xref: /openbmc/u-boot/drivers/usb/gadget/ci_udc.c (revision afc366f0)
1 /*
2  * Copyright 2011, Marvell Semiconductor Inc.
3  * Lei Wen <leiwen@marvell.com>
4  *
5  * SPDX-License-Identifier:	GPL-2.0+
6  *
7  * Back ported to the 8xx platform (from the 8260 platform) by
8  * Murray.Jensen@cmst.csiro.au, 27-Jan-01.
9  */
10 
11 #include <common.h>
12 #include <command.h>
13 #include <config.h>
14 #include <net.h>
15 #include <malloc.h>
16 #include <asm/byteorder.h>
17 #include <asm/errno.h>
18 #include <asm/io.h>
19 #include <asm/unaligned.h>
20 #include <linux/types.h>
21 #include <linux/usb/ch9.h>
22 #include <linux/usb/gadget.h>
23 #include <usb/ci_udc.h>
24 #include "../host/ehci.h"
25 #include "ci_udc.h"
26 
27 /*
28  * Check if the system has too long cachelines. If the cachelines are
29  * longer then 128b, the driver will not be able flush/invalidate data
30  * cache over separate QH entries. We use 128b because one QH entry is
31  * 64b long and there are always two QH list entries for each endpoint.
32  */
33 #if ARCH_DMA_MINALIGN > 128
34 #error This driver can not work on systems with caches longer than 128b
35 #endif
36 
37 /*
38  * Every QTD must be individually aligned, since we can program any
39  * QTD's address into HW. Cache flushing requires ARCH_DMA_MINALIGN,
40  * and the USB HW requires 32-byte alignment. Align to both:
41  */
42 #define ILIST_ALIGN		roundup(ARCH_DMA_MINALIGN, 32)
43 /* Each QTD is this size */
44 #define ILIST_ENT_RAW_SZ	sizeof(struct ept_queue_item)
45 /*
46  * Align the size of the QTD too, so we can add this value to each
47  * QTD's address to get another aligned address.
48  */
49 #define ILIST_ENT_SZ		roundup(ILIST_ENT_RAW_SZ, ILIST_ALIGN)
50 /* For each endpoint, we need 2 QTDs, one for each of IN and OUT */
51 #define ILIST_SZ		(NUM_ENDPOINTS * 2 * ILIST_ENT_SZ)
52 
53 #ifndef DEBUG
54 #define DBG(x...) do {} while (0)
55 #else
56 #define DBG(x...) printf(x)
57 static const char *reqname(unsigned r)
58 {
59 	switch (r) {
60 	case USB_REQ_GET_STATUS: return "GET_STATUS";
61 	case USB_REQ_CLEAR_FEATURE: return "CLEAR_FEATURE";
62 	case USB_REQ_SET_FEATURE: return "SET_FEATURE";
63 	case USB_REQ_SET_ADDRESS: return "SET_ADDRESS";
64 	case USB_REQ_GET_DESCRIPTOR: return "GET_DESCRIPTOR";
65 	case USB_REQ_SET_DESCRIPTOR: return "SET_DESCRIPTOR";
66 	case USB_REQ_GET_CONFIGURATION: return "GET_CONFIGURATION";
67 	case USB_REQ_SET_CONFIGURATION: return "SET_CONFIGURATION";
68 	case USB_REQ_GET_INTERFACE: return "GET_INTERFACE";
69 	case USB_REQ_SET_INTERFACE: return "SET_INTERFACE";
70 	default: return "*UNKNOWN*";
71 	}
72 }
73 #endif
74 
75 static struct usb_endpoint_descriptor ep0_desc = {
76 	.bLength = sizeof(struct usb_endpoint_descriptor),
77 	.bDescriptorType = USB_DT_ENDPOINT,
78 	.bEndpointAddress = USB_DIR_IN,
79 	.bmAttributes =	USB_ENDPOINT_XFER_CONTROL,
80 };
81 
82 static int ci_pullup(struct usb_gadget *gadget, int is_on);
83 static int ci_ep_enable(struct usb_ep *ep,
84 		const struct usb_endpoint_descriptor *desc);
85 static int ci_ep_disable(struct usb_ep *ep);
86 static int ci_ep_queue(struct usb_ep *ep,
87 		struct usb_request *req, gfp_t gfp_flags);
88 static struct usb_request *
89 ci_ep_alloc_request(struct usb_ep *ep, unsigned int gfp_flags);
90 static void ci_ep_free_request(struct usb_ep *ep, struct usb_request *_req);
91 
92 static struct usb_gadget_ops ci_udc_ops = {
93 	.pullup = ci_pullup,
94 };
95 
96 static struct usb_ep_ops ci_ep_ops = {
97 	.enable         = ci_ep_enable,
98 	.disable        = ci_ep_disable,
99 	.queue          = ci_ep_queue,
100 	.alloc_request  = ci_ep_alloc_request,
101 	.free_request   = ci_ep_free_request,
102 };
103 
104 /* Init values for USB endpoints. */
105 static const struct usb_ep ci_ep_init[2] = {
106 	[0] = {	/* EP 0 */
107 		.maxpacket	= 64,
108 		.name		= "ep0",
109 		.ops		= &ci_ep_ops,
110 	},
111 	[1] = {	/* EP 1..n */
112 		.maxpacket	= 512,
113 		.name		= "ep-",
114 		.ops		= &ci_ep_ops,
115 	},
116 };
117 
118 static struct ci_drv controller = {
119 	.gadget	= {
120 		.name	= "ci_udc",
121 		.ops	= &ci_udc_ops,
122 		.is_dualspeed = 1,
123 	},
124 };
125 
126 /**
127  * ci_get_qh() - return queue head for endpoint
128  * @ep_num:	Endpoint number
129  * @dir_in:	Direction of the endpoint (IN = 1, OUT = 0)
130  *
131  * This function returns the QH associated with particular endpoint
132  * and it's direction.
