udev->speed == USB_SPEED_FULL ? "" : "micro");
308 
309 	if (udev->speed == USB_SPEED_FULL) {
310 		/*
311 		 * Full speed isoc endpoints specify interval in frames,
312 		 * not microframes. We are using microframes everywhere,
313 		 * so adjust accordingly.
314 		 */
315 		interval += 3;	/* 1 frame = 2^3 uframes */
316 	}
317 
318 	return interval;
319 }
320 
321 /*
322  * Return the polling or NAK interval.
323  *
324  * The polling interval is expressed in "microframes". If xHCI's Interval field
325  * is set to N, it will service the endpoint every 2^(Interval)*125us.
326  *
327  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
328  * is set to 0.
329  */
330 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
331 	struct usb_endpoint_descriptor *endpt_desc)
332 {
333 	unsigned int interval = 0;
334 
335 	switch (udev->speed) {
336 	case USB_SPEED_HIGH:
337 		/* Max NAK rate */
338 		if (usb_endpoint_xfer_control(endpt_desc) ||
339 		    usb_endpoint_xfer_bulk(endpt_desc)) {
340 			interval = xhci_parse_microframe_interval(udev,
341 								  endpt_desc);
342 			break;
343 		}
344 		/* Fall through - SS and HS isoc/int have same decoding */
345 
346 	case USB_SPEED_SUPER:
347 		if (usb_endpoint_xfer_int(endpt_desc) ||
348 		    usb_endpoint_xfer_isoc(endpt_desc)) {
349 			interval = xhci_parse_exponent_interval(udev,
350 								endpt_desc);
351 		}
352 		break;
353 
354 	case USB_SPEED_FULL:
355 		if (usb_endpoint_xfer_isoc(endpt_desc)) {
356 			interval = xhci_parse_exponent_interval(udev,
357 								endpt_desc);
358 			break;
359 		}
360 		/*
361 		 * Fall through for interrupt endpoint interval decoding
362 		 * since it uses the same rules as low speed interrupt
363 		 * endpoints.
364 		 */
365 
366 	case USB_SPEED_LOW:
367 		if (usb_endpoint_xfer_int(endpt_desc) ||
368 		    usb_endpoint_xfer_isoc(endpt_desc)) {
369 			interval = xhci_parse_frame_interval(udev, endpt_desc);
370 		}
371 		break;
372 
373 	default:
374 		BUG();
375 	}
376 
377 	return interval;
378 }
379 
380 /*
381  * The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
382  * High speed endpoint descriptors can define "the number of additional
383  * transaction opportunities per microframe", but that goes in the Max Burst
384  * endpoint context field.
385  */
386 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
387 	struct usb_endpoint_descriptor *endpt_desc,
388 	struct usb_ss_ep_comp_descriptor *ss_ep_comp_desc)
389 {
390 	if (udev->speed < USB_SPEED_SUPER ||
391 	    !usb_endpoint_xfer_isoc(endpt_desc))
392 		return 0;
393 
394 	return ss_ep_comp_desc->bmAttributes;
395 }
396 
397 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
398 	struct usb_endpoint_descriptor *endpt_desc,
399 	struct usb_ss_ep_comp_descriptor *ss_ep_comp_desc)
400 {
401 	/* Super speed and Plus have max burst in ep companion desc */
402 	if (udev->speed >= USB_SPEED_SUPER)
403 		return ss_ep_comp_desc->bMaxBurst;
404 
405 	if (udev->speed == USB_SPEED_HIGH &&
406 	    (usb_endpoint_xfer_isoc(endpt_desc) ||
407 	     usb_endpoint_xfer_int(endpt_desc)))
408 		return usb_endpoint_maxp_mult(endpt_desc) - 1;
409 
410 	return 0;
411 }
412 
413 /*
414  * Return the maximum endpoint service interval time (ESIT) payload.
415  * Basically, this is the maxpacket size, multiplied by the burst size
416  * and mult size.
417  */
418 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
419 	struct usb_endpoint_descriptor *endpt_desc,
420 	struct usb_ss_ep_comp_descriptor *ss_ep_comp_desc)
421 {
422 	int max_burst;
423 	int max_packet;
424 
425 	/* Only applies for interrupt or isochronous endpoints */
426 	if (usb_endpoint_xfer_control(endpt_desc) ||
427 	    usb_endpoint_xfer_bulk(endpt_desc))
428 		return 0;
429 
430 	/* SuperSpeed Isoc ep with less than 48k per esit */
431 	if (udev->speed >= USB_SPEED_SUPER)
432 		return le16_to_cpu(ss_ep_comp_desc->wBytesPerInterval);
433 
434 	max_packet = usb_endpoint_maxp(endpt_desc);
435 	max_burst = usb_endpoint_maxp_mult(endpt_desc);
436 
437 	/* A 0 in max burst means 1 transfer per ESIT */
438 	return max_packet * max_burst;
439 }
440 
441 /**
442  * Issue a configure endpoint command or evaluate context command
443  * and wait for it to finish.
444  *
445  * @param udev	pointer to the Device Data Structure
446  * @param ctx_change	flag to indicate the Context has changed or NOT
447  * @return 0 on success, -1 on failure
448  */
449 static int xhci_configure_endpoints(struct usb_device *udev, bool ctx_change)
450 {
451 	struct xhci_container_ctx *in_ctx;
452 	struct xhci_virt_device *virt_dev;
453 	struct xhci_ctrl *ctrl = xhci_get_ctrl(udev);
454 	union xhci_trb *event;
455 
456 	virt_dev = ctrl->devs[udev->slot_id];
457 	in_ctx = virt_dev->in_ctx;
458 
459 	xhci_flush_cache((uintptr_t)in_ctx->bytes, in_ctx->size);
460 	xhci_queue_command(ctrl, in_ctx->bytes, udev->slot_id, 0,
461 			   ctx_change ? TRB_EVAL_CONTEXT : TRB_CONFIG_EP);
462 	event = xhci_wait_for_event(ctrl, TRB_COMPLETION);
463 	BUG_ON(TRB_TO_SLOT_ID(le32_to_cpu(event->event_cmd.flags))
464 		!= udev->slot_id);
465 
466 	switch (GET_COMP_CODE(le32_to_cpu(event->event_cmd.status))) {
467 	case COMP_SUCCESS:
468 		debug("Successful %s command\n",
469 			ctx_change ? "Evaluate Context" : "Configure Endpoint");
470 		break;
471 	default:
472 		printf("ERROR: %s command returned completion code %d.\n",
473 			ctx_change ? "Evaluate Context" : "Configure Endpoint",
474 			GET_COMP_CODE(le32_to_cpu(event->event_cmd.status)));
475 		return -EINVAL;
476 	}
477 
478 	xhci_acknowledge_event(ctrl);
479 
480 	return 0;
481 }
482 
483 /**
484  * Configure the endpoint, programming the device contexts.
