1 /*
2  * Based on drivers/usb/gadget/omap1510_udc.c
3  * TI OMAP1510 USB bus interface driver
4  *
5  * (C) Copyright 2009
6  * Vipin Kumar, ST Micoelectronics, vipin.kumar@st.com.
7  *
8  * SPDX-License-Identifier:	GPL-2.0+
9  */
10 
11 #include <common.h>
12 #include <asm/io.h>
13 
14 #include <usbdevice.h>
15 #include "ep0.h"
16 #include <usb/designware_udc.h>
17 #include <usb/udc.h>
18 #include <asm/arch/hardware.h>
19 
20 #define UDC_INIT_MDELAY		80	/* Device settle delay */
21 
22 /* Some kind of debugging output... */
23 #ifndef DEBUG_DWUSBTTY
24 #define UDCDBG(str)
25 #define UDCDBGA(fmt, args...)
26 #else
27 #define UDCDBG(str) serial_printf(str "\n")
28 #define UDCDBGA(fmt, args...) serial_printf(fmt "\n", ##args)
29 #endif
30 
31 static struct urb *ep0_urb;
32 static struct usb_device_instance *udc_device;
33 
34 static struct plug_regs *const plug_regs_p =
35     (struct plug_regs * const)CONFIG_SYS_PLUG_BASE;
36 static struct udc_regs *const udc_regs_p =
37     (struct udc_regs * const)CONFIG_SYS_USBD_BASE;
38 static struct udc_endp_regs *const outep_regs_p =
39     &((struct udc_regs * const)CONFIG_SYS_USBD_BASE)->out_regs[0];
40 static struct udc_endp_regs *const inep_regs_p =
41     &((struct udc_regs * const)CONFIG_SYS_USBD_BASE)->in_regs[0];
42 
43 /*
44  * udc_state_transition - Write the next packet to TxFIFO.
45  * @initial:	Initial state.
46  * @final:	Final state.
47  *
48  * Helper function to implement device state changes. The device states and
49  * the events that transition between them are:
50  *
51  *				STATE_ATTACHED
52  *				||	/\
53  *				\/	||
54  *	DEVICE_HUB_CONFIGURED			DEVICE_HUB_RESET
55  *				||	/\
56  *				\/	||
57  *				STATE_POWERED
58  *				||	/\
59  *				\/	||
60  *	DEVICE_RESET				DEVICE_POWER_INTERRUPTION
61  *				||	/\
62  *				\/	||
63  *				STATE_DEFAULT
64  *				||	/\
65  *				\/	||
66  *	DEVICE_ADDRESS_ASSIGNED			DEVICE_RESET
67  *				||	/\
68  *				\/	||
69  *				STATE_ADDRESSED
70  *				||	/\
71  *				\/	||
72  *	DEVICE_CONFIGURED			DEVICE_DE_CONFIGURED
73  *				||	/\
74  *				\/	||
75  *				STATE_CONFIGURED
76  *
77  * udc_state_transition transitions up (in the direction from STATE_ATTACHED
78  * to STATE_CONFIGURED) from the specified initial state to the specified final
79  * state, passing through each intermediate state on the way. If the initial
80  * state is at or above (i.e. nearer to STATE_CONFIGURED) the final state, then
81  * no state transitions will take place.
82  *
83  * udc_state_transition also transitions down (in the direction from
84  * STATE_CONFIGURED to STATE_ATTACHED) from the specified initial state to the
85  * specified final state, passing through each intermediate state on the way.
86  * If the initial state is at or below (i.e. nearer to STATE_ATTACHED) the final
87  * state, then no state transitions will take place.
88  *
89  * This function must only be called with interrupts disabled.