133  */
134 static struct ept_queue_head *ci_get_qh(int ep_num, int dir_in)
135 {
136 	return &controller.epts[(ep_num * 2) + dir_in];
137 }
138 
139 /**
140  * ci_get_qtd() - return queue item for endpoint
141  * @ep_num:	Endpoint number
142  * @dir_in:	Direction of the endpoint (IN = 1, OUT = 0)
143  *
144  * This function returns the QH associated with particular endpoint
145  * and it's direction.
146  */
147 static struct ept_queue_item *ci_get_qtd(int ep_num, int dir_in)
148 {
149 	int index = (ep_num * 2) + dir_in;
150 	uint8_t *imem = controller.items_mem + (index * ILIST_ENT_SZ);
151 	return (struct ept_queue_item *)imem;
152 }
153 
154 /**
155  * ci_flush_qh - flush cache over queue head
156  * @ep_num:	Endpoint number
157  *
158  * This function flushes cache over QH for particular endpoint.
159  */
160 static void ci_flush_qh(int ep_num)
161 {
162 	struct ept_queue_head *head = ci_get_qh(ep_num, 0);
163 	const uint32_t start = (uint32_t)head;
164 	const uint32_t end = start + 2 * sizeof(*head);
165 
166 	flush_dcache_range(start, end);
167 }
168 
169 /**
170  * ci_invalidate_qh - invalidate cache over queue head
171  * @ep_num:	Endpoint number
172  *
173  * This function invalidates cache over QH for particular endpoint.
174  */
175 static void ci_invalidate_qh(int ep_num)
176 {
177 	struct ept_queue_head *head = ci_get_qh(ep_num, 0);
178 	uint32_t start = (uint32_t)head;
179 	uint32_t end = start + 2 * sizeof(*head);
180 
181 	invalidate_dcache_range(start, end);
182 }
183 
184 /**
185  * ci_flush_qtd - flush cache over queue item
186  * @ep_num:	Endpoint number
187  *
188  * This function flushes cache over qTD pair for particular endpoint.
189  */
190 static void ci_flush_qtd(int ep_num)
191 {
192 	struct ept_queue_item *item = ci_get_qtd(ep_num, 0);
193 	const uint32_t start = (uint32_t)item;
194 	const uint32_t end = start + 2 * ILIST_ENT_SZ;
195 
196 	flush_dcache_range(start, end);
197 }
198 
199 /**
200  * ci_invalidate_qtd - invalidate cache over queue item
201  * @ep_num:	Endpoint number
202  *
203  * This function invalidates cache over qTD pair for particular endpoint.
