xref: /openbmc/u-boot/drivers/usb/gadget/ci_udc.c (revision 9ee16897)
1 /*
2  * Copyright 2011, Marvell Semiconductor Inc.
3  * Lei Wen <leiwen@marvell.com>
4  *
5  * SPDX-License-Identifier:	GPL-2.0+
6  *
7  * Back ported to the 8xx platform (from the 8260 platform) by
8  * Murray.Jensen@cmst.csiro.au, 27-Jan-01.
9  */
10 
11 #include <common.h>
12 #include <command.h>
13 #include <config.h>
14 #include <net.h>
15 #include <malloc.h>
16 #include <asm/byteorder.h>
17 #include <asm/errno.h>
18 #include <asm/io.h>
19 #include <asm/unaligned.h>
20 #include <linux/types.h>
21 #include <linux/usb/ch9.h>
22 #include <linux/usb/gadget.h>
23 #include <usb/ci_udc.h>
24 #include "../host/ehci.h"
25 #include "ci_udc.h"
26 
27 /*
28  * Check if the system has too long cachelines. If the cachelines are
29  * longer then 128b, the driver will not be able flush/invalidate data
30  * cache over separate QH entries. We use 128b because one QH entry is
31  * 64b long and there are always two QH list entries for each endpoint.
32  */
33 #if ARCH_DMA_MINALIGN > 128
34 #error This driver can not work on systems with caches longer than 128b
35 #endif
36 
37 /*
38  * Every QTD must be individually aligned, since we can program any
39  * QTD's address into HW. Cache flushing requires ARCH_DMA_MINALIGN,
40  * and the USB HW requires 32-byte alignment. Align to both:
41  */
42 #define ILIST_ALIGN		roundup(ARCH_DMA_MINALIGN, 32)
43 /* Each QTD is this size */
44 #define ILIST_ENT_RAW_SZ	sizeof(struct ept_queue_item)
45 /*
46  * Align the size of the QTD too, so we can add this value to each
47  * QTD's address to get another aligned address.
48  */
49 #define ILIST_ENT_SZ		roundup(ILIST_ENT_RAW_SZ, ILIST_ALIGN)
50 /* For each endpoint, we need 2 QTDs, one for each of IN and OUT */
51 #define ILIST_SZ		(NUM_ENDPOINTS * 2 * ILIST_ENT_SZ)
52 
53 #define EP_MAX_LENGTH_TRANSFER	0x4000
54 
55 #ifndef DEBUG
56 #define DBG(x...) do {} while (0)
57 #else
58 #define DBG(x...) printf(x)
59 static const char *reqname(unsigned r)
60 {
61 	switch (r) {
62 	case USB_REQ_GET_STATUS: return "GET_STATUS";
63 	case USB_REQ_CLEAR_FEATURE: return "CLEAR_FEATURE";
64 	case USB_REQ_SET_FEATURE: return "SET_FEATURE";
65 	case USB_REQ_SET_ADDRESS: return "SET_ADDRESS";
66 	case USB_REQ_GET_DESCRIPTOR: return "GET_DESCRIPTOR";
67 	case USB_REQ_SET_DESCRIPTOR: return "SET_DESCRIPTOR";
68 	case USB_REQ_GET_CONFIGURATION: return "GET_CONFIGURATION";
69 	case USB_REQ_SET_CONFIGURATION: return "SET_CONFIGURATION";
70 	case USB_REQ_GET_INTERFACE: return "GET_INTERFACE";
71 	case USB_REQ_SET_INTERFACE: return "SET_INTERFACE";
72 	default: return "*UNKNOWN*";
73 	}
74 }
75 #endif
76 
77 static struct usb_endpoint_descriptor ep0_desc = {
78 	.bLength = sizeof(struct usb_endpoint_descriptor),
79 	.bDescriptorType = USB_DT_ENDPOINT,
80 	.bEndpointAddress = USB_DIR_IN,
81 	.bmAttributes =	USB_ENDPOINT_XFER_CONTROL,
82 };
83 
84 static int ci_pullup(struct usb_gadget *gadget, int is_on);
85 static int ci_ep_enable(struct usb_ep *ep,
86 		const struct usb_endpoint_descriptor *desc);
87 static int ci_ep_disable(struct usb_ep *ep);
88 static int ci_ep_queue(struct usb_ep *ep,
89 		struct usb_request *req, gfp_t gfp_flags);