90  */
91 static void udc_state_transition(usb_device_state_t initial,
92 				 usb_device_state_t final)
93 {
94 	if (initial < final) {
95 		switch (initial) {
96 		case STATE_ATTACHED:
97 			usbd_device_event_irq(udc_device,
98 					      DEVICE_HUB_CONFIGURED, 0);
99 			if (final == STATE_POWERED)
100 				break;
101 		case STATE_POWERED:
102 			usbd_device_event_irq(udc_device, DEVICE_RESET, 0);
103 			if (final == STATE_DEFAULT)
104 				break;
105 		case STATE_DEFAULT:
106 			usbd_device_event_irq(udc_device,
107 					      DEVICE_ADDRESS_ASSIGNED, 0);
108 			if (final == STATE_ADDRESSED)
109 				break;
110 		case STATE_ADDRESSED:
111 			usbd_device_event_irq(udc_device, DEVICE_CONFIGURED, 0);
112 		case STATE_CONFIGURED:
113 			break;
114 		default:
115 			break;
116 		}
117 	} else if (initial > final) {
118 		switch (initial) {
119 		case STATE_CONFIGURED:
120 			usbd_device_event_irq(udc_device,
121 					      DEVICE_DE_CONFIGURED, 0);
122 			if (final == STATE_ADDRESSED)
123 				break;
124 		case STATE_ADDRESSED:
125 			usbd_device_event_irq(udc_device, DEVICE_RESET, 0);
126 			if (final == STATE_DEFAULT)
127 				break;
128 		case STATE_DEFAULT:
129 			usbd_device_event_irq(udc_device,
130 					      DEVICE_POWER_INTERRUPTION, 0);
131 			if (final == STATE_POWERED)
132 				break;
133 		case STATE_POWERED:
134 			usbd_device_event_irq(udc_device, DEVICE_HUB_RESET, 0);
135 		case STATE_ATTACHED:
136 			break;
137 		default:
138 			break;
139 		}
140 	}
141 }
142 
143 /* Stall endpoint */
144 static void udc_stall_ep(u32 ep_num)
145 {
146 	writel(readl(&inep_regs_p[ep_num].endp_cntl) | ENDP_CNTL_STALL,
147 	       &inep_regs_p[ep_num].endp_cntl);
148 
149 	writel(readl(&outep_regs_p[ep_num].endp_cntl) | ENDP_CNTL_STALL,
150 	       &outep_regs_p[ep_num].endp_cntl);
151 }
152 
153 static void *get_fifo(int ep_num, int in)
154 {
155 	u32 *fifo_ptr = (u32 *)CONFIG_SYS_FIFO_BASE;
156 
157 	switch (ep_num) {
158 	case UDC_EP3:
159 		fifo_ptr += readl(&inep_regs_p[1].endp_bsorfn);
160 		/* break intentionally left out */
161 
162 	case UDC_EP1:
163 		fifo_ptr += readl(&inep_regs_p[0].endp_bsorfn);
164 		/* break intentionally left out */
165 
166 	case UDC_EP0:
167 	default:
168 		if (in) {
169 			fifo_ptr +=
170 			    readl(&outep_regs_p[2].endp_maxpacksize) >> 16;
171 			/* break intentionally left out */
172 		} else {
173 			break;
174 		}
175 
176 	case UDC_EP2:
177 		fifo_ptr += readl(&outep_regs_p[0].endp_maxpacksize) >> 16;
178 		/* break intentionally left out */
179 	}
180 
181 	return (void *)fifo_ptr;
182 }
183 
184 static int usbgetpckfromfifo(int epNum, u8 *bufp, u32 len)
185 {
186 	u8 *fifo_ptr = (u8 *)get_fifo(epNum, 0);
187 	u32 i, nw, nb;
188 	u32 *wrdp;
189 	u8 *bytp;
190 	u32 tmp[128];
191 
192 	if (readl(&udc_regs_p->dev_stat) & DEV_STAT_RXFIFO_EMPTY)
193 		return -1;
194 
195 	nw = len / sizeof(u32);
196 	nb = len % sizeof(u32);
197 
198 	/* use tmp buf if bufp is not word aligned */
199 	if ((int)bufp & 0x3)
200 		wrdp = (u32 *)&tmp[0];
201 	else
202 		wrdp = (u32 *)bufp;
203 
204 	for (i = 0; i < nw; i++) {
205 		writel(readl(fifo_ptr), wrdp);
206 		wrdp++;
207 	}
208 
209 	bytp = (u8 *)wrdp;
210 	for (i = 0; i < nb; i++) {
211 		writeb(readb(fifo_ptr), bytp);
212 		fifo_ptr++;
213 		bytp++;
214 	}
215 	readl(&outep_regs_p[epNum].write_done);
216 
217 	/* copy back tmp buffer to bufp if bufp is not word aligned */
218 	if ((int)bufp & 0x3)
219 		memcpy(bufp, tmp, len);
220 
221 	return 0;
222 }
223 
224 static void usbputpcktofifo(int epNum, u8 *bufp, u32 len)
225 {
226 	u32 i, nw, nb;
227 	u32 *wrdp;
228 	u8 *bytp;
229 	u8 *fifo_ptr = get_fifo(epNum, 1);
230 
231 	nw = len / sizeof(int);
232 	nb = len % sizeof(int);
233 	wrdp = (u32 *)bufp;
234 	for (i = 0; i < nw; i++) {
235 		writel(*wrdp, fifo_ptr);
236 		wrdp++;
237 	}
238 
239 	bytp = (u8 *)wrdp;
240 	for (i = 0; i < nb; i++) {
241 		writeb(*bytp, fifo_ptr);
242 		fifo_ptr++;
243 		bytp++;
244 	}
245 }
246 
247 /*
248  * dw_write_noniso_tx_fifo - Write the next packet to TxFIFO.
249  * @endpoint:		Endpoint pointer.
250  *
251  * If the endpoint has an active tx_urb, then the next packet of data from the
252  * URB is written to the tx FIFO.  The total amount of data in the urb is given
253  * by urb->actual_length.  The maximum amount of data that can be sent in any
254  * one packet is given by endpoint->tx_packetSize.  The number of data bytes
255  * from this URB that have already been transmitted is given by endpoint->sent.
256  * endpoint->last is updated by this routine with the number of data bytes
257  * transmitted in this packet.