204  */
205 static void ci_invalidate_qtd(int ep_num)
206 {
207 	struct ept_queue_item *item = ci_get_qtd(ep_num, 0);
208 	const uint32_t start = (uint32_t)item;
209 	const uint32_t end = start + 2 * ILIST_ENT_SZ;
210 
211 	invalidate_dcache_range(start, end);
212 }
213 
214 static struct usb_request *
215 ci_ep_alloc_request(struct usb_ep *ep, unsigned int gfp_flags)
216 {
217 	struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
218 	int num;
219 	struct ci_req *ci_req;
220 
221 	num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
222 	if (num == 0 && controller.ep0_req)
223 		return &controller.ep0_req->req;
224 
225 	ci_req = calloc(1, sizeof(*ci_req));
226 	if (!ci_req)
227 		return NULL;
228 
229 	INIT_LIST_HEAD(&ci_req->queue);
230 
231 	if (num == 0)
232 		controller.ep0_req = ci_req;
233 
234 	return &ci_req->req;
235 }
236 
237 static void ci_ep_free_request(struct usb_ep *ep, struct usb_request *req)
238 {
239 	struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
240 	struct ci_req *ci_req = container_of(req, struct ci_req, req);
241 	int num;
242 
243 	num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
244 	if (num == 0) {
245 		if (!controller.ep0_req)
246 			return;
247 		controller.ep0_req = 0;
248 	}
249 
250 	if (ci_req->b_buf)
251 		free(ci_req->b_buf);
252 	free(ci_req);
253 }
254 
255 static void ep_enable(int num, int in, int maxpacket)
256 {
257 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
258 	unsigned n;
259 
260 	n = readl(&udc->epctrl[num]);
261 	if (in)
262 		n |= (CTRL_TXE | CTRL_TXR | CTRL_TXT_BULK);
263 	else
264 		n |= (CTRL_RXE | CTRL_RXR | CTRL_RXT_BULK);
265 
266 	if (num != 0) {
267 		struct ept_queue_head *head = ci_get_qh(num, in);
268 
269 		head->config = CONFIG_MAX_PKT(maxpacket) | CONFIG_ZLT;
270 		ci_flush_qh(num);
271 	}
272 	writel(n, &udc->epctrl[num]);
273 }
274 
275 static int ci_ep_enable(struct usb_ep *ep,
276 		const struct usb_endpoint_descriptor *desc)
277 {
278 	struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
279 	int num, in;
280 	num = desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
281 	in = (desc->bEndpointAddress & USB_DIR_IN) != 0;
282 	ci_ep->desc = desc;
283 
284 	if (num) {
285 		int max = get_unaligned_le16(&desc->wMaxPacketSize);
286 
287 		if ((max > 64) && (controller.gadget.speed == USB_SPEED_FULL))
288 			max = 64;
289 		if (ep->maxpacket != max) {
290 			DBG("%s: from %d to %d\n", __func__,
291 			    ep->maxpacket, max);
292 			ep->maxpacket = max;
293 		}
294 	}
295 	ep_enable(num, in, ep->maxpacket);
296 	DBG("%s: num=%d maxpacket=%d\n", __func__, num, ep->maxpacket);
297 	return 0;
298 }
299 
300 static int ci_ep_disable(struct usb_ep *ep)
301 {
302 	struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
303 
304 	ci_ep->desc = NULL;
305 	return 0;
306 }
307 
308 static int ci_bounce(struct ci_req *ci_req, int in)
309 {
310 	struct usb_request *req = &ci_req->req;
311 	uint32_t addr = (uint32_t)req->buf;
312 	uint32_t hwaddr;
313 	uint32_t aligned_used_len;
314 
315 	/* Input buffer address is not aligned. */
316 	if (addr & (ARCH_DMA_MINALIGN - 1))
317 		goto align;
318 
319 	/* Input buffer length is not aligned. */
320 	if (req->length & (ARCH_DMA_MINALIGN - 1))
321 		goto align;
322 
323 	/* The buffer is well aligned, only flush cache. */
324 	ci_req->hw_len = req->length;
325 	ci_req->hw_buf = req->buf;
326 	goto flush;
327 
328 align:
329 	if (ci_req->b_buf && req->length > ci_req->b_len) {
330 		free(ci_req->b_buf);
331 		ci_req->b_buf = 0;
332 	}
333 	if (!ci_req->b_buf) {
334 		ci_req->b_len = roundup(req->length, ARCH_DMA_MINALIGN);
335 		ci_req->b_buf = memalign(ARCH_DMA_MINALIGN, ci_req->b_len);
336 		if (!ci_req->b_buf)
337 			return -ENOMEM;
338 	}
339 	ci_req->hw_len = ci_req->b_len;
340 	ci_req->hw_buf = ci_req->b_buf;
341 
342 	if (in)
343 		memcpy(ci_req->hw_buf, req->buf, req->length);
344 
345 flush:
346 	hwaddr = (uint32_t)ci_req->hw_buf;
347 	aligned_used_len = roundup(req->length, ARCH_DMA_MINALIGN);
348 	flush_dcache_range(hwaddr, hwaddr + aligned_used_len);
349 
350 	return 0;
351 }
352 
353 static void ci_debounce(struct ci_req *ci_req, int in)
354 {