90 static struct usb_request *
91 ci_ep_alloc_request(struct usb_ep *ep, unsigned int gfp_flags);
92 static void ci_ep_free_request(struct usb_ep *ep, struct usb_request *_req);
93 
94 static struct usb_gadget_ops ci_udc_ops = {
95 	.pullup = ci_pullup,
96 };
97 
98 static struct usb_ep_ops ci_ep_ops = {
99 	.enable         = ci_ep_enable,
100 	.disable        = ci_ep_disable,
101 	.queue          = ci_ep_queue,
102 	.alloc_request  = ci_ep_alloc_request,
103 	.free_request   = ci_ep_free_request,
104 };
105 
106 /* Init values for USB endpoints. */
107 static const struct usb_ep ci_ep_init[5] = {
108 	[0] = {	/* EP 0 */
109 		.maxpacket	= 64,
110 		.name		= "ep0",
111 		.ops		= &ci_ep_ops,
112 	},
113 	[1] = {
114 		.maxpacket	= 512,
115 		.name		= "ep1in-bulk",
116 		.ops		= &ci_ep_ops,
117 	},
118 	[2] = {
119 		.maxpacket	= 512,
120 		.name		= "ep2out-bulk",
121 		.ops		= &ci_ep_ops,
122 	},
123 	[3] = {
124 		.maxpacket	= 512,
125 		.name		= "ep3in-int",
126 		.ops		= &ci_ep_ops,
127 	},
128 	[4] = {
129 		.maxpacket	= 512,
130 		.name		= "ep-",
131 		.ops		= &ci_ep_ops,
132 	},
133 };
134 
135 static struct ci_drv controller = {
136 	.gadget	= {
137 		.name	= "ci_udc",
138 		.ops	= &ci_udc_ops,
139 		.is_dualspeed = 1,
140 	},
141 };
142 
143 /**
144  * ci_get_qh() - return queue head for endpoint
145  * @ep_num:	Endpoint number
146  * @dir_in:	Direction of the endpoint (IN = 1, OUT = 0)
147  *
148  * This function returns the QH associated with particular endpoint
149  * and it's direction.
150  */
151 static struct ept_queue_head *ci_get_qh(int ep_num, int dir_in)
152 {
153 	return &controller.epts[(ep_num * 2) + dir_in];
154 }
155 
156 /**
157  * ci_get_qtd() - return queue item for endpoint
158  * @ep_num:	Endpoint number
159  * @dir_in:	Direction of the endpoint (IN = 1, OUT = 0)
160  *
161  * This function returns the QH associated with particular endpoint
162  * and it's direction.
163  */
164 static struct ept_queue_item *ci_get_qtd(int ep_num, int dir_in)
165 {
166 	int index = (ep_num * 2) + dir_in;
167 	uint8_t *imem = controller.items_mem + (index * ILIST_ENT_SZ);
168 	return (struct ept_queue_item *)imem;
169 }
170 
171 /**
172  * ci_flush_qh - flush cache over queue head
173  * @ep_num:	Endpoint number
174  *
175  * This function flushes cache over QH for particular endpoint.
176  */
177 static void ci_flush_qh(int ep_num)
178 {
179 	struct ept_queue_head *head = ci_get_qh(ep_num, 0);
180 	const unsigned long start = (unsigned long)head;
181 	const unsigned long end = start + 2 * sizeof(*head);
182 
183 	flush_dcache_range(start, end);
184 }
185 
186 /**
187  * ci_invalidate_qh - invalidate cache over queue head
188  * @ep_num:	Endpoint number
189  *
190  * This function invalidates cache over QH for particular endpoint.
191  */
192 static void ci_invalidate_qh(int ep_num)
193 {
194 	struct ept_queue_head *head = ci_get_qh(ep_num, 0);
195 	unsigned long start = (unsigned long)head;
196 	unsigned long end = start + 2 * sizeof(*head);
197 
198 	invalidate_dcache_range(start, end);
199 }
200 
201 /**
202  * ci_flush_qtd - flush cache over queue item
203  * @ep_num:	Endpoint number
204  *
205  * This function flushes cache over qTD pair for particular endpoint.
