xref: /openbmc/u-boot/drivers/usb/host/xhci-mem.c (revision 1f4e25780a827de9526b5f60b8a574b1e4f45b9c)
1 /*
2  * USB HOST XHCI Controller stack
3  *
4  * Based on xHCI host controller driver in linux-kernel
5  * by Sarah Sharp.
6  *
7  * Copyright (C) 2008 Intel Corp.
8  * Author: Sarah Sharp
9  *
10  * Copyright (C) 2013 Samsung Electronics Co.Ltd
11  * Authors: Vivek Gautam <gautam.vivek@samsung.com>
12  *	    Vikas Sajjan <vikas.sajjan@samsung.com>
13  *
14  * SPDX-License-Identifier:	GPL-2.0+
15  */
16 
17 #include <common.h>
18 #include <dm.h>
19 #include <asm/byteorder.h>
20 #include <usb.h>
21 #include <malloc.h>
22 #include <asm/cache.h>
23 #include <linux/errno.h>
24 
25 #include "xhci.h"
26 
27 #define CACHELINE_SIZE		CONFIG_SYS_CACHELINE_SIZE
28 /**
29  * flushes the address passed till the length
30  *
31  * @param addr	pointer to memory region to be flushed
32  * @param len	the length of the cache line to be flushed
33  * @return none
34  */
35 void xhci_flush_cache(uintptr_t addr, u32 len)
36 {
37 	BUG_ON((void *)addr == NULL || len == 0);
38 
39 	flush_dcache_range(addr & ~(CACHELINE_SIZE - 1),
40 				ALIGN(addr + len, CACHELINE_SIZE));
41 }
42 
43 /**
44  * invalidates the address passed till the length
45  *
46  * @param addr	pointer to memory region to be invalidates
47  * @param len	the length of the cache line to be invalidated
48  * @return none
49  */
50 void xhci_inval_cache(uintptr_t addr, u32 len)
51 {
52 	BUG_ON((void *)addr == NULL || len == 0);
53 
54 	invalidate_dcache_range(addr & ~(CACHELINE_SIZE - 1),
55 				ALIGN(addr + len, CACHELINE_SIZE));
56 }
57 
58 
59 /**
60  * frees the "segment" pointer passed
61  *
62  * @param ptr	pointer to "segement" to be freed
63  * @return none
64  */
65 static void xhci_segment_free(struct xhci_segment *seg)
66 {
67 	free(seg->trbs);
68 	seg->trbs = NULL;
69 
70 	free(seg);
71 }
72 
73 /**
74  * frees the "ring" pointer passed
75  *
76  * @param ptr	pointer to "ring" to be freed
77  * @return none
78  */
79 static void xhci_ring_free(struct xhci_ring *ring)
80 {
81 	struct xhci_segment *seg;
82 	struct xhci_segment *first_seg;
83 
84 	BUG_ON(!ring);
85 
86 	first_seg = ring->first_seg;
87 	seg = first_seg->next;
88 	while (seg != first_seg) {
89 		struct xhci_segment *next = seg->next;
90 		xhci_segment_free(seg);
91 		seg = next;
92 	}
93 	xhci_segment_free(first_seg);
94 
95 	free(ring);
96 }
97 
98 /**
99  * Free the scratchpad buffer array and scratchpad buffers
100  *
101  * @ctrl	host controller data structure
102  * @return	none
103  */
104 static void xhci_scratchpad_free(struct xhci_ctrl *ctrl)
105 {
106 	if (!ctrl->scratchpad)
107 		return;
108 
109 	ctrl->dcbaa->dev_context_ptrs[0] = 0;
110 
111 	free((void *)(uintptr_t)ctrl->scratchpad->sp_array[0]);
112 	free(ctrl->scratchpad->sp_array);
113 	free(ctrl->scratchpad);
114 	ctrl->scratchpad = NULL;
115 }
116 
117 /**
118  * frees the "xhci_container_ctx" pointer passed
119  *
120  * @param ptr	pointer to "xhci_container_ctx" to be freed
121  * @return none
122  */
123 static void xhci_free_container_ctx(struct xhci_container_ctx *ctx)
124 {
125 	free(ctx->bytes);
126 	free(ctx);
127 }
128 
129 /**
130  * frees the virtual devices for "xhci_ctrl" pointer passed
131  *
132  * @param ptr	pointer to "xhci_ctrl" whose virtual devices are to be freed
133  * @return none
134  */
135 static void xhci_free_virt_devices(struct xhci_ctrl *ctrl)
136 {
137 	int i;
138 	int slot_id;
139 	struct xhci_virt_device *virt_dev;