355 	struct usb_request *req = &ci_req->req;
356 	uint32_t addr = (uint32_t)req->buf;
357 	uint32_t hwaddr = (uint32_t)ci_req->hw_buf;
358 	uint32_t aligned_used_len;
359 
360 	if (in)
361 		return;
362 
363 	aligned_used_len = roundup(req->actual, ARCH_DMA_MINALIGN);
364 	invalidate_dcache_range(hwaddr, hwaddr + aligned_used_len);
365 
366 	if (addr == hwaddr)
367 		return; /* not a bounce */
368 
369 	memcpy(req->buf, ci_req->hw_buf, req->actual);
370 }
371 
372 static void ci_ep_submit_next_request(struct ci_ep *ci_ep)
373 {
374 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
375 	struct ept_queue_item *item;
376 	struct ept_queue_head *head;
377 	int bit, num, len, in;
378 	struct ci_req *ci_req;
379 
380 	ci_ep->req_primed = true;
381 
382 	num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
383 	in = (ci_ep->desc->bEndpointAddress & USB_DIR_IN) != 0;
384 	item = ci_get_qtd(num, in);
385 	head = ci_get_qh(num, in);
386 
387 	ci_req = list_first_entry(&ci_ep->queue, struct ci_req, queue);
388 	len = ci_req->req.length;
389 
390 	item->info = INFO_BYTES(len) | INFO_ACTIVE;
391 	item->page0 = (uint32_t)ci_req->hw_buf;
392 	item->page1 = ((uint32_t)ci_req->hw_buf & 0xfffff000) + 0x1000;
393 	item->page2 = ((uint32_t)ci_req->hw_buf & 0xfffff000) + 0x2000;
394 	item->page3 = ((uint32_t)ci_req->hw_buf & 0xfffff000) + 0x3000;
395 	item->page4 = ((uint32_t)ci_req->hw_buf & 0xfffff000) + 0x4000;
396 
397 	head->next = (unsigned) item;
398 	head->info = 0;
399 
400 	/*
401 	 * When sending the data for an IN transaction, the attached host
402 	 * knows that all data for the IN is sent when one of the following
403 	 * occurs:
404 	 * a) A zero-length packet is transmitted.
405 	 * b) A packet with length that isn't an exact multiple of the ep's
406 	 *    maxpacket is transmitted.
407 	 * c) Enough data is sent to exactly fill the host's maximum expected
408 	 *    IN transaction size.
409 	 *
410 	 * One of these conditions MUST apply at the end of an IN transaction,
411 	 * or the transaction will not be considered complete by the host. If
412 	 * none of (a)..(c) already applies, then we must force (a) to apply
413 	 * by explicitly sending an extra zero-length packet.
414 	 */
415 	/*  IN    !a     !b                              !c */
416 	if (in && len && !(len % ci_ep->ep.maxpacket) && ci_req->req.zero) {
417 		/*
418 		 * Each endpoint has 2 items allocated, even though typically
419 		 * only 1 is used at a time since either an IN or an OUT but
420 		 * not both is queued. For an IN transaction, item currently
421 		 * points at the second of these items, so we know that we
422 		 * can use the other to transmit the extra zero-length packet.
423 		 */
424 		struct ept_queue_item *other_item = ci_get_qtd(num, 0);
425 		item->next = (unsigned)other_item;
426 		item = other_item;
427 		item->info = INFO_ACTIVE;
428 	}
429 
430 	item->next = TERMINATE;
431 	item->info |= INFO_IOC;
432 
433 	ci_flush_qtd(num);
434 
435 	DBG("ept%d %s queue len %x, req %p, buffer %p\n",
436 	    num, in ? "in" : "out", len, ci_req, ci_req->hw_buf);
437 	ci_flush_qh(num);
438 
439 	if (in)
440 		bit = EPT_TX(num);
441 	else
442 		bit = EPT_RX(num);
443 
444 	writel(bit, &udc->epprime);
445 }
446 
447 static int ci_ep_queue(struct usb_ep *ep,
448 		struct usb_request *req, gfp_t gfp_flags)
449 {
450 	struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
451 	struct ci_req *ci_req = container_of(req, struct ci_req, req);
452 	int in, ret;
453 	int __maybe_unused num;
454 
455 	num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
456 	in = (ci_ep->desc->bEndpointAddress & USB_DIR_IN) != 0;
457 
458 	if (!num && ci_ep->req_primed) {
459 		/*
460 		 * The flipping of ep0 between IN and OUT relies on
461 		 * ci_ep_queue consuming the current IN/OUT setting
462 		 * immediately. If this is deferred to a later point when the
463 		 * req is pulled out of ci_req->queue, then the IN/OUT setting
464 		 * may have been changed since the req was queued, and state
465 		 * will get out of sync. This condition doesn't occur today,
466 		 * but could if bugs were introduced later, and this error
467 		 * check will save a lot of debugging time.