485  *
486  * @param udev	pointer to the USB device structure
487  * @return returns the status of the xhci_configure_endpoints
488  */
489 static int xhci_set_configuration(struct usb_device *udev)
490 {
491 	struct xhci_container_ctx *in_ctx;
492 	struct xhci_container_ctx *out_ctx;
493 	struct xhci_input_control_ctx *ctrl_ctx;
494 	struct xhci_slot_ctx *slot_ctx;
495 	struct xhci_ep_ctx *ep_ctx[MAX_EP_CTX_NUM];
496 	int cur_ep;
497 	int max_ep_flag = 0;
498 	int ep_index;
499 	unsigned int dir;
500 	unsigned int ep_type;
501 	struct xhci_ctrl *ctrl = xhci_get_ctrl(udev);
502 	int num_of_ep;
503 	int ep_flag = 0;
504 	u64 trb_64 = 0;
505 	int slot_id = udev->slot_id;
506 	struct xhci_virt_device *virt_dev = ctrl->devs[slot_id];
507 	struct usb_interface *ifdesc;
508 	u32 max_esit_payload;
509 	unsigned int interval;
510 	unsigned int mult;
511 	unsigned int max_burst;
512 	unsigned int avg_trb_len;
513 	unsigned int err_count = 0;
514 
515 	out_ctx = virt_dev->out_ctx;
516 	in_ctx = virt_dev->in_ctx;
517 
518 	num_of_ep = udev->config.if_desc[0].no_of_ep;
519 	ifdesc = &udev->config.if_desc[0];
520 
521 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
522 	/* Initialize the input context control */
523 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
524 	ctrl_ctx->drop_flags = 0;
525 
526 	/* EP_FLAG gives values 1 & 4 for EP1OUT and EP2IN */
527 	for (cur_ep = 0; cur_ep < num_of_ep; cur_ep++) {
528 		ep_flag = xhci_get_ep_index(&ifdesc->ep_desc[cur_ep]);
529 		ctrl_ctx->add_flags |= cpu_to_le32(1 << (ep_flag + 1));
530 		if (max_ep_flag < ep_flag)
531 			max_ep_flag = ep_flag;
532 	}
533 
534 	xhci_inval_cache((uintptr_t)out_ctx->bytes, out_ctx->size);
535 
536 	/* slot context */
537 	xhci_slot_copy(ctrl, in_ctx, out_ctx);
538 	slot_ctx = xhci_get_slot_ctx(ctrl, in_ctx);
539 	slot_ctx->dev_info &= ~(LAST_CTX_MASK);
540 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(max_ep_flag + 1) | 0);
541 
542 	xhci_endpoint_copy(ctrl, in_ctx, out_ctx, 0);
543 
544 	/* filling up ep contexts */
545 	for (cur_ep = 0; cur_ep < num_of_ep; cur_ep++) {
546 		struct usb_endpoint_descriptor *endpt_desc = NULL;
547 		struct usb_ss_ep_comp_descriptor *ss_ep_comp_desc = NULL;
548 
549 		endpt_desc = &ifdesc->ep_desc[cur_ep];
550 		ss_ep_comp_desc = &ifdesc->ss_ep_comp_desc[cur_ep];
551 		trb_64 = 0;
552 
553 		/*
554 		 * Get values to fill the endpoint context, mostly from ep
555 		 * descriptor. The average TRB buffer lengt for bulk endpoints
556 		 * is unclear as we have no clue on scatter gather list entry
557 		 * size. For Isoc and Int, set it to max available.
558 		 * See xHCI 1.1 spec 4.14.1.1 for details.
559 		 */
560 		max_esit_payload = xhci_get_max_esit_payload(udev, endpt_desc,
561 							     ss_ep_comp_desc);
562 		interval = xhci_get_endpoint_interval(udev, endpt_desc);
563 		mult = xhci_get_endpoint_mult(udev, endpt_desc,
564 					      ss_ep_comp_desc);
565 		max_burst = xhci_get_endpoint_max_burst(udev, endpt_desc,
566 							ss_ep_comp_desc);
567 		avg_trb_len = max_esit_payload;
568 
569 		ep_index = xhci_get_ep_index(endpt_desc);
570 		ep_ctx[ep_index] = xhci_get_ep_ctx(ctrl, in_ctx, ep_index);
571 
572 		/* Allocate the ep rings */
573 		virt_dev->eps[ep_index].ring = xhci_ring_alloc(1, true);
574 		if (!virt_dev->eps[ep_index].ring)
575 			return -ENOMEM;
576 
577 		/*NOTE: ep_desc[0] actually represents EP1 and so on */
578 		dir = (((endpt_desc->bEndpointAddress) & (0x80)) >> 7);
579 		ep_type = (((endpt_desc->bmAttributes) & (0x3)) | (dir << 2));
580 
581 		ep_ctx[ep_index]->ep_info =
582 			cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
583 			EP_INTERVAL(interval) | EP_MULT(mult));
584 
585 		ep_ctx[ep_index]->ep_info2 =
586 			cpu_to_le32(ep_type << EP_TYPE_SHIFT);
587 		ep_ctx[ep_index]->ep_info2 |=
588 			cpu_to_le32(MAX_PACKET
589 			(get_unaligned(&endpt_desc->wMaxPacketSize)));
590 
591 		/* Allow 3 retries for everything but isoc, set CErr = 3 */
592 		if (!usb_endpoint_xfer_isoc(endpt_desc))
593 			err_count = 3;
594 		ep_ctx[ep_index]->ep_info2 |=
595 			cpu_to_le32(MAX_BURST(max_burst) |
596 			ERROR_COUNT(err_count));
597 
598 		trb_64 = (uintptr_t)
599 				virt_dev->eps[ep_index].ring->enqueue;
600 		ep_ctx[ep_index]->deq = cpu_to_le64(trb_64 |
601 				virt_dev->eps[ep_index].ring->cycle_state);
602 
603 		/*
604 		 * xHCI spec 6.2.3:
605 		 * 'Average TRB Length' should be 8 for control endpoints.