140 
141 	/*
142 	 * refactored here to loop through all virt_dev
143 	 * Slot ID 0 is reserved
144 	 */
145 	for (slot_id = 0; slot_id < MAX_HC_SLOTS; slot_id++) {
146 		virt_dev = ctrl->devs[slot_id];
147 		if (!virt_dev)
148 			continue;
149 
150 		ctrl->dcbaa->dev_context_ptrs[slot_id] = 0;
151 
152 		for (i = 0; i < 31; ++i)
153 			if (virt_dev->eps[i].ring)
154 				xhci_ring_free(virt_dev->eps[i].ring);
155 
156 		if (virt_dev->in_ctx)
157 			xhci_free_container_ctx(virt_dev->in_ctx);
158 		if (virt_dev->out_ctx)
159 			xhci_free_container_ctx(virt_dev->out_ctx);
160 
161 		free(virt_dev);
162 		/* make sure we are pointing to NULL */
163 		ctrl->devs[slot_id] = NULL;
164 	}
165 }
166 
167 /**
168  * frees all the memory allocated
169  *
170  * @param ptr	pointer to "xhci_ctrl" to be cleaned up
171  * @return none
172  */
173 void xhci_cleanup(struct xhci_ctrl *ctrl)
174 {
175 	xhci_ring_free(ctrl->event_ring);
176 	xhci_ring_free(ctrl->cmd_ring);
177 	xhci_scratchpad_free(ctrl);
178 	xhci_free_virt_devices(ctrl);
179 	free(ctrl->erst.entries);
180 	free(ctrl->dcbaa);
181 	memset(ctrl, '\0', sizeof(struct xhci_ctrl));
182 }
183 
184 /**
185  * Malloc the aligned memory
186  *
187  * @param size	size of memory to be allocated
188  * @return allocates the memory and returns the aligned pointer
189  */
190 static void *xhci_malloc(unsigned int size)
191 {
192 	void *ptr;
193 	size_t cacheline_size = max(XHCI_ALIGNMENT, CACHELINE_SIZE);
194 
195 	ptr = memalign(cacheline_size, ALIGN(size, cacheline_size));
196 	BUG_ON(!ptr);
197 	memset(ptr, '\0', size);
198 
199 	xhci_flush_cache((uintptr_t)ptr, size);
200 
201 	return ptr;
202 }
203 
204 /**
205  * Make the prev segment point to the next segment.
206  * Change the last TRB in the prev segment to be a Link TRB which points to the
207  * address of the next segment.  The caller needs to set any Link TRB
208  * related flags, such as End TRB, Toggle Cycle, and no snoop.
209  *
210  * @param prev	pointer to the previous segment
211  * @param next	pointer to the next segment
212  * @param link_trbs	flag to indicate whether to link the trbs or NOT
213  * @return none
214  */
215 static void xhci_link_segments(struct xhci_segment *prev,
216 				struct xhci_segment *next, bool link_trbs)
217 {
218 	u32 val;
219 	u64 val_64 = 0;
220 
221 	if (!prev || !next)
222 		return;
223 	prev->next = next;
224 	if (link_trbs) {
225 		val_64 = (uintptr_t)next->trbs;
226 		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = val_64;
227 
228 		/*
229 		 * Set the last TRB in the segment to
230 		 * have a TRB type ID of Link TRB
231 		 */
232 		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
233 		val &= ~TRB_TYPE_BITMASK;
234 		val |= (TRB_LINK << TRB_TYPE_SHIFT);
235 
236 		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
237 	}
238 }
239 
240 /**
241  * Initialises the Ring's enqueue,dequeue,enq_seg pointers
242  *
243  * @param ring	pointer to the RING to be intialised
244  * @return none
245  */
246 static void xhci_initialize_ring_info(struct xhci_ring *ring)
247 {
248 	/*
249 	 * The ring is empty, so the enqueue pointer == dequeue pointer
250 	 */
251 	ring->enqueue = ring->first_seg->trbs;
252 	ring->enq_seg = ring->first_seg;
253 	ring->dequeue = ring->enqueue;
254 	ring->deq_seg = ring->first_seg;
255 
256 	/*
257 	 * The ring is initialized to 0. The producer must write 1 to the
258 	 * cycle bit to handover ownership of the TRB, so PCS = 1.