468 		 */
469 		printf("%s: ep0 transaction already in progress\n", __func__);
470 		return -EPROTO;
471 	}
472 
473 	ret = ci_bounce(ci_req, in);
474 	if (ret)
475 		return ret;
476 
477 	DBG("ept%d %s pre-queue req %p, buffer %p\n",
478 	    num, in ? "in" : "out", ci_req, ci_req->hw_buf);
479 	list_add_tail(&ci_req->queue, &ci_ep->queue);
480 
481 	if (!ci_ep->req_primed)
482 		ci_ep_submit_next_request(ci_ep);
483 
484 	return 0;
485 }
486 
487 static void flip_ep0_direction(void)
488 {
489 	if (ep0_desc.bEndpointAddress == USB_DIR_IN) {
490 		DBG("%s: Flipping ep0 to OUT\n", __func__);
491 		ep0_desc.bEndpointAddress = 0;
492 	} else {
493 		DBG("%s: Flipping ep0 to IN\n", __func__);
494 		ep0_desc.bEndpointAddress = USB_DIR_IN;
495 	}
496 }
497 
498 static void handle_ep_complete(struct ci_ep *ci_ep)
499 {
500 	struct ept_queue_item *item;
501 	int num, in, len;
502 	struct ci_req *ci_req;
503 
504 	num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
505 	in = (ci_ep->desc->bEndpointAddress & USB_DIR_IN) != 0;
506 	item = ci_get_qtd(num, in);
507 	ci_invalidate_qtd(num);
508 
509 	len = (item->info >> 16) & 0x7fff;
510 	if (item->info & 0xff)
511 		printf("EP%d/%s FAIL info=%x pg0=%x\n",
512 		       num, in ? "in" : "out", item->info, item->page0);
513 
514 	ci_req = list_first_entry(&ci_ep->queue, struct ci_req, queue);
515 	list_del_init(&ci_req->queue);
516 	ci_ep->req_primed = false;
517 
518 	if (!list_empty(&ci_ep->queue))
519 		ci_ep_submit_next_request(ci_ep);
520 
521 	ci_req->req.actual = ci_req->req.length - len;
522 	ci_debounce(ci_req, in);
523 
524 	DBG("ept%d %s req %p, complete %x\n",
525 	    num, in ? "in" : "out", ci_req, len);
526 	if (num != 0 || controller.ep0_data_phase)
527 		ci_req->req.complete(&ci_ep->ep, &ci_req->req);
528 	if (num == 0 && controller.ep0_data_phase) {
529 		/*
530 		 * Data Stage is complete, so flip ep0 dir for Status Stage,
531 		 * which always transfers a packet in the opposite direction.
532 		 */
533 		DBG("%s: flip ep0 dir for Status Stage\n", __func__);
534 		flip_ep0_direction();
535 		controller.ep0_data_phase = false;
536 		ci_req->req.length = 0;
537 		usb_ep_queue(&ci_ep->ep, &ci_req->req, 0);
538 	}
539 }
540 
541 #define SETUP(type, request) (((type) << 8) | (request))
542 
543 static void handle_setup(void)
544 {
545 	struct ci_ep *ci_ep = &controller.ep[0];
546 	struct ci_req *ci_req;
547 	struct usb_request *req;
548 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
549 	struct ept_queue_head *head;
550 	struct usb_ctrlrequest r;
551 	int status = 0;
552 	int num, in, _num, _in, i;
553 	char *buf;
554 
555 	ci_req = controller.ep0_req;
556 	req = &ci_req->req;
557 	head = ci_get_qh(0, 0);	/* EP0 OUT */
558 
559 	ci_invalidate_qh(0);
560 	memcpy(&r, head->setup_data, sizeof(struct usb_ctrlrequest));
561 #ifdef CONFIG_CI_UDC_HAS_HOSTPC
562 	writel(EPT_RX(0), &udc->epsetupstat);
563 #else
564 	writel(EPT_RX(0), &udc->epstat);
565 #endif
566 	DBG("handle setup %s, %x, %x index %x value %x length %x\n",
567 	    reqname(r.bRequest), r.bRequestType, r.bRequest, r.wIndex,
568 	    r.wValue, r.wLength);
569 
570 	/* Set EP0 dir for Data Stage based on Setup Stage data */
571 	if (r.bRequestType & USB_DIR_IN) {
572 		DBG("%s: Set ep0 to IN for Data Stage\n", __func__);
573 		ep0_desc.bEndpointAddress = USB_DIR_IN;
574 	} else {
575 		DBG("%s: Set ep0 to OUT for Data Stage\n", __func__);
576 		ep0_desc.bEndpointAddress = 0;
577 	}
578 	if (r.wLength) {
579 		controller.ep0_data_phase = true;
580 	} else {
581 		/* 0 length -> no Data Stage. Flip dir for Status Stage */