258  *
259  */
260 static void dw_write_noniso_tx_fifo(struct usb_endpoint_instance
261 				       *endpoint)
262 {
263 	struct urb *urb = endpoint->tx_urb;
264 	int align;
265 
266 	if (urb) {
267 		u32 last;
268 
269 		UDCDBGA("urb->buffer %p, buffer_length %d, actual_length %d",
270 			urb->buffer, urb->buffer_length, urb->actual_length);
271 
272 		last = min_t(u32, urb->actual_length - endpoint->sent,
273 			     endpoint->tx_packetSize);
274 
275 		if (last) {
276 			u8 *cp = urb->buffer + endpoint->sent;
277 
278 			/*
279 			 * This ensures that USBD packet fifo is accessed
280 			 * - through word aligned pointer or
281 			 * - through non word aligned pointer but only
282 			 *   with a max length to make the next packet
283 			 *   word aligned
284 			 */
285 
286 			align = ((ulong)cp % sizeof(int));
287 			if (align)
288 				last = min(last, sizeof(int) - align);
289 
290 			UDCDBGA("endpoint->sent %d, tx_packetSize %d, last %d",
291 				endpoint->sent, endpoint->tx_packetSize, last);
292 
293 			usbputpcktofifo(endpoint->endpoint_address &
294 					USB_ENDPOINT_NUMBER_MASK, cp, last);
295 		}
296 		endpoint->last = last;
297 	}
298 }
299 
300 /*
301  * Handle SETUP USB interrupt.
302  * This function implements TRM Figure 14-14.
303  */
304 static void dw_udc_setup(struct usb_endpoint_instance *endpoint)
305 {
306 	u8 *datap = (u8 *)&ep0_urb->device_request;
307 	int ep_addr = endpoint->endpoint_address;
308 
309 	UDCDBG("-> Entering device setup");
310 	usbgetpckfromfifo(ep_addr, datap, 8);
311 
312 	/* Try to process setup packet */
313 	if (ep0_recv_setup(ep0_urb)) {
314 		/* Not a setup packet, stall next EP0 transaction */
315 		udc_stall_ep(0);
316 		UDCDBG("can't parse setup packet, still waiting for setup");
317 		return;
318 	}
319 
320 	/* Check direction */
321 	if ((ep0_urb->device_request.bmRequestType & USB_REQ_DIRECTION_MASK)
322 	    == USB_REQ_HOST2DEVICE) {
323 		UDCDBG("control write on EP0");
324 		if (le16_to_cpu(ep0_urb->device_request.wLength)) {
325 			/* Stall this request */
326 			UDCDBG("Stalling unsupported EP0 control write data "
327 			       "stage.");
328 			udc_stall_ep(0);
329 		}
330 	} else {
331 
332 		UDCDBG("control read on EP0");
333 		/*
334 		 * The ep0_recv_setup function has already placed our response
335 		 * packet data in ep0_urb->buffer and the packet length in
336 		 * ep0_urb->actual_length.
337 		 */
338 		endpoint->tx_urb = ep0_urb;
339 		endpoint->sent = 0;
340 		/*
341 		 * Write packet data to the FIFO.  dw_write_noniso_tx_fifo
342 		 * will update endpoint->last with the number of bytes written
343 		 * to the FIFO.
344 		 */
345 		dw_write_noniso_tx_fifo(endpoint);
346 
347 		writel(0x0, &inep_regs_p[ep_addr].write_done);
348 	}
349 
350 	udc_unset_nak(endpoint->endpoint_address);
351 
352 	UDCDBG("<- Leaving device setup");
353 }
354 
355 /*
356  * Handle endpoint 0 RX interrupt
357  */
358 static void dw_udc_ep0_rx(struct usb_endpoint_instance *endpoint)
359 {
360 	u8 dummy[64];
361 
362 	UDCDBG("RX on EP0");
363 
364 	/* Check direction */
365 	if ((ep0_urb->device_request.bmRequestType
366 	     & USB_REQ_DIRECTION_MASK) == USB_REQ_HOST2DEVICE) {
367 		/*
368 		 * This rx interrupt must be for a control write data
369 		 * stage packet.
370 		 *
371 		 * We don't support control write data stages.
372 		 * We should never end up here.
373 		 */
374 
375 		UDCDBG("Stalling unexpected EP0 control write "
376 		       "data stage packet");
377 		udc_stall_ep(0);
378 	} else {
379 		/*
380 		 * This rx interrupt must be for a control read status
381 		 * stage packet.
382 		 */
383 		UDCDBG("ACK on EP0 control read status stage packet");
384 		u32 len = (readl(&outep_regs_p[0].endp_status) >> 11) & 0xfff;
385 		usbgetpckfromfifo(0, dummy, len);
386 	}
387 }
388 
389 /*
390  * Handle endpoint 0 TX interrupt
391  */
392 static void dw_udc_ep0_tx(struct usb_endpoint_instance *endpoint)
393 {
394 	struct usb_device_request *request = &ep0_urb->device_request;
395 	int ep_addr;
396 
397 	UDCDBG("TX on EP0");
398 
399 	/* Check direction */
400 	if ((request->bmRequestType & USB_REQ_DIRECTION_MASK) ==
401 	    USB_REQ_HOST2DEVICE) {
402 		/*
403 		 * This tx interrupt must be for a control write status
404 		 * stage packet.
405 		 */
406 		UDCDBG("ACK on EP0 control write status stage packet");
407 	} else {
408 		/*
409 		 * This tx interrupt must be for a control read data
410 		 * stage packet.