259 	 * The consumer must compare CCS to the cycle bit to
260 	 * check ownership, so CCS = 1.
261 	 */
262 	ring->cycle_state = 1;
263 }
264 
265 /**
266  * Allocates a generic ring segment from the ring pool, sets the dma address,
267  * initializes the segment to zero, and sets the private next pointer to NULL.
268  * Section 4.11.1.1:
269  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
270  *
271  * @param	none
272  * @return pointer to the newly allocated SEGMENT
273  */
274 static struct xhci_segment *xhci_segment_alloc(void)
275 {
276 	struct xhci_segment *seg;
277 
278 	seg = (struct xhci_segment *)malloc(sizeof(struct xhci_segment));
279 	BUG_ON(!seg);
280 
281 	seg->trbs = (union xhci_trb *)xhci_malloc(SEGMENT_SIZE);
282 
283 	seg->next = NULL;
284 
285 	return seg;
286 }
287 
288 /**
289  * Create a new ring with zero or more segments.
290  * TODO: current code only uses one-time-allocated single-segment rings
291  * of 1KB anyway, so we might as well get rid of all the segment and
292  * linking code (and maybe increase the size a bit, e.g. 4KB).
293  *
294  *
295  * Link each segment together into a ring.
296  * Set the end flag and the cycle toggle bit on the last segment.
297  * See section 4.9.2 and figures 15 and 16 of XHCI spec rev1.0.
298  *
299  * @param num_segs	number of segments in the ring
300  * @param link_trbs	flag to indicate whether to link the trbs or NOT
301  * @return pointer to the newly created RING
302  */
303 struct xhci_ring *xhci_ring_alloc(unsigned int num_segs, bool link_trbs)
304 {
305 	struct xhci_ring *ring;
306 	struct xhci_segment *prev;
307 
308 	ring = (struct xhci_ring *)malloc(sizeof(struct xhci_ring));
309 	BUG_ON(!ring);
310 
311 	if (num_segs == 0)
312 		return ring;
313 
314 	ring->first_seg = xhci_segment_alloc();
315 	BUG_ON(!ring->first_seg);
316 
317 	num_segs--;
318 
319 	prev = ring->first_seg;
320 	while (num_segs > 0) {
321 		struct xhci_segment *next;
322 
323 		next = xhci_segment_alloc();
324 		BUG_ON(!next);
325 
326 		xhci_link_segments(prev, next, link_trbs);
327 
328 		prev = next;
329 		num_segs--;
330 	}
331 	xhci_link_segments(prev, ring->first_seg, link_trbs);
332 	if (link_trbs) {
333 		/* See section 4.9.2.1 and 6.4.4.1 */
334 		prev->trbs[TRBS_PER_SEGMENT-1].link.control |=
335 					cpu_to_le32(LINK_TOGGLE);
336 	}
337 	xhci_initialize_ring_info(ring);
338 
339 	return ring;
340 }
341 
342 /**
343  * Set up the scratchpad buffer array and scratchpad buffers
344  *
345  * @ctrl	host controller data structure
346  * @return	-ENOMEM if buffer allocation fails, 0 on success
347  */
348 static int xhci_scratchpad_alloc(struct xhci_ctrl *ctrl)
349 {
350 	struct xhci_hccr *hccr = ctrl->hccr;
351 	struct xhci_hcor *hcor = ctrl->hcor;
352 	struct xhci_scratchpad *scratchpad;
353 	int num_sp;
354 	uint32_t page_size;
355 	void *buf;
356 	int i;
357 
358 	num_sp = HCS_MAX_SCRATCHPAD(xhci_readl(&hccr->cr_hcsparams2));
359 	if (!num_sp)
360 		return 0;
361 
362 	scratchpad = malloc(sizeof(*scratchpad));
363 	if (!scratchpad)
364 		goto fail_sp;
365 	ctrl->scratchpad = scratchpad;
366 