582 		DBG("%s: 0 length: flip ep0 dir for Status Stage\n", __func__);
583 		flip_ep0_direction();
584 		controller.ep0_data_phase = false;
585 	}
586 
587 	list_del_init(&ci_req->queue);
588 	ci_ep->req_primed = false;
589 
590 	switch (SETUP(r.bRequestType, r.bRequest)) {
591 	case SETUP(USB_RECIP_ENDPOINT, USB_REQ_CLEAR_FEATURE):
592 		_num = r.wIndex & 15;
593 		_in = !!(r.wIndex & 0x80);
594 
595 		if ((r.wValue == 0) && (r.wLength == 0)) {
596 			req->length = 0;
597 			for (i = 0; i < NUM_ENDPOINTS; i++) {
598 				struct ci_ep *ep = &controller.ep[i];
599 
600 				if (!ep->desc)
601 					continue;
602 				num = ep->desc->bEndpointAddress
603 						& USB_ENDPOINT_NUMBER_MASK;
604 				in = (ep->desc->bEndpointAddress
605 						& USB_DIR_IN) != 0;
606 				if ((num == _num) && (in == _in)) {
607 					ep_enable(num, in, ep->ep.maxpacket);
608 					usb_ep_queue(controller.gadget.ep0,
609 							req, 0);
610 					break;
611 				}
612 			}
613 		}
614 		return;
615 
616 	case SETUP(USB_RECIP_DEVICE, USB_REQ_SET_ADDRESS):
617 		/*
618 		 * write address delayed (will take effect
619 		 * after the next IN txn)
620 		 */
621 		writel((r.wValue << 25) | (1 << 24), &udc->devaddr);
622 		req->length = 0;
623 		usb_ep_queue(controller.gadget.ep0, req, 0);
624 		return;
625 
626 	case SETUP(USB_DIR_IN | USB_RECIP_DEVICE, USB_REQ_GET_STATUS):
627 		req->length = 2;
628 		buf = (char *)req->buf;
629 		buf[0] = 1 << USB_DEVICE_SELF_POWERED;
630 		buf[1] = 0;
631 		usb_ep_queue(controller.gadget.ep0, req, 0);
632 		return;
633 	}
634 	/* pass request up to the gadget driver */
635 	if (controller.driver)
636 		status = controller.driver->setup(&controller.gadget, &r);
637 	else
638 		status = -ENODEV;
639 
640 	if (!status)
641 		return;
642 	DBG("STALL reqname %s type %x value %x, index %x\n",
643 	    reqname(r.bRequest), r.bRequestType, r.wValue, r.wIndex);
644 	writel((1<<16) | (1 << 0), &udc->epctrl[0]);
645 }
646 
647 static void stop_activity(void)
648 {
649 	int i, num, in;
650 	struct ept_queue_head *head;
651 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
652 	writel(readl(&udc->epcomp), &udc->epcomp);
653 #ifdef CONFIG_CI_UDC_HAS_HOSTPC
654 	writel(readl(&udc->epsetupstat), &udc->epsetupstat);
655 #endif
656 	writel(readl(&udc->epstat), &udc->epstat);
657 	writel(0xffffffff, &udc->epflush);
658 
659 	/* error out any pending reqs */
660 	for (i = 0; i < NUM_ENDPOINTS; i++) {
661 		if (i != 0)
662 			writel(0, &udc->epctrl[i]);
663 		if (controller.ep[i].desc) {
664 			num = controller.ep[i].desc->bEndpointAddress
665 				& USB_ENDPOINT_NUMBER_MASK;
666 			in = (controller.ep[i].desc->bEndpointAddress
667 				& USB_DIR_IN) != 0;
668 			head = ci_get_qh(num, in);
669 			head->info = INFO_ACTIVE;
670 			ci_flush_qh(num);
671 		}
672 	}
673 }
674 
675 void udc_irq(void)
676 {
677 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
678 	unsigned n = readl(&udc->usbsts);
679 	writel(n, &udc->usbsts);
680 	int bit, i, num, in;
681 
682 	n &= (STS_SLI | STS_URI | STS_PCI | STS_UI | STS_UEI);
683 	if (n == 0)
684 		return;
685 
686 	if (n & STS_URI) {
687 		DBG("-- reset --\n");
688 		stop_activity();
689 	}
690 	if (n & STS_SLI)
691 		DBG("-- suspend --\n");
692 
693 	if (n & STS_PCI) {
694 		int max = 64;
695 		int speed = USB_SPEED_FULL;
696 
697 #ifdef CONFIG_CI_UDC_HAS_HOSTPC
698 		bit = (readl(&udc->hostpc1_devlc) >> 25) & 3;
699 #else
700 		bit = (readl(&udc->portsc) >> 26) & 3;
701 #endif
702 		DBG("-- portchange %x %s\n", bit, (bit == 2) ? "High" : "Full");
703 		if (bit == 2) {