411 		 */
412 		int wLength = le16_to_cpu(request->wLength);
413 
414 		/*
415 		 * Update our count of bytes sent so far in this
416 		 * transfer.
417 		 */
418 		endpoint->sent += endpoint->last;
419 
420 		/*
421 		 * We are finished with this transfer if we have sent
422 		 * all of the bytes in our tx urb (urb->actual_length)
423 		 * unless we need a zero-length terminating packet.  We
424 		 * need a zero-length terminating packet if we returned
425 		 * fewer bytes than were requested (wLength) by the host,
426 		 * and the number of bytes we returned is an exact
427 		 * multiple of the packet size endpoint->tx_packetSize.
428 		 */
429 		if ((endpoint->sent == ep0_urb->actual_length) &&
430 		    ((ep0_urb->actual_length == wLength) ||
431 		     (endpoint->last != endpoint->tx_packetSize))) {
432 			/* Done with control read data stage. */
433 			UDCDBG("control read data stage complete");
434 		} else {
435 			/*
436 			 * We still have another packet of data to send
437 			 * in this control read data stage or else we
438 			 * need a zero-length terminating packet.
439 			 */
440 			UDCDBG("ACK control read data stage packet");
441 			dw_write_noniso_tx_fifo(endpoint);
442 
443 			ep_addr = endpoint->endpoint_address;
444 			writel(0x0, &inep_regs_p[ep_addr].write_done);
445 		}
446 	}
447 }
448 
449 static struct usb_endpoint_instance *dw_find_ep(int ep)
450 {
451 	int i;
452 
453 	for (i = 0; i < udc_device->bus->max_endpoints; i++) {
454 		if ((udc_device->bus->endpoint_array[i].endpoint_address &
455 		     USB_ENDPOINT_NUMBER_MASK) == ep)
456 			return &udc_device->bus->endpoint_array[i];
457 	}
458 	return NULL;
459 }
460 
461 /*
462  * Handle RX transaction on non-ISO endpoint.
463  * The ep argument is a physical endpoint number for a non-ISO IN endpoint
464  * in the range 1 to 15.
465  */
466 static void dw_udc_epn_rx(int ep)
467 {
468 	int nbytes = 0;
469 	struct urb *urb;
470 	struct usb_endpoint_instance *endpoint = dw_find_ep(ep);
471 
472 	if (endpoint) {
473 		urb = endpoint->rcv_urb;
474 
475 		if (urb) {
476 			u8 *cp = urb->buffer + urb->actual_length;
477 
478 			nbytes = (readl(&outep_regs_p[ep].endp_status) >> 11) &
479 			    0xfff;
480 			usbgetpckfromfifo(ep, cp, nbytes);
481 			usbd_rcv_complete(endpoint, nbytes, 0);
482 		}
483 	}
484 }
485 
486 /*
487  * Handle TX transaction on non-ISO endpoint.
488  * The ep argument is a physical endpoint number for a non-ISO IN endpoint
489  * in the range 16 to 30.
490  */
491 static void dw_udc_epn_tx(int ep)
492 {
493 	struct usb_endpoint_instance *endpoint = dw_find_ep(ep);
494 
495 	if (!endpoint)
496 		return;
497 
498 	/*
499 	 * We need to transmit a terminating zero-length packet now if
500 	 * we have sent all of the data in this URB and the transfer
501 	 * size was an exact multiple of the packet size.
502 	 */
503 	if (endpoint->tx_urb &&
504 	    (endpoint->last == endpoint->tx_packetSize) &&
505 	    (endpoint->tx_urb->actual_length - endpoint->sent -
506 	     endpoint->last == 0)) {
507 		/* handle zero length packet here */
508 		writel(0x0, &inep_regs_p[ep].write_done);
509 
510 	}
511 
512 	if (endpoint->tx_urb && endpoint->tx_urb->actual_length) {
513 		/* retire the data that was just sent */
514 		usbd_tx_complete(endpoint);
515 		/*
516 		 * Check to see if we have more data ready to transmit
517 		 * now.
518 		 */
519 		if (endpoint->tx_urb && endpoint->tx_urb->actual_length) {
520 			/* write data to FIFO */
521 			dw_write_noniso_tx_fifo(endpoint);
522 			writel(0x0, &inep_regs_p[ep].write_done);
523 
524 		} else if (endpoint->tx_urb
525 			   && (endpoint->tx_urb->actual_length == 0)) {
526 			/* udc_set_nak(ep); */
527 		}
528 	}
529 }
530 
531 /*
532  * Start of public functions.