367 	scratchpad->sp_array = xhci_malloc(num_sp * sizeof(u64));
368 	if (!scratchpad->sp_array)
369 		goto fail_sp2;
370 	ctrl->dcbaa->dev_context_ptrs[0] =
371 		cpu_to_le64((uintptr_t)scratchpad->sp_array);
372 
373 	page_size = xhci_readl(&hcor->or_pagesize) & 0xffff;
374 	for (i = 0; i < 16; i++) {
375 		if ((0x1 & page_size) != 0)
376 			break;
377 		page_size = page_size >> 1;
378 	}
379 	BUG_ON(i == 16);
380 
381 	page_size = 1 << (i + 12);
382 	buf = memalign(page_size, num_sp * page_size);
383 	if (!buf)
384 		goto fail_sp3;
385 	memset(buf, '\0', num_sp * page_size);
386 	xhci_flush_cache((uintptr_t)buf, num_sp * page_size);
387 
388 	for (i = 0; i < num_sp; i++) {
389 		uintptr_t ptr = (uintptr_t)buf + i * page_size;
390 		scratchpad->sp_array[i] = cpu_to_le64(ptr);
391 	}
392 
393 	return 0;
394 
395 fail_sp3:
396 	free(scratchpad->sp_array);
397 
398 fail_sp2:
399 	free(scratchpad);
400 	ctrl->scratchpad = NULL;
401 
402 fail_sp:
403 	return -ENOMEM;
404 }
405 
406 /**
407  * Allocates the Container context
408  *
409  * @param ctrl	Host controller data structure
410  * @param type type of XHCI Container Context
411  * @return NULL if failed else pointer to the context on success
412  */
413 static struct xhci_container_ctx
414 		*xhci_alloc_container_ctx(struct xhci_ctrl *ctrl, int type)
415 {
416 	struct xhci_container_ctx *ctx;
417 
418 	ctx = (struct xhci_container_ctx *)
419 		malloc(sizeof(struct xhci_container_ctx));
420 	BUG_ON(!ctx);
421 
422 	BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
423 	ctx->type = type;
424 	ctx->size = (MAX_EP_CTX_NUM + 1) *
425 			CTX_SIZE(readl(&ctrl->hccr->cr_hccparams));
426 	if (type == XHCI_CTX_TYPE_INPUT)
427 		ctx->size += CTX_SIZE(readl(&ctrl->hccr->cr_hccparams));
428 
429 	ctx->bytes = (u8 *)xhci_malloc(ctx->size);
430 
431 	return ctx;
432 }
433 
434 /**
435  * Allocating virtual device
436  *
437  * @param udev	pointer to USB deivce structure
438  * @return 0 on success else -1 on failure
439  */
440 int xhci_alloc_virt_device(struct xhci_ctrl *ctrl, unsigned int slot_id)
441 {
442 	u64 byte_64 = 0;
443 	struct xhci_virt_device *virt_dev;
444 
445 	/* Slot ID 0 is reserved */
446 	if (ctrl->devs[slot_id]) {
447 		printf("Virt dev for slot[%d] already allocated\n", slot_id);
448 		return -EEXIST;
449 	}
450 
451 	ctrl->devs[slot_id] = (struct xhci_virt_device *)
452 					malloc(sizeof(struct xhci_virt_device));
453 
454 	if (!ctrl->devs[slot_id]) {
455 		puts("Failed to allocate virtual device\n");
456 		return -ENOMEM;
457 	}
458 
459 	memset(ctrl->devs[slot_id], 0, sizeof(struct xhci_virt_device));
460 	virt_dev = ctrl->devs[slot_id];
461 
462 	/* Allocate the (output) device context that will be used in the HC. */
463 	virt_dev->out_ctx = xhci_alloc_container_ctx(ctrl,
464 					XHCI_CTX_TYPE_DEVICE);
465 	if (!virt_dev->out_ctx) {
466 		puts("Failed to allocate out context for virt dev\n");
467 		return -ENOMEM;
468 	}
469 
470 	/* Allocate the (input) device context for address device command */
471 	virt_dev->in_ctx = xhci_alloc_container_ctx(ctrl,
472 					XHCI_CTX_TYPE_INPUT);
473 	if (!virt_dev->in_ctx) {