606 		 */
607 		if (usb_endpoint_xfer_control(endpt_desc))
608 			avg_trb_len = 8;
609 		ep_ctx[ep_index]->tx_info =
610 			cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
611 			EP_AVG_TRB_LENGTH(avg_trb_len));
612 	}
613 
614 	return xhci_configure_endpoints(udev, false);
615 }
616 
617 /**
618  * Issue an Address Device command (which will issue a SetAddress request to
619  * the device).
620  *
621  * @param udev pointer to the Device Data Structure
622  * @return 0 if successful else error code on failure
623  */
624 static int xhci_address_device(struct usb_device *udev, int root_portnr)
625 {
626 	int ret = 0;
627 	struct xhci_ctrl *ctrl = xhci_get_ctrl(udev);
628 	struct xhci_slot_ctx *slot_ctx;
629 	struct xhci_input_control_ctx *ctrl_ctx;
630 	struct xhci_virt_device *virt_dev;
631 	int slot_id = udev->slot_id;
632 	union xhci_trb *event;
633 
634 	virt_dev = ctrl->devs[slot_id];
635 
636 	/*
637 	 * This is the first Set Address since device plug-in
638 	 * so setting up the slot context.
639 	 */
640 	debug("Setting up addressable devices %p\n", ctrl->dcbaa);
641 	xhci_setup_addressable_virt_dev(ctrl, udev, root_portnr);
642 
643 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
644 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
645 	ctrl_ctx->drop_flags = 0;
646 
647 	xhci_queue_command(ctrl, (void *)ctrl_ctx, slot_id, 0, TRB_ADDR_DEV);
648 	event = xhci_wait_for_event(ctrl, TRB_COMPLETION);
649 	BUG_ON(TRB_TO_SLOT_ID(le32_to_cpu(event->event_cmd.flags)) != slot_id);
650 
651 	switch (GET_COMP_CODE(le32_to_cpu(event->event_cmd.status))) {
652 	case COMP_CTX_STATE:
653 	case COMP_EBADSLT:
654 		printf("Setup ERROR: address device command for slot %d.\n",
655 								slot_id);
656 		ret = -EINVAL;
657 		break;
658 	case COMP_TX_ERR:
659 		puts("Device not responding to set address.\n");
660 		ret = -EPROTO;
661 		break;
662 	case COMP_DEV_ERR:
663 		puts("ERROR: Incompatible device"
664 					"for address device command.\n");
665 		ret = -ENODEV;
666 		break;
667 	case COMP_SUCCESS:
668 		debug("Successful Address Device command\n");
669 		udev->status = 0;
670 		break;
671 	default:
672 		printf("ERROR: unexpected command completion code 0x%x.\n",
673 			GET_COMP_CODE(le32_to_cpu(event->event_cmd.status)));
674 		ret = -EINVAL;
675 		break;
676 	}
677 
678 	xhci_acknowledge_event(ctrl);
679 
680 	if (ret < 0)
681 		/*
682 		 * TODO: Unsuccessful Address Device command shall leave the
683 		 * slot in default state. So, issue Disable Slot command now.
684 		 */
685 		return ret;
686 
687 	xhci_inval_cache((uintptr_t)virt_dev->out_ctx->bytes,
688 			 virt_dev->out_ctx->size);
689 	slot_ctx = xhci_get_slot_ctx(ctrl, virt_dev->out_ctx);
690 
691 	debug("xHC internal address is: %d\n",
692 		le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
693 
694 	return 0;
695 }
696 
697 /**
698  * Issue Enable slot command to the controller to allocate
699  * device slot and assign the slot id. It fails if the xHC
700  * ran out of device slots, the Enable Slot command timed out,
701  * or allocating memory failed.
702  *
703  * @param udev	pointer to the Device Data Structure
704  * @return Returns 0 on succes else return error code on failure
705  */
706 static int _xhci_alloc_device(struct usb_device *udev)
707 {
708 	struct xhci_ctrl *ctrl = xhci_get_ctrl(udev);
709 	union xhci_trb *event;
710 	int ret;
711 
712 	/*
713 	 * Root hub will be first device to be initailized.
714 	 * If this device is root-hub, don't do any xHC related
715 	 * stuff.
716 	 */
717 	if (ctrl->rootdev == 0) {
718 		udev->speed = USB_SPEED_SUPER;
719 		return 0;
720 	}
721 
722 	xhci_queue_command(ctrl, NULL, 0, 0, TRB_ENABLE_SLOT);
723 	event = xhci_wait_for_event(ctrl, TRB_COMPLETION);
724 	BUG_ON(GET_COMP_CODE(le32_to_cpu(event->event_cmd.status))
725 		!= COMP_SUCCESS);
726 
727 	udev->slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->event_cmd.flags));
728 
729 	xhci_acknowledge_event(ctrl);
730 
731 	ret = xhci_alloc_virt_device(ctrl, udev->slot_id);
732 	if (ret < 0) {
733 		/*
734 		 * TODO: Unsuccessful Address Device command shall leave
735 		 * the slot in default. So, issue Disable Slot command now.
736 		 */
737 		puts("Could not allocate xHCI USB device data structures\n");
738 		return ret;
739 	}
740 
741 	return 0;
742 }
743 
744 #ifndef CONFIG_DM_USB
745 int usb_alloc_device(struct usb_device *udev)
746 {
747 	return _xhci_alloc_device(udev);
748 }
749 #endif
750 
751 /*
752  * Full speed devices may have a max packet size greater than 8 bytes, but the
753  * USB core doesn't know that until it reads the first 8 bytes of the
754  * descriptor.  If the usb_device's max packet size changes after that point,
755  * we need to issue an evaluate context command and wait on it.