533  */
534 
535 /* Called to start packet transmission. */
536 int udc_endpoint_write(struct usb_endpoint_instance *endpoint)
537 {
538 	udc_unset_nak(endpoint->endpoint_address & USB_ENDPOINT_NUMBER_MASK);
539 	return 0;
540 }
541 
542 /* Start to initialize h/w stuff */
543 int udc_init(void)
544 {
545 	int i;
546 	u32 plug_st;
547 
548 	udc_device = NULL;
549 
550 	UDCDBG("starting");
551 
552 	readl(&plug_regs_p->plug_pending);
553 
554 	for (i = 0; i < UDC_INIT_MDELAY; i++)
555 		udelay(1000);
556 
557 	plug_st = readl(&plug_regs_p->plug_state);
558 	writel(plug_st | PLUG_STATUS_EN, &plug_regs_p->plug_state);
559 
560 	writel(~0x0, &udc_regs_p->endp_int);
561 	writel(~0x0, &udc_regs_p->dev_int_mask);
562 	writel(~0x0, &udc_regs_p->endp_int_mask);
563 
564 #ifndef CONFIG_USBD_HS
565 	writel(DEV_CONF_FS_SPEED | DEV_CONF_REMWAKEUP | DEV_CONF_SELFPOW |
566 	       DEV_CONF_PHYINT_16, &udc_regs_p->dev_conf);
567 #else
568 	writel(DEV_CONF_HS_SPEED | DEV_CONF_REMWAKEUP | DEV_CONF_SELFPOW |
569 			DEV_CONF_PHYINT_16, &udc_regs_p->dev_conf);
570 #endif
571 
572 	writel(DEV_CNTL_SOFTDISCONNECT, &udc_regs_p->dev_cntl);
573 
574 	/* Clear all interrupts pending */
575 	writel(DEV_INT_MSK, &udc_regs_p->dev_int);
576 
577 	return 0;
578 }
579 
580 int is_usbd_high_speed(void)
581 {
582 	return (readl(&udc_regs_p->dev_stat) & DEV_STAT_ENUM) ? 0 : 1;
583 }
584 
585 /*
586  * udc_setup_ep - setup endpoint
587  * Associate a physical endpoint with endpoint_instance
588  */
589 void udc_setup_ep(struct usb_device_instance *device,
590 		  u32 ep, struct usb_endpoint_instance *endpoint)
591 {
592 	UDCDBGA("setting up endpoint addr %x", endpoint->endpoint_address);
593 	int ep_addr;
594 	int ep_num, ep_type;
595 	int packet_size;
596 	int buffer_size;
597 	int attributes;
598 	char *tt;
599 	u32 endp_intmask;
600 
601 	if ((ep != 0) && (udc_device->device_state < STATE_ADDRESSED))
602 		return;
603 
604 	tt = getenv("usbtty");
605 	if (!tt)
606 		tt = "generic";
607 
608 	ep_addr = endpoint->endpoint_address;
609 	ep_num = ep_addr & USB_ENDPOINT_NUMBER_MASK;
610 
611 	if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) {
612 		/* IN endpoint */
613 		packet_size = endpoint->tx_packetSize;
614 		buffer_size = packet_size * 2;
615 		attributes = endpoint->tx_attributes;
616 	} else {
617 		/* OUT endpoint */
618 		packet_size = endpoint->rcv_packetSize;
619 		buffer_size = packet_size * 2;
620 		attributes = endpoint->rcv_attributes;
621 	}
622 
623 	switch (attributes & USB_ENDPOINT_XFERTYPE_MASK) {
624 	case USB_ENDPOINT_XFER_CONTROL:
625 		ep_type = ENDP_EPTYPE_CNTL;
626 		break;
627 	case USB_ENDPOINT_XFER_BULK:
628 	default:
629 		ep_type = ENDP_EPTYPE_BULK;
630 		break;
631 	case USB_ENDPOINT_XFER_INT:
632 		ep_type = ENDP_EPTYPE_INT;
633 		break;
634 	case USB_ENDPOINT_XFER_ISOC:
635 		ep_type = ENDP_EPTYPE_ISO;
636 		break;
637 	}
638 
639 	struct udc_endp_regs *out_p = &outep_regs_p[ep_num];
640 	struct udc_endp_regs *in_p = &inep_regs_p[ep_num];
641 
642 	if (!ep_addr) {
643 		/* Setup endpoint 0 */
644 		buffer_size = packet_size;
645 
646 		writel(readl(&in_p->endp_cntl) | ENDP_CNTL_CNAK,
647 		       &in_p->endp_cntl);
648 
649 		writel(readl(&out_p->endp_cntl) | ENDP_CNTL_CNAK,
650 		       &out_p->endp_cntl);
651 
652 		writel(ENDP_CNTL_CONTROL | ENDP_CNTL_FLUSH, &in_p->endp_cntl);
653 
654 		writel(buffer_size / sizeof(int), &in_p->endp_bsorfn);
655 
656 		writel(packet_size, &in_p->endp_maxpacksize);
657 
658 		writel(ENDP_CNTL_CONTROL | ENDP_CNTL_RRDY, &out_p->endp_cntl);
659 
660 		writel(packet_size | ((buffer_size / sizeof(int)) << 16),
661 		       &out_p->endp_maxpacksize);
662 
663 	} else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) {
664 		/* Setup the IN endpoint */
665 		writel(0x0, &in_p->endp_status);
666 		writel((ep_type << 4) | ENDP_CNTL_RRDY, &in_p->endp_cntl);