474 		puts("Failed to allocate in context for virt dev\n");
475 		return -ENOMEM;
476 	}
477 
478 	/* Allocate endpoint 0 ring */
479 	virt_dev->eps[0].ring = xhci_ring_alloc(1, true);
480 
481 	byte_64 = (uintptr_t)(virt_dev->out_ctx->bytes);
482 
483 	/* Point to output device context in dcbaa. */
484 	ctrl->dcbaa->dev_context_ptrs[slot_id] = byte_64;
485 
486 	xhci_flush_cache((uintptr_t)&ctrl->dcbaa->dev_context_ptrs[slot_id],
487 			 sizeof(__le64));
488 	return 0;
489 }
490 
491 /**
492  * Allocates the necessary data structures
493  * for XHCI host controller
494  *
495  * @param ctrl	Host controller data structure
496  * @param hccr	pointer to HOST Controller Control Registers
497  * @param hcor	pointer to HOST Controller Operational Registers
498  * @return 0 if successful else -1 on failure
499  */
500 int xhci_mem_init(struct xhci_ctrl *ctrl, struct xhci_hccr *hccr,
501 					struct xhci_hcor *hcor)
502 {
503 	uint64_t val_64;
504 	uint64_t trb_64;
505 	uint32_t val;
506 	unsigned long deq;
507 	int i;
508 	struct xhci_segment *seg;
509 
510 	/* DCBAA initialization */
511 	ctrl->dcbaa = (struct xhci_device_context_array *)
512 			xhci_malloc(sizeof(struct xhci_device_context_array));
513 	if (ctrl->dcbaa == NULL) {
514 		puts("unable to allocate DCBA\n");
515 		return -ENOMEM;
516 	}
517 
518 	val_64 = (uintptr_t)ctrl->dcbaa;
519 	/* Set the pointer in DCBAA register */
520 	xhci_writeq(&hcor->or_dcbaap, val_64);
521 
522 	/* Command ring control pointer register initialization */
523 	ctrl->cmd_ring = xhci_ring_alloc(1, true);
524 
525 	/* Set the address in the Command Ring Control register */
526 	trb_64 = (uintptr_t)ctrl->cmd_ring->first_seg->trbs;
527 	val_64 = xhci_readq(&hcor->or_crcr);
528 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
529 		(trb_64 & (u64) ~CMD_RING_RSVD_BITS) |
530 		ctrl->cmd_ring->cycle_state;
531 	xhci_writeq(&hcor->or_crcr, val_64);
532 
533 	/* write the address of db register */
534 	val = xhci_readl(&hccr->cr_dboff);
535 	val &= DBOFF_MASK;
536 	ctrl->dba = (struct xhci_doorbell_array *)((char *)hccr + val);
537 
538 	/* write the address of runtime register */
539 	val = xhci_readl(&hccr->cr_rtsoff);
540 	val &= RTSOFF_MASK;
541 	ctrl->run_regs = (struct xhci_run_regs *)((char *)hccr + val);
542 
543 	/* writting the address of ir_set structure */
544 	ctrl->ir_set = &ctrl->run_regs->ir_set[0];
545 
546 	/* Event ring does not maintain link TRB */
547 	ctrl->event_ring = xhci_ring_alloc(ERST_NUM_SEGS, false);
548 	ctrl->erst.entries = (struct xhci_erst_entry *)
549 		xhci_malloc(sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS);
550 
551 	ctrl->erst.num_entries = ERST_NUM_SEGS;
552 
553 	for (val = 0, seg = ctrl->event_ring->first_seg;
554 			val < ERST_NUM_SEGS;
555 			val++) {
556 		trb_64 = 0;
557 		trb_64 = (uintptr_t)seg->trbs;
558 		struct xhci_erst_entry *entry = &ctrl->erst.entries[val];
559 		xhci_writeq(&entry->seg_addr, trb_64);
560 		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
561 		entry->rsvd = 0;
562 		seg = seg->next;
563 	}
564 	xhci_flush_cache((uintptr_t)ctrl->erst.entries,