756  *
757  * @param udev	pointer to the Device Data Structure
758  * @return returns the status of the xhci_configure_endpoints
759  */
760 int xhci_check_maxpacket(struct usb_device *udev)
761 {
762 	struct xhci_ctrl *ctrl = xhci_get_ctrl(udev);
763 	unsigned int slot_id = udev->slot_id;
764 	int ep_index = 0;	/* control endpoint */
765 	struct xhci_container_ctx *in_ctx;
766 	struct xhci_container_ctx *out_ctx;
767 	struct xhci_input_control_ctx *ctrl_ctx;
768 	struct xhci_ep_ctx *ep_ctx;
769 	int max_packet_size;
770 	int hw_max_packet_size;
771 	int ret = 0;
772 
773 	out_ctx = ctrl->devs[slot_id]->out_ctx;
774 	xhci_inval_cache((uintptr_t)out_ctx->bytes, out_ctx->size);
775 
776 	ep_ctx = xhci_get_ep_ctx(ctrl, out_ctx, ep_index);
777 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
778 	max_packet_size = udev->epmaxpacketin[0];
779 	if (hw_max_packet_size != max_packet_size) {
780 		debug("Max Packet Size for ep 0 changed.\n");
781 		debug("Max packet size in usb_device = %d\n", max_packet_size);
782 		debug("Max packet size in xHCI HW = %d\n", hw_max_packet_size);
783 		debug("Issuing evaluate context command.\n");
784 
785 		/* Set up the modified control endpoint 0 */
786 		xhci_endpoint_copy(ctrl, ctrl->devs[slot_id]->in_ctx,
787 				ctrl->devs[slot_id]->out_ctx, ep_index);
788 		in_ctx = ctrl->devs[slot_id]->in_ctx;
789 		ep_ctx = xhci_get_ep_ctx(ctrl, in_ctx, ep_index);
790 		ep_ctx->ep_info2 &= cpu_to_le32(~((0xffff & MAX_PACKET_MASK)
791 						<< MAX_PACKET_SHIFT));
792 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
793 
794 		/*
795 		 * Set up the input context flags for the command
796 		 * FIXME: This won't work if a non-default control endpoint
797 		 * changes max packet sizes.
798 		 */
799 		ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
800 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
801 		ctrl_ctx->drop_flags = 0;
802 
803 		ret = xhci_configure_endpoints(udev, true);
804 	}
805 	return ret;
806 }
807 
808 /**
809  * Clears the Change bits of the Port Status Register
810  *
811  * @param wValue	request value
812  * @param wIndex	request index
813  * @param addr		address of posrt status register
814  * @param port_status	state of port status register
815  * @return none
816  */
817 static void xhci_clear_port_change_bit(u16 wValue,
818 		u16 wIndex, volatile uint32_t *addr, u32 port_status)
819 {
820 	char *port_change_bit;
821 	u32 status;
822 
823 	switch (wValue) {
824 	case USB_PORT_FEAT_C_RESET:
825 		status = PORT_RC;
826 		port_change_bit = "reset";
827 		break;
828 	case USB_PORT_FEAT_C_CONNECTION:
829 		status = PORT_CSC;
830 		port_change_bit = "connect";
831 		break;
832 	case USB_PORT_FEAT_C_OVER_CURRENT:
833 		status = PORT_OCC;
834 		port_change_bit = "over-current";
835 		break;
836 	case USB_PORT_FEAT_C_ENABLE:
837 		status = PORT_PEC;
838 		port_change_bit = "enable/disable";
839 		break;
840 	case USB_PORT_FEAT_C_SUSPEND:
841 		status = PORT_PLC;
842 		port_change_bit = "suspend/resume";
843 		break;
844 	default:
845 		/* Should never happen */
846 		return;
847 	}
848 
849 	/* Change bits are all write 1 to clear */
850 	xhci_writel(addr, port_status | status);
851 
852 	port_status = xhci_readl(addr);
853 	debug("clear port %s change, actual port %d status  = 0x%x\n",
854 			port_change_bit, wIndex, port_status);
855 }
856 
857 /**
858  * Save Read Only (RO) bits and save read/write bits where
859  * writing a 0 clears the bit and writing a 1 sets the bit (RWS).
860  * For all other types (RW1S, RW1CS, RW, and RZ), writing a '0' has no effect.
861  *
862  * @param state	state of the Port Status and Control Regsiter
863  * @return a value that would result in the port being in the
864  *	   same state, if the value was written to the port
865  *	   status control register.
866  */
867 static u32 xhci_port_state_to_neutral(u32 state)
868 {
869 	/* Save read-only status and port state */
870 	return (state & XHCI_PORT_RO) | (state & XHCI_PORT_RWS);
871 }
872 
873 /**
874  * Submits the Requests to the XHCI Host Controller
875  *
876  * @param udev pointer to the USB device structure
877  * @param pipe contains the DIR_IN or OUT , devnum
878  * @param buffer buffer to be read/written based on the request
879  * @return returns 0 if successful else -1 on failure
880  */
881 static int xhci_submit_root(struct usb_device *udev, unsigned long pipe,
882 			void *buffer, struct devrequest *req)
883 {
884 	uint8_t tmpbuf[4];
885 	u16 typeReq;
886 	void *srcptr = NULL;
887 	int len, srclen;
888 	uint32_t reg;
889 	volatile uint32_t *status_reg;
890 	struct xhci_ctrl *ctrl = xhci_get_ctrl(udev);
891 	struct xhci_hccr *hccr = ctrl->hccr;
892 	struct xhci_hcor *hcor = ctrl->hcor;
893 	int max_ports = HCS_MAX_PORTS(xhci_readl(&hccr->cr_hcsparams1));
894 
895 	if ((req->requesttype & USB_RT_PORT) &&
896 	    le16_to_cpu(req->index) > max_ports) {