667 		writel(buffer_size / sizeof(int), &in_p->endp_bsorfn);
668 		writel(packet_size, &in_p->endp_maxpacksize);
669 
670 		if (!strcmp(tt, "cdc_acm")) {
671 			if (ep_type == ENDP_EPTYPE_INT) {
672 				/* Conf no. 1 Interface no. 0 */
673 				writel((packet_size << 19) |
674 				       ENDP_EPDIR_IN | (1 << 7) |
675 				       (0 << 11) | (ep_type << 5) | ep_num,
676 				       &udc_regs_p->udc_endp_reg[ep_num]);
677 			} else {
678 				/* Conf no. 1 Interface no. 1 */
679 				writel((packet_size << 19) |
680 				       ENDP_EPDIR_IN | (1 << 7) |
681 				       (1 << 11) | (ep_type << 5) | ep_num,
682 				       &udc_regs_p->udc_endp_reg[ep_num]);
683 			}
684 		} else {
685 			/* Conf no. 1 Interface no. 0 */
686 			writel((packet_size << 19) |
687 			       ENDP_EPDIR_IN | (1 << 7) |
688 			       (0 << 11) | (ep_type << 5) | ep_num,
689 			       &udc_regs_p->udc_endp_reg[ep_num]);
690 		}
691 
692 	} else {
693 		/* Setup the OUT endpoint */
694 		writel(0x0, &out_p->endp_status);
695 		writel((ep_type << 4) | ENDP_CNTL_RRDY, &out_p->endp_cntl);
696 		writel(packet_size | ((buffer_size / sizeof(int)) << 16),
697 		       &out_p->endp_maxpacksize);
698 
699 		if (!strcmp(tt, "cdc_acm")) {
700 			writel((packet_size << 19) |
701 			       ENDP_EPDIR_OUT | (1 << 7) |
702 			       (1 << 11) | (ep_type << 5) | ep_num,
703 			       &udc_regs_p->udc_endp_reg[ep_num]);
704 		} else {
705 			writel((packet_size << 19) |
706 			       ENDP_EPDIR_OUT | (1 << 7) |
707 			       (0 << 11) | (ep_type << 5) | ep_num,
708 			       &udc_regs_p->udc_endp_reg[ep_num]);
709 		}
710 
711 	}
712 
713 	endp_intmask = readl(&udc_regs_p->endp_int_mask);
714 	endp_intmask &= ~((1 << ep_num) | 0x10000 << ep_num);
715 	writel(endp_intmask, &udc_regs_p->endp_int_mask);
716 }
717 
718 /* Turn on the USB connection by enabling the pullup resistor */
719 void udc_connect(void)
720 {
721 	u32 plug_st, dev_cntl;
722 
723 	dev_cntl = readl(&udc_regs_p->dev_cntl);
724 	dev_cntl |= DEV_CNTL_SOFTDISCONNECT;
725 	writel(dev_cntl, &udc_regs_p->dev_cntl);
726 
727 	udelay(1000);
728 
729 	dev_cntl = readl(&udc_regs_p->dev_cntl);
730 	dev_cntl &= ~DEV_CNTL_SOFTDISCONNECT;
731 	writel(dev_cntl, &udc_regs_p->dev_cntl);
732 
733 	plug_st = readl(&plug_regs_p->plug_state);
734 	plug_st &= ~(PLUG_STATUS_PHY_RESET | PLUG_STATUS_PHY_MODE);
735 	writel(plug_st, &plug_regs_p->plug_state);
736 }
737 
738 /* Turn off the USB connection by disabling the pullup resistor */
739 void udc_disconnect(void)
740 {
741 	u32 plug_st;
742 
743 	writel(DEV_CNTL_SOFTDISCONNECT, &udc_regs_p->dev_cntl);
744 
745 	plug_st = readl(&plug_regs_p->plug_state);
746 	plug_st |= (PLUG_STATUS_PHY_RESET | PLUG_STATUS_PHY_MODE);
747 	writel(plug_st, &plug_regs_p->plug_state);
748 }
749 
750 /* Switch on the UDC */
751 void udc_enable(struct usb_device_instance *device)
752 {
753 	UDCDBGA("enable device %p, status %d", device, device->status);
754 
755 	/* Save the device structure pointer */
756 	udc_device = device;
757 
758 	/* Setup ep0 urb */
759 	if (!ep0_urb) {
760 		ep0_urb =
761 		    usbd_alloc_urb(udc_device, udc_device->bus->endpoint_array);
762 	} else {
763 		serial_printf("udc_enable: ep0_urb already allocated %p\n",
764 			      ep0_urb);
765 	}
766 
767 	writel(DEV_INT_SOF, &udc_regs_p->dev_int_mask);
768 }
769 
770 /**
771  * udc_startup - allow udc code to do any additional startup
772  */
773 void udc_startup_events(struct usb_device_instance *device)
774 {
775 	/* The DEVICE_INIT event puts the USB device in the state STATE_INIT. */
776 	usbd_device_event_irq(device, DEVICE_INIT, 0);
777 
778 	/*
779 	 * The DEVICE_CREATE event puts the USB device in the state
780 	 * STATE_ATTACHED.
781 	 */
782 	usbd_device_event_irq(device, DEVICE_CREATE, 0);
783 
784 	/*
785 	 * Some USB controller driver implementations signal
786 	 * DEVICE_HUB_CONFIGURED and DEVICE_RESET events here.