565 			 ERST_NUM_SEGS * sizeof(struct xhci_erst_entry));
566 
567 	deq = (unsigned long)ctrl->event_ring->dequeue;
568 
569 	/* Update HC event ring dequeue pointer */
570 	xhci_writeq(&ctrl->ir_set->erst_dequeue,
571 				(u64)deq & (u64)~ERST_PTR_MASK);
572 
573 	/* set ERST count with the number of entries in the segment table */
574 	val = xhci_readl(&ctrl->ir_set->erst_size);
575 	val &= ERST_SIZE_MASK;
576 	val |= ERST_NUM_SEGS;
577 	xhci_writel(&ctrl->ir_set->erst_size, val);
578 
579 	/* this is the event ring segment table pointer */
580 	val_64 = xhci_readq(&ctrl->ir_set->erst_base);
581 	val_64 &= ERST_PTR_MASK;
582 	val_64 |= ((uintptr_t)(ctrl->erst.entries) & ~ERST_PTR_MASK);
583 
584 	xhci_writeq(&ctrl->ir_set->erst_base, val_64);
585 
586 	/* set up the scratchpad buffer array and scratchpad buffers */
587 	xhci_scratchpad_alloc(ctrl);
588 
589 	/* initializing the virtual devices to NULL */
590 	for (i = 0; i < MAX_HC_SLOTS; ++i)
591 		ctrl->devs[i] = NULL;
592 
593 	/*
594 	 * Just Zero'ing this register completely,
595 	 * or some spurious Device Notification Events
596 	 * might screw things here.
597 	 */
598 	xhci_writel(&hcor->or_dnctrl, 0x0);
599 
600 	return 0;
601 }
602 
603 /**
604  * Give the input control context for the passed container context
605  *
606  * @param ctx	pointer to the context
607  * @return pointer to the Input control context data
608  */
609 struct xhci_input_control_ctx
610 		*xhci_get_input_control_ctx(struct xhci_container_ctx *ctx)
611 {
612 	BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
613 	return (struct xhci_input_control_ctx *)ctx->bytes;
614 }
615 
616 /**
617  * Give the slot context for the passed container context
618  *
619  * @param ctrl	Host controller data structure
620  * @param ctx	pointer to the context
621  * @return pointer to the slot control context data
622  */
623 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_ctrl *ctrl,
624 				struct xhci_container_ctx *ctx)
625 {
626 	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
627 		return (struct xhci_slot_ctx *)ctx->bytes;
628 
629 	return (struct xhci_slot_ctx *)
630 		(ctx->bytes + CTX_SIZE(readl(&ctrl->hccr->cr_hccparams)));
631 }
632 
633 /**
634  * Gets the EP context from based on the ep_index
635  *
636  * @param ctrl	Host controller data structure
637  * @param ctx	context container
638  * @param ep_index	index of the endpoint
639  * @return pointer to the End point context
640  */
641 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_ctrl *ctrl,
642 				    struct xhci_container_ctx *ctx,
643 				    unsigned int ep_index)
644 {
645 	/* increment ep index by offset of start of ep ctx array */
646 	ep_index++;
647 	if (ctx->type == XHCI_CTX_TYPE_INPUT)
648 		ep_index++;
649 
650 	return (struct xhci_ep_ctx *)
651 		(ctx->bytes +
652 		(ep_index * CTX_SIZE(readl(&ctrl->hccr->cr_hccparams))));
653 }
654 
655 /**
656  * Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
657  * Useful when you want to change one particular aspect of the endpoint
658  * and then issue a configure endpoint command.