897 		printf("The request port(%d) exceeds maximum port number\n",
898 		       le16_to_cpu(req->index) - 1);
899 		return -EINVAL;
900 	}
901 
902 	status_reg = (volatile uint32_t *)
903 		     (&hcor->portregs[le16_to_cpu(req->index) - 1].or_portsc);
904 	srclen = 0;
905 
906 	typeReq = req->request | req->requesttype << 8;
907 
908 	switch (typeReq) {
909 	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
910 		switch (le16_to_cpu(req->value) >> 8) {
911 		case USB_DT_DEVICE:
912 			debug("USB_DT_DEVICE request\n");
913 			srcptr = &descriptor.device;
914 			srclen = 0x12;
915 			break;
916 		case USB_DT_CONFIG:
917 			debug("USB_DT_CONFIG config\n");
918 			srcptr = &descriptor.config;
919 			srclen = 0x19;
920 			break;
921 		case USB_DT_STRING:
922 			debug("USB_DT_STRING config\n");
923 			switch (le16_to_cpu(req->value) & 0xff) {
924 			case 0:	/* Language */
925 				srcptr = "\4\3\11\4";
926 				srclen = 4;
927 				break;
928 			case 1:	/* Vendor String  */
929 				srcptr = "\16\3U\0-\0B\0o\0o\0t\0";
930 				srclen = 14;
931 				break;
932 			case 2:	/* Product Name */
933 				srcptr = "\52\3X\0H\0C\0I\0 "
934 					 "\0H\0o\0s\0t\0 "
935 					 "\0C\0o\0n\0t\0r\0o\0l\0l\0e\0r\0";
936 				srclen = 42;
937 				break;
938 			default:
939 				printf("unknown value DT_STRING %x\n",
940 					le16_to_cpu(req->value));
941 				goto unknown;
942 			}
943 			break;
944 		default:
945 			printf("unknown value %x\n", le16_to_cpu(req->value));
946 			goto unknown;
947 		}
948 		break;
949 	case USB_REQ_GET_DESCRIPTOR | ((USB_DIR_IN | USB_RT_HUB) << 8):
950 		switch (le16_to_cpu(req->value) >> 8) {
951 		case USB_DT_HUB:
952 		case USB_DT_SS_HUB:
953 			debug("USB_DT_HUB config\n");
954 			srcptr = &descriptor.hub;
955 			srclen = 0x8;
956 			break;
957 		default:
958 			printf("unknown value %x\n", le16_to_cpu(req->value));
959 			goto unknown;
960 		}
961 		break;
962 	case USB_REQ_SET_ADDRESS | (USB_RECIP_DEVICE << 8):
963 		debug("USB_REQ_SET_ADDRESS\n");
964 		ctrl->rootdev = le16_to_cpu(req->value);
965 		break;
966 	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
967 		/* Do nothing */
968 		break;
969 	case USB_REQ_GET_STATUS | ((USB_DIR_IN | USB_RT_HUB) << 8):
970 		tmpbuf[0] = 1;	/* USB_STATUS_SELFPOWERED */
971 		tmpbuf[1] = 0;
972 		srcptr = tmpbuf;
973 		srclen = 2;
974 		break;
975 	case USB_REQ_GET_STATUS | ((USB_RT_PORT | USB_DIR_IN) << 8):
976 		memset(tmpbuf, 0, 4);
977 		reg = xhci_readl(status_reg);
978 		if (reg & PORT_CONNECT) {
979 			tmpbuf[0] |= USB_PORT_STAT_CONNECTION;
980 			switch (reg & DEV_SPEED_MASK) {
981 			case XDEV_FS:
982 				debug("SPEED = FULLSPEED\n");
983 				break;
984 			case XDEV_LS:
985 				debug("SPEED = LOWSPEED\n");
986 				tmpbuf[1] |= USB_PORT_STAT_LOW_SPEED >> 8;
987 				break;
988 			case XDEV_HS:
989 				debug("SPEED = HIGHSPEED\n");
990 				tmpbuf[1] |= USB_PORT_STAT_HIGH_SPEED >> 8;
991 				break;
992 			case XDEV_SS:
993 				debug("SPEED = SUPERSPEED\n");
994 				tmpbuf[1] |= USB_PORT_STAT_SUPER_SPEED >> 8;
995 				break;
996 			}
997 		}
998 		if (reg & PORT_PE)
999 			tmpbuf[0] |= USB_PORT_STAT_ENABLE;
1000 		if ((reg & PORT_PLS_MASK) == XDEV_U3)
1001 			tmpbuf[0] |= USB_PORT_STAT_SUSPEND;
1002 		if (reg & PORT_OC)
1003 			tmpbuf[0] |= USB_PORT_STAT_OVERCURRENT;
1004 		if (reg & PORT_RESET)
1005 			tmpbuf[0] |= USB_PORT_STAT_RESET;
1006 		if (reg & PORT_POWER)
1007 			/*
1008 			 * XXX: This Port power bit (for USB 3.0 hub)
1009 			 * we are faking in USB 2.0 hub port status;
1010 			 * since there's a change in bit positions in
1011 			 * two:
1012 			 * USB 2.0 port status PP is at position[8]
1013 			 * USB 3.0 port status PP is at position[9]
1014 			 * So, we are still keeping it at position [8]
1015 			 */
1016 			tmpbuf[1] |= USB_PORT_STAT_POWER >> 8;
1017 		if (reg & PORT_CSC)
1018 			tmpbuf[2] |= USB_PORT_STAT_C_CONNECTION;
1019 		if (reg & PORT_PEC)
1020 			tmpbuf[2] |= USB_PORT_STAT_C_ENABLE;
1021 		if (reg & PORT_OCC)
1022 			tmpbuf[2] |= USB_PORT_STAT_C_OVERCURRENT;
1023 		if (reg & PORT_RC)
1024 			tmpbuf[2] |= USB_PORT_STAT_C_RESET;
1025 
1026 		srcptr = tmpbuf;
1027 		srclen = 4;
1028 		break;
1029 	case USB_REQ_SET_FEATURE | ((USB_DIR_OUT | USB_RT_PORT) << 8):
1030 		reg = xhci_readl(status_reg);
1031 		reg = xhci_port_state_to_neutral(reg);
1032 		switch (le16_to_cpu(req->value)) {
1033 		case USB_PORT_FEAT_ENABLE:
1034 			reg |= PORT_PE;
1035 			xhci_writel(status_reg, reg);
1036 			break;
1037 		case USB_PORT_FEAT_POWER:
1038 			reg |= PORT_POWER;
1039 			xhci_writel(status_reg, reg);
1040 			break;
1041 		case USB_PORT_FEAT_RESET:
1042 			reg |= PORT_RESET;
1043 			xhci_writel(status_reg, reg);
1044 			break;
1045 		default:
1046 			printf("unknown feature %x\n", le16_to_cpu(req->value));
1047 			goto unknown;
1048 		}
1049 		break;
1050 	case USB_REQ_CLEAR_FEATURE | ((USB_DIR_OUT | USB_RT_PORT) << 8):
1051 		reg = xhci_readl(status_reg);