787 	 * DEVICE_HUB_CONFIGURED causes a transition to the state STATE_POWERED,
788 	 * and DEVICE_RESET causes a transition to the state STATE_DEFAULT.
789 	 * The DW USB client controller has the capability to detect when the
790 	 * USB cable is connected to a powered USB bus, so we will defer the
791 	 * DEVICE_HUB_CONFIGURED and DEVICE_RESET events until later.
792 	 */
793 
794 	udc_enable(device);
795 }
796 
797 /*
798  * Plug detection interrupt handling
799  */
800 static void dw_udc_plug_irq(void)
801 {
802 	if (readl(&plug_regs_p->plug_state) & PLUG_STATUS_ATTACHED) {
803 		/*
804 		 * USB cable attached
805 		 * Turn off PHY reset bit (PLUG detect).
806 		 * Switch PHY opmode to normal operation (PLUG detect).
807 		 */
808 		udc_connect();
809 		writel(DEV_INT_SOF, &udc_regs_p->dev_int_mask);
810 
811 		UDCDBG("device attached and powered");
812 		udc_state_transition(udc_device->device_state, STATE_POWERED);
813 	} else {
814 		writel(~0x0, &udc_regs_p->dev_int_mask);
815 
816 		UDCDBG("device detached or unpowered");
817 		udc_state_transition(udc_device->device_state, STATE_ATTACHED);
818 	}
819 }
820 
821 /*
822  * Device interrupt handling
823  */
824 static void dw_udc_dev_irq(void)
825 {
826 	if (readl(&udc_regs_p->dev_int) & DEV_INT_USBRESET) {
827 		writel(~0x0, &udc_regs_p->endp_int_mask);
828 
829 		writel(readl(&inep_regs_p[0].endp_cntl) | ENDP_CNTL_FLUSH,
830 		       &inep_regs_p[0].endp_cntl);
831 
832 		writel(DEV_INT_USBRESET, &udc_regs_p->dev_int);
833 
834 		/*
835 		 * This endpoint0 specific register can be programmed only
836 		 * after the phy clock is initialized
837 		 */
838 		writel((EP0_MAX_PACKET_SIZE << 19) | ENDP_EPTYPE_CNTL,
839 				&udc_regs_p->udc_endp_reg[0]);
840 
841 		UDCDBG("device reset in progess");
842 		udc_state_transition(udc_device->device_state, STATE_DEFAULT);
843 	}
844 
845 	/* Device Enumeration completed */
846 	if (readl(&udc_regs_p->dev_int) & DEV_INT_ENUM) {
847 		writel(DEV_INT_ENUM, &udc_regs_p->dev_int);
848 
849 		/* Endpoint interrupt enabled for Ctrl IN & Ctrl OUT */
850 		writel(readl(&udc_regs_p->endp_int_mask) & ~0x10001,
851 		       &udc_regs_p->endp_int_mask);
852 
853 		UDCDBG("default -> addressed");
854 		udc_state_transition(udc_device->device_state, STATE_ADDRESSED);
855 	}
856 
857 	/* The USB will be in SUSPEND in 3 ms */
858 	if (readl(&udc_regs_p->dev_int) & DEV_INT_INACTIVE) {
859 		writel(DEV_INT_INACTIVE, &udc_regs_p->dev_int);
860 
861 		UDCDBG("entering inactive state");
862 		/* usbd_device_event_irq(udc_device, DEVICE_BUS_INACTIVE, 0); */
863 	}
864 
865 	/* SetConfiguration command received */
866 	if (readl(&udc_regs_p->dev_int) & DEV_INT_SETCFG) {
867 		writel(DEV_INT_SETCFG, &udc_regs_p->dev_int);
868 
869 		UDCDBG("entering configured state");
870 		udc_state_transition(udc_device->device_state,
871 				     STATE_CONFIGURED);
872 	}
873 
874 	/* SetInterface command received */
875 	if (readl(&udc_regs_p->dev_int) & DEV_INT_SETINTF)
876 		writel(DEV_INT_SETINTF, &udc_regs_p->dev_int);
877 
878 	/* USB Suspend detected on cable */
879 	if (readl(&udc_regs_p->dev_int) & DEV_INT_SUSPUSB) {
880 		writel(DEV_INT_SUSPUSB, &udc_regs_p->dev_int);
881 
882 		UDCDBG("entering suspended state");
883 		usbd_device_event_irq(udc_device, DEVICE_BUS_INACTIVE, 0);
884 	}
885 
886 	/* USB Start-Of-Frame detected on cable */
887 	if (readl(&udc_regs_p->dev_int) & DEV_INT_SOF)
888 		writel(DEV_INT_SOF, &udc_regs_p->dev_int);
889 }
890 
891 /*
892  * Endpoint interrupt handling
893  */
894 static void dw_udc_endpoint_irq(void)
895 {