659  *
660  * @param ctrl	Host controller data structure
661  * @param in_ctx contains the input context
662  * @param out_ctx contains the input context
663  * @param ep_index index of the end point
664  * @return none
665  */
666 void xhci_endpoint_copy(struct xhci_ctrl *ctrl,
667 			struct xhci_container_ctx *in_ctx,
668 			struct xhci_container_ctx *out_ctx,
669 			unsigned int ep_index)
670 {
671 	struct xhci_ep_ctx *out_ep_ctx;
672 	struct xhci_ep_ctx *in_ep_ctx;
673 
674 	out_ep_ctx = xhci_get_ep_ctx(ctrl, out_ctx, ep_index);
675 	in_ep_ctx = xhci_get_ep_ctx(ctrl, in_ctx, ep_index);
676 
677 	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
678 	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
679 	in_ep_ctx->deq = out_ep_ctx->deq;
680 	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
681 }
682 
683 /**
684  * Copy output xhci_slot_ctx to the input xhci_slot_ctx.
685  * Useful when you want to change one particular aspect of the endpoint
686  * and then issue a configure endpoint command.
687  * Only the context entries field matters, but
688  * we'll copy the whole thing anyway.
689  *
690  * @param ctrl	Host controller data structure
691  * @param in_ctx contains the inpout context
692  * @param out_ctx contains the inpout context
693  * @return none
694  */
695 void xhci_slot_copy(struct xhci_ctrl *ctrl, struct xhci_container_ctx *in_ctx,
696 					struct xhci_container_ctx *out_ctx)
697 {
698 	struct xhci_slot_ctx *in_slot_ctx;
699 	struct xhci_slot_ctx *out_slot_ctx;
700 
701 	in_slot_ctx = xhci_get_slot_ctx(ctrl, in_ctx);
702 	out_slot_ctx = xhci_get_slot_ctx(ctrl, out_ctx);
703 
704 	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
705 	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
706 	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
707 	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
708 }
709 
710 /**
711  * Setup an xHCI virtual device for a Set Address command
712  *
713  * @param udev pointer to the Device Data Structure
714  * @return returns negative value on failure else 0 on success
715  */
716 void xhci_setup_addressable_virt_dev(struct xhci_ctrl *ctrl,
717 				     struct usb_device *udev, int hop_portnr)
718 {
719 	struct xhci_virt_device *virt_dev;
720 	struct xhci_ep_ctx *ep0_ctx;
721 	struct xhci_slot_ctx *slot_ctx;
722 	u32 port_num = 0;
723 	u64 trb_64 = 0;
724 	int slot_id = udev->slot_id;
725 	int speed = udev->speed;
726 	int route = 0;
727 #ifdef CONFIG_DM_USB
728 	struct usb_device *dev = udev;
729 	struct usb_hub_device *hub;
730 #endif
731 
732 	virt_dev = ctrl->devs[slot_id];
733 
734 	BUG_ON(!virt_dev);
735 
736 	/* Extract the EP0 and Slot Ctrl */
737 	ep0_ctx = xhci_get_ep_ctx(ctrl, virt_dev->in_ctx, 0);
738 	slot_ctx = xhci_get_slot_ctx(ctrl, virt_dev->in_ctx);
739 
740 	/* Only the control endpoint is valid - one endpoint context */
741 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
742 
743 #ifdef CONFIG_DM_USB
744 	/* Calculate the route string for this device */
745 	port_num = dev->portnr;
746 	while (!usb_hub_is_root_hub(dev->dev)) {
747 		hub = dev_get_uclass_priv(dev->dev);
748 		/*
749 		 * Each hub in the topology is expected to have no more than
750 		 * 15 ports in order for the route string of a device to be
751 		 * unique. SuperSpeed hubs are restricted to only having 15
752 		 * ports, but FS/LS/HS hubs are not. The xHCI specification
753 		 * says that if the port number the device is greater than 15,
754 		 * that portion of the route string shall be set to 15.