1052 		reg = xhci_port_state_to_neutral(reg);
1053 		switch (le16_to_cpu(req->value)) {
1054 		case USB_PORT_FEAT_ENABLE:
1055 			reg &= ~PORT_PE;
1056 			break;
1057 		case USB_PORT_FEAT_POWER:
1058 			reg &= ~PORT_POWER;
1059 			break;
1060 		case USB_PORT_FEAT_C_RESET:
1061 		case USB_PORT_FEAT_C_CONNECTION:
1062 		case USB_PORT_FEAT_C_OVER_CURRENT:
1063 		case USB_PORT_FEAT_C_ENABLE:
1064 			xhci_clear_port_change_bit((le16_to_cpu(req->value)),
1065 							le16_to_cpu(req->index),
1066 							status_reg, reg);
1067 			break;
1068 		default:
1069 			printf("unknown feature %x\n", le16_to_cpu(req->value));
1070 			goto unknown;
1071 		}
1072 		xhci_writel(status_reg, reg);
1073 		break;
1074 	default:
1075 		puts("Unknown request\n");
1076 		goto unknown;
1077 	}
1078 
1079 	debug("scrlen = %d\n req->length = %d\n",
1080 		srclen, le16_to_cpu(req->length));
1081 
1082 	len = min(srclen, (int)le16_to_cpu(req->length));
1083 
1084 	if (srcptr != NULL && len > 0)
1085 		memcpy(buffer, srcptr, len);
1086 	else
1087 		debug("Len is 0\n");
1088 
1089 	udev->act_len = len;
1090 	udev->status = 0;
1091 
1092 	return 0;
1093 
1094 unknown:
1095 	udev->act_len = 0;
1096 	udev->status = USB_ST_STALLED;
1097 
1098 	return -ENODEV;
1099 }
1100 
1101 /**
1102  * Submits the INT request to XHCI Host cotroller
1103  *
1104  * @param udev	pointer to the USB device
1105  * @param pipe		contains the DIR_IN or OUT , devnum
1106  * @param buffer	buffer to be read/written based on the request
1107  * @param length	length of the buffer
1108  * @param interval	interval of the interrupt
1109  * @return 0
1110  */
1111 static int _xhci_submit_int_msg(struct usb_device *udev, unsigned long pipe,
1112 				void *buffer, int length, int interval)
1113 {
1114 	if (usb_pipetype(pipe) != PIPE_INTERRUPT) {
1115 		printf("non-interrupt pipe (type=%lu)", usb_pipetype(pipe));
1116 		return -EINVAL;
1117 	}
1118 
1119 	/*
1120 	 * xHCI uses normal TRBs for both bulk and interrupt. When the
1121 	 * interrupt endpoint is to be serviced, the xHC will consume
1122 	 * (at most) one TD. A TD (comprised of sg list entries) can
1123 	 * take several service intervals to transmit.
1124 	 */
1125 	return xhci_bulk_tx(udev, pipe, length, buffer);
1126 }
1127 
1128 /**
1129  * submit the BULK type of request to the USB Device
1130  *
1131  * @param udev	pointer to the USB device
1132  * @param pipe		contains the DIR_IN or OUT , devnum
1133  * @param buffer	buffer to be read/written based on the request
1134  * @param length	length of the buffer
1135  * @return returns 0 if successful else -1 on failure
1136  */
1137 static int _xhci_submit_bulk_msg(struct usb_device *udev, unsigned long pipe,
1138 				 void *buffer, int length)
1139 {
1140 	if (usb_pipetype(pipe) != PIPE_BULK) {
1141 		printf("non-bulk pipe (type=%lu)", usb_pipetype(pipe));
1142 		return -EINVAL;
1143 	}
1144 
1145 	return xhci_bulk_tx(udev, pipe, length, buffer);
1146 }
1147 
1148 /**
1149  * submit the control type of request to the Root hub/Device based on the devnum
1150  *
1151  * @param udev	pointer to the USB device
1152  * @param pipe		contains the DIR_IN or OUT , devnum
1153  * @param buffer	buffer to be read/written based on the request
1154  * @param length	length of the buffer
1155  * @param setup		Request type
1156  * @param root_portnr	Root port number that this device is on
1157  * @return returns 0 if successful else -1 on failure
1158  */
1159 static int _xhci_submit_control_msg(struct usb_device *udev, unsigned long pipe,
1160 				    void *buffer, int length,
1161 				    struct devrequest *setup, int root_portnr)
1162 {
1163 	struct xhci_ctrl *ctrl = xhci_get_ctrl(udev);
1164 	int ret = 0;
1165 
1166 	if (usb_pipetype(pipe) != PIPE_CONTROL) {
1167 		printf("non-control pipe (type=%lu)", usb_pipetype(pipe));
1168 		return -EINVAL;
1169 	}
1170 
1171 	if (usb_pipedevice(pipe) == ctrl->rootdev)
1172 		return xhci_submit_root(udev, pipe, buffer, setup);
1173 
1174 	if (setup->request == USB_REQ_SET_ADDRESS &&
1175 	   (setup->requesttype & USB_TYPE_MASK) == USB_TYPE_STANDARD)
1176 		return xhci_address_device(udev, root_portnr);
1177 
1178 	if (setup->request == USB_REQ_SET_CONFIGURATION &&
1179 	   (setup->requesttype & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1180 		ret = xhci_set_configuration(udev);
1181 		if (ret) {
1182 			puts("Failed to configure xHCI endpoint\n");
1183 			return ret;
1184 		}
1185 	}
1186 
1187 	return xhci_ctrl_tx(udev, pipe, setup, length, buffer);
1188 }
1189 
1190 static int xhci_lowlevel_init(struct xhci_ctrl *ctrl)
1191 {
1192 	struct xhci_hccr *hccr;
1193 	struct xhci_hcor *hcor;
1194 	uint32_t val;
1195 	uint32_t val2;
1196 	uint32_t reg;
1197 
1198 	hccr = ctrl->hccr;
1199 	hcor = ctrl->hcor;
1200 	/*
1201 	 * Program the Number of Device Slots Enabled field in the CONFIG
1202 	 * register with the max value of slots the HC can handle.