896 	while (readl(&udc_regs_p->endp_int) & ENDP0_INT_CTRLOUT) {
897 
898 		writel(ENDP0_INT_CTRLOUT, &udc_regs_p->endp_int);
899 
900 		if ((readl(&outep_regs_p[0].endp_status) & ENDP_STATUS_OUTMSK)
901 		    == ENDP_STATUS_OUT_SETUP) {
902 			dw_udc_setup(udc_device->bus->endpoint_array + 0);
903 			writel(ENDP_STATUS_OUT_SETUP,
904 			       &outep_regs_p[0].endp_status);
905 
906 		} else if ((readl(&outep_regs_p[0].endp_status) &
907 			    ENDP_STATUS_OUTMSK) == ENDP_STATUS_OUT_DATA) {
908 			dw_udc_ep0_rx(udc_device->bus->endpoint_array + 0);
909 			writel(ENDP_STATUS_OUT_DATA,
910 			       &outep_regs_p[0].endp_status);
911 
912 		} else if ((readl(&outep_regs_p[0].endp_status) &
913 			    ENDP_STATUS_OUTMSK) == ENDP_STATUS_OUT_NONE) {
914 			/* NONE received */
915 		}
916 
917 		writel(0x0, &outep_regs_p[0].endp_status);
918 	}
919 
920 	if (readl(&udc_regs_p->endp_int) & ENDP0_INT_CTRLIN) {
921 		dw_udc_ep0_tx(udc_device->bus->endpoint_array + 0);
922 
923 		writel(ENDP_STATUS_IN, &inep_regs_p[0].endp_status);
924 		writel(ENDP0_INT_CTRLIN, &udc_regs_p->endp_int);
925 	}
926 
927 	if (readl(&udc_regs_p->endp_int) & ENDP_INT_NONISOOUT_MSK) {
928 		u32 epnum = 0;
929 		u32 ep_int = readl(&udc_regs_p->endp_int) &
930 		    ENDP_INT_NONISOOUT_MSK;
931 
932 		ep_int >>= 16;
933 		while (0x0 == (ep_int & 0x1)) {
934 			ep_int >>= 1;
935 			epnum++;
936 		}
937 
938 		writel((1 << 16) << epnum, &udc_regs_p->endp_int);
939 
940 		if ((readl(&outep_regs_p[epnum].endp_status) &
941 		     ENDP_STATUS_OUTMSK) == ENDP_STATUS_OUT_DATA) {
942 
943 			dw_udc_epn_rx(epnum);
944 			writel(ENDP_STATUS_OUT_DATA,
945 			       &outep_regs_p[epnum].endp_status);
946 		} else if ((readl(&outep_regs_p[epnum].endp_status) &
947 			    ENDP_STATUS_OUTMSK) == ENDP_STATUS_OUT_NONE) {
948 			writel(0x0, &outep_regs_p[epnum].endp_status);
949 		}
950 	}
951 
952 	if (readl(&udc_regs_p->endp_int) & ENDP_INT_NONISOIN_MSK) {
953 		u32 epnum = 0;
954 		u32 ep_int = readl(&udc_regs_p->endp_int) &
955 		    ENDP_INT_NONISOIN_MSK;
956 
957 		while (0x0 == (ep_int & 0x1)) {
958 			ep_int >>= 1;
959 			epnum++;
960 		}
961 
962 		if (readl(&inep_regs_p[epnum].endp_status) & ENDP_STATUS_IN) {
963 			writel(ENDP_STATUS_IN,
964 			       &outep_regs_p[epnum].endp_status);
965 			dw_udc_epn_tx(epnum);
966 
967 			writel(ENDP_STATUS_IN,
968 			       &outep_regs_p[epnum].endp_status);
969 		}
970 
971 		writel((1 << epnum), &udc_regs_p->endp_int);
972 	}
973 }
974 
975 /*
976  * UDC interrupts
977  */
978 void udc_irq(void)
979 {
980 	/*
981 	 * Loop while we have interrupts.
982 	 * If we don't do this, the input chain
983 	 * polling delay is likely to miss
984 	 * host requests.
985 	 */
986 	while (readl(&plug_regs_p->plug_pending))
987 		dw_udc_plug_irq();
988 
989 	while (readl(&udc_regs_p->dev_int))
990 		dw_udc_dev_irq();
991 
992 	if (readl(&udc_regs_p->endp_int))
993 		dw_udc_endpoint_irq();
994 }
995 
996 /* Flow control */
997 void udc_set_nak(int epid)
998 {
999 	writel(readl(&inep_regs_p[epid].endp_cntl) | ENDP_CNTL_SNAK,
1000 	       &inep_regs_p[epid].endp_cntl);
1001 
1002 	writel(readl(&outep_regs_p[epid].endp_cntl) | ENDP_CNTL_SNAK,
1003 	       &outep_regs_p[epid].endp_cntl);
1004 }
1005 
1006 void udc_unset_nak(int epid)
1007 {
1008 	u32 val;
1009 
1010 	val = readl(&inep_regs_p[epid].endp_cntl);
1011 	val &= ~ENDP_CNTL_SNAK;
1012 	val |= ENDP_CNTL_CNAK;
1013 	writel(val, &inep_regs_p[epid].endp_cntl);
1014 
1015 	val = readl(&outep_regs_p[epid].endp_cntl);
1016 	val &= ~ENDP_CNTL_SNAK;
1017 	val |= ENDP_CNTL_CNAK;
1018 	writel(val, &outep_regs_p[epid].endp_cntl);
1019 }
1020