755 		 */
756 		if (port_num > 15)
757 			port_num = 15;
758 		route |= port_num << (hub->hub_depth * 4);
759 		dev = dev_get_parent_priv(dev->dev);
760 		port_num = dev->portnr;
761 		dev = dev_get_parent_priv(dev->dev->parent);
762 	}
763 
764 	debug("route string %x\n", route);
765 #endif
766 	slot_ctx->dev_info |= route;
767 
768 	switch (speed) {
769 	case USB_SPEED_SUPER:
770 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
771 		break;
772 	case USB_SPEED_HIGH:
773 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
774 		break;
775 	case USB_SPEED_FULL:
776 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
777 		break;
778 	case USB_SPEED_LOW:
779 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
780 		break;
781 	default:
782 		/* Speed was set earlier, this shouldn't happen. */
783 		BUG();
784 	}
785 
786 #ifdef CONFIG_DM_USB
787 	/* Set up TT fields to support FS/LS devices */
788 	if (speed == USB_SPEED_LOW || speed == USB_SPEED_FULL) {
789 		dev = dev_get_parent_priv(udev->dev);
790 		if (dev->speed == USB_SPEED_HIGH) {
791 			hub = dev_get_uclass_priv(udev->dev);
792 			if (hub->tt.multi)
793 				slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
794 			slot_ctx->tt_info |= cpu_to_le32(TT_PORT(udev->portnr));
795 			slot_ctx->tt_info |= cpu_to_le32(TT_SLOT(dev->slot_id));
796 		}
797 	}
798 #endif
799 
800 	port_num = hop_portnr;
801 	debug("port_num = %d\n", port_num);
802 
803 	slot_ctx->dev_info2 |=
804 			cpu_to_le32(((port_num & ROOT_HUB_PORT_MASK) <<
805 				ROOT_HUB_PORT_SHIFT));
806 
807 	/* Step 4 - ring already allocated */
808 	/* Step 5 */
809 	ep0_ctx->ep_info2 = cpu_to_le32(CTRL_EP << EP_TYPE_SHIFT);
810 	debug("SPEED = %d\n", speed);
811 
812 	switch (speed) {
813 	case USB_SPEED_SUPER:
814 		ep0_ctx->ep_info2 |= cpu_to_le32(((512 & MAX_PACKET_MASK) <<
815 					MAX_PACKET_SHIFT));
816 		debug("Setting Packet size = 512bytes\n");
817 		break;
818 	case USB_SPEED_HIGH:
819 	/* USB core guesses at a 64-byte max packet first for FS devices */
820 	case USB_SPEED_FULL:
821 		ep0_ctx->ep_info2 |= cpu_to_le32(((64 & MAX_PACKET_MASK) <<
822 					MAX_PACKET_SHIFT));
823 		debug("Setting Packet size = 64bytes\n");
824 		break;
825 	case USB_SPEED_LOW:
826 		ep0_ctx->ep_info2 |= cpu_to_le32(((8 & MAX_PACKET_MASK) <<
827 					MAX_PACKET_SHIFT));
828 		debug("Setting Packet size = 8bytes\n");
829 		break;
830 	default:
831 		/* New speed? */
832 		BUG();
833 	}
834 
835 	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
836 	ep0_ctx->ep_info2 |=
837 			cpu_to_le32(((0 & MAX_BURST_MASK) << MAX_BURST_SHIFT) |
838 			((3 & ERROR_COUNT_MASK) << ERROR_COUNT_SHIFT));
839 
840 	trb_64 = (uintptr_t)virt_dev->eps[0].ring->first_seg->trbs;
841 	ep0_ctx->deq = cpu_to_le64(trb_64 | virt_dev->eps[0].ring->cycle_state);
842 
843 	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
844 
845 	xhci_flush_cache((uintptr_t)ep0_ctx, sizeof(struct xhci_ep_ctx));
846 	xhci_flush_cache((uintptr_t)slot_ctx, sizeof(struct xhci_slot_ctx));
847 }
848