1203 	 */
1204 	val = (xhci_readl(&hccr->cr_hcsparams1) & HCS_SLOTS_MASK);
1205 	val2 = xhci_readl(&hcor->or_config);
1206 	val |= (val2 & ~HCS_SLOTS_MASK);
1207 	xhci_writel(&hcor->or_config, val);
1208 
1209 	/* initializing xhci data structures */
1210 	if (xhci_mem_init(ctrl, hccr, hcor) < 0)
1211 		return -ENOMEM;
1212 
1213 	reg = xhci_readl(&hccr->cr_hcsparams1);
1214 	descriptor.hub.bNbrPorts = ((reg & HCS_MAX_PORTS_MASK) >>
1215 						HCS_MAX_PORTS_SHIFT);
1216 	printf("Register %x NbrPorts %d\n", reg, descriptor.hub.bNbrPorts);
1217 
1218 	/* Port Indicators */
1219 	reg = xhci_readl(&hccr->cr_hccparams);
1220 	if (HCS_INDICATOR(reg))
1221 		put_unaligned(get_unaligned(&descriptor.hub.wHubCharacteristics)
1222 				| 0x80, &descriptor.hub.wHubCharacteristics);
1223 
1224 	/* Port Power Control */
1225 	if (HCC_PPC(reg))
1226 		put_unaligned(get_unaligned(&descriptor.hub.wHubCharacteristics)
1227 				| 0x01, &descriptor.hub.wHubCharacteristics);
1228 
1229 	if (xhci_start(hcor)) {
1230 		xhci_reset(hcor);
1231 		return -ENODEV;
1232 	}
1233 
1234 	/* Zero'ing IRQ control register and IRQ pending register */
1235 	xhci_writel(&ctrl->ir_set->irq_control, 0x0);
1236 	xhci_writel(&ctrl->ir_set->irq_pending, 0x0);
1237 
1238 	reg = HC_VERSION(xhci_readl(&hccr->cr_capbase));
1239 	printf("USB XHCI %x.%02x\n", reg >> 8, reg & 0xff);
1240 
1241 	return 0;
1242 }
1243 
1244 static int xhci_lowlevel_stop(struct xhci_ctrl *ctrl)
1245 {
1246 	u32 temp;
1247 
1248 	xhci_reset(ctrl->hcor);
1249 
1250 	debug("// Disabling event ring interrupts\n");
1251 	temp = xhci_readl(&ctrl->hcor->or_usbsts);
1252 	xhci_writel(&ctrl->hcor->or_usbsts, temp & ~STS_EINT);
1253 	temp = xhci_readl(&ctrl->ir_set->irq_pending);
1254 	xhci_writel(&ctrl->ir_set->irq_pending, ER_IRQ_DISABLE(temp));
1255 
1256 	return 0;
1257 }
1258 
1259 #ifndef CONFIG_DM_USB
1260 int submit_control_msg(struct usb_device *udev, unsigned long pipe,
1261 		       void *buffer, int length, struct devrequest *setup)
1262 {
1263 	struct usb_device *hop = udev;
1264 
1265 	if (hop->parent)
1266 		while (hop->parent->parent)
1267 			hop = hop->parent;
1268 
1269 	return _xhci_submit_control_msg(udev, pipe, buffer, length, setup,
1270 					hop->portnr);
1271 }
1272 
1273 int submit_bulk_msg(struct usb_device *udev, unsigned long pipe, void *buffer,
1274 		    int length)
1275 {
1276 	return _xhci_submit_bulk_msg(udev, pipe, buffer, length);
1277 }
1278 
1279 int submit_int_msg(struct usb_device *udev, unsigned long pipe, void *buffer,
1280 		   int length, int interval)
1281 {
1282 	return _xhci_submit_int_msg(udev, pipe, buffer, length, interval);
1283 }
1284 
1285 /**
1286  * Intialises the XHCI host controller
1287  * and allocates the necessary data structures
1288  *
1289  * @param index	index to the host controller data structure
1290  * @return pointer to the intialised controller
1291  */
1292 int usb_lowlevel_init(int index, enum usb_init_type init, void **controller)
1293 {
1294 	struct xhci_hccr *hccr;
1295 	struct xhci_hcor *hcor;
1296 	struct xhci_ctrl *ctrl;
1297 	int ret;
1298 
1299 	*controller = NULL;
1300 
1301 	if (xhci_hcd_init(index, &hccr, (struct xhci_hcor **)&hcor) != 0)
1302 		return -ENODEV;
1303 
1304 	if (xhci_reset(hcor) != 0)
1305 		return -ENODEV;
1306 
1307 	ctrl = &xhcic[index];
1308 
1309 	ctrl->hccr = hccr;
1310 	ctrl->hcor = hcor;
1311 
1312 	ret = xhci_lowlevel_init(ctrl);
1313 
1314 	if (ret) {
1315 		ctrl->hccr = NULL;
1316 		ctrl->hcor = NULL;
1317 	} else {
1318 		*controller = &xhcic[index];
1319 	}
1320 
1321 	return ret;
1322 }
1323 
1324 /**
1325  * Stops the XHCI host controller
1326  * and cleans up all the related data structures
1327  *
1328  * @param index	index to the host controller data structure
1329  * @return none
1330  */
1331 int usb_lowlevel_stop(int index)
1332 {
1333 	struct xhci_ctrl *ctrl = (xhcic + index);
1334 
1335 	if (ctrl->hcor) {
1336 		xhci_lowlevel_stop(ctrl);
1337 		xhci_hcd_stop(index);
1338 		xhci_cleanup(ctrl);
1339 	}
1340 
1341 	return 0;
1342 }
1343 #endif /* CONFIG_DM_USB */
1344 
1345 #ifdef CONFIG_DM_USB
1346 
1347 static int xhci_submit_control_msg(struct udevice *dev, struct usb_device *udev,
1348 				   unsigned long pipe, void *buffer, int length,
1349 				   struct devrequest *setup)
1350 {
1351 	struct usb_device *uhop;
1352 	struct udevice *hub;
1353 	int root_portnr = 0;
1354 
1355 	debug("%s: dev='%s', udev=%p, udev->dev='%s', portnr=%d\n", __func__,
1356 	      dev->name, udev, udev->dev->name, udev->portnr);
1357 	hub = udev->dev;
1358 	if (device_get_uclass_id(hub) == UCLASS_USB_HUB) {
1359 		/* Figure out our port number on the root hub */
1360 		if (usb_hub_is_root_hub(hub)) {
1361 			root_portnr = udev->portnr;
1362 		} else {
1363 			while (!usb_hub_is_root_hub(hub->parent))
1364 				hub = hub->parent;
1365 			uhop = dev_get_parent_priv(hub);
1366 			root_portnr = uhop->portnr;
1367 		}
1368 	}
1369 /*
1370 	struct usb_device *hop = udev;
1371 
1372 	if (hop->parent)
1373 		while (hop->parent->parent)
1374 			hop = hop->parent;
1375 */
1376 	return _xhci_submit_control_msg(udev, pipe, buffer, length, setup,