704 			speed = USB_SPEED_HIGH;
705 			max = 512;
706 		}
707 		controller.gadget.speed = speed;
708 		for (i = 1; i < NUM_ENDPOINTS; i++) {
709 			if (controller.ep[i].ep.maxpacket > max)
710 				controller.ep[i].ep.maxpacket = max;
711 		}
712 	}
713 
714 	if (n & STS_UEI)
715 		printf("<UEI %x>\n", readl(&udc->epcomp));
716 
717 	if ((n & STS_UI) || (n & STS_UEI)) {
718 #ifdef CONFIG_CI_UDC_HAS_HOSTPC
719 		n = readl(&udc->epsetupstat);
720 #else
721 		n = readl(&udc->epstat);
722 #endif
723 		if (n & EPT_RX(0))
724 			handle_setup();
725 
726 		n = readl(&udc->epcomp);
727 		if (n != 0)
728 			writel(n, &udc->epcomp);
729 
730 		for (i = 0; i < NUM_ENDPOINTS && n; i++) {
731 			if (controller.ep[i].desc) {
732 				num = controller.ep[i].desc->bEndpointAddress
733 					& USB_ENDPOINT_NUMBER_MASK;
734 				in = (controller.ep[i].desc->bEndpointAddress
735 						& USB_DIR_IN) != 0;
736 				bit = (in) ? EPT_TX(num) : EPT_RX(num);
737 				if (n & bit)
738 					handle_ep_complete(&controller.ep[i]);
739 			}
740 		}
741 	}
742 }
743 
744 int usb_gadget_handle_interrupts(void)
745 {
746 	u32 value;
747 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
748 
749 	value = readl(&udc->usbsts);
750 	if (value)
751 		udc_irq();
752 
753 	return value;
754 }
755 
756 void udc_disconnect(void)
757 {
758 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
759 	/* disable pullup */
760 	stop_activity();
761 	writel(USBCMD_FS2, &udc->usbcmd);
762 	udelay(800);
763 	if (controller.driver)
764 		controller.driver->disconnect(&controller.gadget);
765 }
766 
767 static int ci_pullup(struct usb_gadget *gadget, int is_on)
768 {
769 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
770 	if (is_on) {
771 		/* RESET */
772 		writel(USBCMD_ITC(MICRO_8FRAME) | USBCMD_RST, &udc->usbcmd);
773 		udelay(200);
774 
775 		writel((unsigned)controller.epts, &udc->epinitaddr);
776 
777 		/* select DEVICE mode */
778 		writel(USBMODE_DEVICE, &udc->usbmode);
779 
780 #if !defined(CONFIG_USB_GADGET_DUALSPEED)
781 		/* Port force Full-Speed Connect */
782 		setbits_le32(&udc->portsc, PFSC);
783 #endif
784 
785 		writel(0xffffffff, &udc->epflush);
786 
787 		/* Turn on the USB connection by enabling the pullup resistor */
788 		writel(USBCMD_ITC(MICRO_8FRAME) | USBCMD_RUN, &udc->usbcmd);
789 	} else {
790 		udc_disconnect();
791 	}
792 
793 	return 0;
794 }
795 
796 static int ci_udc_probe(void)
797 {
798 	struct ept_queue_head *head;
799 	int i;
800 
801 	const int num = 2 * NUM_ENDPOINTS;
802 
803 	const int eplist_min_align = 4096;
804 	const int eplist_align = roundup(eplist_min_align, ARCH_DMA_MINALIGN);
805 	const int eplist_raw_sz = num * sizeof(struct ept_queue_head);
806 	const int eplist_sz = roundup(eplist_raw_sz, ARCH_DMA_MINALIGN);
807 
808 	/* The QH list must be aligned to 4096 bytes. */
809 	controller.epts = memalign(eplist_align, eplist_sz);
810 	if (!controller.epts)
811 		return -ENOMEM;
812 	memset(controller.epts, 0, eplist_sz);
813 
814 	controller.items_mem = memalign(ILIST_ALIGN, ILIST_SZ);
815 	if (!controller.items_mem) {
816 		free(controller.epts);
817 		return -ENOMEM;
818 	}
819 	memset(controller.items_mem, 0, ILIST_SZ);
820 
821 	for (i = 0; i < 2 * NUM_ENDPOINTS; i++) {
822 		/*
823 		 * Configure QH for each endpoint. The structure of the QH list
824 		 * is such that each two subsequent fields, N and N+1 where N is
825 		 * even, in the QH list represent QH for one endpoint. The Nth
826 		 * entry represents OUT configuration and the N+1th entry does
827 		 * represent IN configuration of the endpoint.