1377 					root_portnr);
1378 }
1379 
1380 static int xhci_submit_bulk_msg(struct udevice *dev, struct usb_device *udev,
1381 				unsigned long pipe, void *buffer, int length)
1382 {
1383 	debug("%s: dev='%s', udev=%p\n", __func__, dev->name, udev);
1384 	return _xhci_submit_bulk_msg(udev, pipe, buffer, length);
1385 }
1386 
1387 static int xhci_submit_int_msg(struct udevice *dev, struct usb_device *udev,
1388 			       unsigned long pipe, void *buffer, int length,
1389 			       int interval)
1390 {
1391 	debug("%s: dev='%s', udev=%p\n", __func__, dev->name, udev);
1392 	return _xhci_submit_int_msg(udev, pipe, buffer, length, interval);
1393 }
1394 
1395 static int xhci_alloc_device(struct udevice *dev, struct usb_device *udev)
1396 {
1397 	debug("%s: dev='%s', udev=%p\n", __func__, dev->name, udev);
1398 	return _xhci_alloc_device(udev);
1399 }
1400 
1401 static int xhci_update_hub_device(struct udevice *dev, struct usb_device *udev)
1402 {
1403 	struct xhci_ctrl *ctrl = dev_get_priv(dev);
1404 	struct usb_hub_device *hub = dev_get_uclass_priv(udev->dev);
1405 	struct xhci_virt_device *virt_dev;
1406 	struct xhci_input_control_ctx *ctrl_ctx;
1407 	struct xhci_container_ctx *out_ctx;
1408 	struct xhci_container_ctx *in_ctx;
1409 	struct xhci_slot_ctx *slot_ctx;
1410 	int slot_id = udev->slot_id;
1411 	unsigned think_time;
1412 
1413 	debug("%s: dev='%s', udev=%p\n", __func__, dev->name, udev);
1414 
1415 	/* Ignore root hubs */
1416 	if (usb_hub_is_root_hub(udev->dev))
1417 		return 0;
1418 
1419 	virt_dev = ctrl->devs[slot_id];
1420 	BUG_ON(!virt_dev);
1421 
1422 	out_ctx = virt_dev->out_ctx;
1423 	in_ctx = virt_dev->in_ctx;
1424 
1425 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1426 	/* Initialize the input context control */
1427 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
1428 	ctrl_ctx->drop_flags = 0;
1429 
1430 	xhci_inval_cache((uintptr_t)out_ctx->bytes, out_ctx->size);
1431 
1432 	/* slot context */
1433 	xhci_slot_copy(ctrl, in_ctx, out_ctx);
1434 	slot_ctx = xhci_get_slot_ctx(ctrl, in_ctx);
1435 
1436 	/* Update hub related fields */
1437 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
1438 	if (hub->tt.multi && udev->speed == USB_SPEED_HIGH)
1439 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1440 	slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(udev->maxchild));
1441 	/*
1442 	 * Set TT think time - convert from ns to FS bit times.
1443 	 * Note 8 FS bit times == (8 bits / 12000000 bps) ~= 666ns
1444 	 *
1445 	 * 0 =  8 FS bit times, 1 = 16 FS bit times,
1446 	 * 2 = 24 FS bit times, 3 = 32 FS bit times.
1447 	 *
1448 	 * This field shall be 0 if the device is not a high-spped hub.
1449 	 */
1450 	think_time = hub->tt.think_time;
1451 	if (think_time != 0)
1452 		think_time = (think_time / 666) - 1;
1453 	if (udev->speed == USB_SPEED_HIGH)
1454 		slot_ctx->tt_info |= cpu_to_le32(TT_THINK_TIME(think_time));
1455 
1456 	return xhci_configure_endpoints(udev, false);
1457 }
1458 
1459 static int xhci_get_max_xfer_size(struct udevice *dev, size_t *size)
1460 {
1461 	/*
1462 	 * xHCD allocates one segment which includes 64 TRBs for each endpoint
1463 	 * and the last TRB in this segment is configured as a link TRB to form
1464 	 * a TRB ring. Each TRB can transfer up to 64K bytes, however data
1465 	 * buffers referenced by transfer TRBs shall not span 64KB boundaries.
1466 	 * Hence the maximum number of TRBs we can use in one transfer is 62.
1467 	 */
1468 	*size = (TRBS_PER_SEGMENT - 2) * TRB_MAX_BUFF_SIZE;
1469 
1470 	return 0;
1471 }
1472 
1473 int xhci_register(struct udevice *dev, struct xhci_hccr *hccr,
1474 		  struct xhci_hcor *hcor)
1475 {
1476 	struct xhci_ctrl *ctrl = dev_get_priv(dev);
1477 	struct usb_bus_priv *priv = dev_get_uclass_priv(dev);
1478 	int ret;
1479 
1480 	debug("%s: dev='%s', ctrl=%p, hccr=%p, hcor=%p\n", __func__, dev->name,
1481 	      ctrl, hccr, hcor);
1482 
1483 	ctrl->dev = dev;
1484 
1485 	/*
1486 	 * XHCI needs to issue a Address device command to setup
1487 	 * proper device context structures, before it can interact
1488 	 * with the device. So a get_descriptor will fail before any
1489 	 * of that is done for XHCI unlike EHCI.
1490 	 */
1491 	priv->desc_before_addr = false;
1492 
1493 	ret = xhci_reset(hcor);
1494 	if (ret)
1495 		goto err;
1496 
1497 	ctrl->hccr = hccr;
1498 	ctrl->hcor = hcor;
1499 	ret = xhci_lowlevel_init(ctrl);
1500 	if (ret)
1501 		goto err;
1502 
1503 	return 0;
1504 err:
1505 	free(ctrl);
1506 	debug("%s: failed, ret=%d\n", __func__, ret);
1507 	return ret;
1508 }
1509 
1510 int xhci_deregister(struct udevice *dev)
1511 {
1512 	struct xhci_ctrl *ctrl = dev_get_priv(dev);
1513 
1514 	xhci_lowlevel_stop(ctrl);
1515 	xhci_cleanup(ctrl);
1516 
1517 	return 0;
1518 }
1519 
1520 struct dm_usb_ops xhci_usb_ops = {
1521 	.control = xhci_submit_control_msg,
1522 	.bulk = xhci_submit_bulk_msg,
1523 	.interrupt = xhci_submit_int_msg,
1524 	.alloc_device = xhci_alloc_device,
1525 	.update_hub_device = xhci_update_hub_device,
1526 	.get_max_xfer_size  = xhci_get_max_xfer_size,
1527 };
1528 
1529 #endif
1530