828 		 */
829 		head = controller.epts + i;
830 		if (i < 2)
831 			head->config = CONFIG_MAX_PKT(EP0_MAX_PACKET_SIZE)
832 				| CONFIG_ZLT | CONFIG_IOS;
833 		else
834 			head->config = CONFIG_MAX_PKT(EP_MAX_PACKET_SIZE)
835 				| CONFIG_ZLT;
836 		head->next = TERMINATE;
837 		head->info = 0;
838 
839 		if (i & 1) {
840 			ci_flush_qh(i / 2);
841 			ci_flush_qtd(i / 2);
842 		}
843 	}
844 
845 	INIT_LIST_HEAD(&controller.gadget.ep_list);
846 
847 	/* Init EP 0 */
848 	memcpy(&controller.ep[0].ep, &ci_ep_init[0], sizeof(*ci_ep_init));
849 	controller.ep[0].desc = &ep0_desc;
850 	INIT_LIST_HEAD(&controller.ep[0].queue);
851 	controller.ep[0].req_primed = false;
852 	controller.gadget.ep0 = &controller.ep[0].ep;
853 	INIT_LIST_HEAD(&controller.gadget.ep0->ep_list);
854 
855 	/* Init EP 1..n */
856 	for (i = 1; i < NUM_ENDPOINTS; i++) {
857 		memcpy(&controller.ep[i].ep, &ci_ep_init[1],
858 		       sizeof(*ci_ep_init));
859 		INIT_LIST_HEAD(&controller.ep[i].queue);
860 		controller.ep[i].req_primed = false;
861 		list_add_tail(&controller.ep[i].ep.ep_list,
862 			      &controller.gadget.ep_list);
863 	}
864 
865 	ci_ep_alloc_request(&controller.ep[0].ep, 0);
866 	if (!controller.ep0_req) {
867 		free(controller.items_mem);
868 		free(controller.epts);
869 		return -ENOMEM;
870 	}
871 
872 	return 0;
873 }
874 
875 int usb_gadget_register_driver(struct usb_gadget_driver *driver)
876 {
877 	int ret;
878 
879 	if (!driver)
880 		return -EINVAL;
881 	if (!driver->bind || !driver->setup || !driver->disconnect)
882 		return -EINVAL;
883 	if (driver->speed != USB_SPEED_FULL && driver->speed != USB_SPEED_HIGH)
884 		return -EINVAL;
885 
886 	ret = usb_lowlevel_init(0, USB_INIT_DEVICE, (void **)&controller.ctrl);
887 	if (ret)
888 		return ret;
889 
890 	ret = ci_udc_probe();
891 #if defined(CONFIG_USB_EHCI_MX6) || defined(CONFIG_USB_EHCI_MXS)
892 	/*
893 	 * FIXME: usb_lowlevel_init()->ehci_hcd_init() should be doing all
894 	 * HW-specific initialization, e.g. ULPI-vs-UTMI PHY selection
895 	 */
896 	if (!ret) {
897 		struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
898 
899 		/* select ULPI phy */
900 		writel(PTS(PTS_ENABLE) | PFSC, &udc->portsc);
901 	}
902 #endif
903 
904 	ret = driver->bind(&controller.gadget);
905 	if (ret) {
906 		DBG("driver->bind() returned %d\n", ret);
907 		return ret;
908 	}
909 	controller.driver = driver;
910 
911 	return 0;
912 }
913 
914 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
915 {
916 	udc_disconnect();
917 
918 	driver->unbind(&controller.gadget);
919 	controller.driver = NULL;
920 
921 	ci_ep_free_request(&controller.ep[0].ep, &controller.ep0_req->req);
922 	free(controller.items_mem);
923 	free(controller.epts);
924 
925 	return 0;
926 }
927 
928 bool dfu_usb_get_reset(void)
929 {
930 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
931 
932 	return !!(readl(&udc->usbsts) & STS_URI);
933 }
934