206  */
207 static void ci_flush_qtd(int ep_num)
208 {
209 	struct ept_queue_item *item = ci_get_qtd(ep_num, 0);
210 	const unsigned long start = (unsigned long)item;
211 	const unsigned long end = start + 2 * ILIST_ENT_SZ;
212 
213 	flush_dcache_range(start, end);
214 }
215 
216 /**
217  * ci_flush_td - flush cache over queue item
218  * @td:	td pointer
219  *
220  * This function flushes cache for particular transfer descriptor.
221  */
222 static void ci_flush_td(struct ept_queue_item *td)
223 {
224 	const unsigned long start = (unsigned long)td;
225 	const unsigned long end = (unsigned long)td + ILIST_ENT_SZ;
226 	flush_dcache_range(start, end);
227 }
228 
229 /**
230  * ci_invalidate_qtd - invalidate cache over queue item
231  * @ep_num:	Endpoint number
232  *
233  * This function invalidates cache over qTD pair for particular endpoint.
234  */
235 static void ci_invalidate_qtd(int ep_num)
236 {
237 	struct ept_queue_item *item = ci_get_qtd(ep_num, 0);
238 	const unsigned long start = (unsigned long)item;
239 	const unsigned long end = start + 2 * ILIST_ENT_SZ;
240 
241 	invalidate_dcache_range(start, end);
242 }
243 
244 /**
245  * ci_invalidate_td - invalidate cache over queue item
246  * @td:	td pointer
247  *
248  * This function invalidates cache for particular transfer descriptor.
249  */
250 static void ci_invalidate_td(struct ept_queue_item *td)
251 {
252 	const unsigned long start = (unsigned long)td;
253 	const unsigned long end = start + ILIST_ENT_SZ;
254 	invalidate_dcache_range(start, end);
255 }
256 
257 static struct usb_request *
258 ci_ep_alloc_request(struct usb_ep *ep, unsigned int gfp_flags)
259 {
260 	struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
261 	int num = -1;
262 	struct ci_req *ci_req;
263 
264 	if (ci_ep->desc)
265 		num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
266 
267 	if (num == 0 && controller.ep0_req)
268 		return &controller.ep0_req->req;
269 
270 	ci_req = calloc(1, sizeof(*ci_req));
271 	if (!ci_req)
272 		return NULL;
273 
274 	INIT_LIST_HEAD(&ci_req->queue);
275 
276 	if (num == 0)
277 		controller.ep0_req = ci_req;
278 
279 	return &ci_req->req;
280 }
281 
282 static void ci_ep_free_request(struct usb_ep *ep, struct usb_request *req)
283 {
284 	struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
285 	struct ci_req *ci_req = container_of(req, struct ci_req, req);
286 	int num = -1;
287 
288 	if (ci_ep->desc)
289 		num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
290 
291 	if (num == 0) {
292 		if (!controller.ep0_req)
293 			return;
294 		controller.ep0_req = 0;
295 	}
296 
297 	if (ci_req->b_buf)
298 		free(ci_req->b_buf);
299 	free(ci_req);
300 }
301 
302 static void ep_enable(int num, int in, int maxpacket)
303 {
304 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
305 	unsigned n;
306 
307 	n = readl(&udc->epctrl[num]);
308 	if (in)
309 		n |= (CTRL_TXE | CTRL_TXR | CTRL_TXT_BULK);
310 	else
311 		n |= (CTRL_RXE | CTRL_RXR | CTRL_RXT_BULK);
312 
313 	if (num != 0) {
314 		struct ept_queue_head *head = ci_get_qh(num, in);
315 
316 		head->config = CONFIG_MAX_PKT(maxpacket) | CONFIG_ZLT;
317 		ci_flush_qh(num);
318 	}
319 	writel(n, &udc->epctrl[num]);
320 }
321 
322 static int ci_ep_enable(struct usb_ep *ep,
323 		const struct usb_endpoint_descriptor *desc)
324 {
325 	struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
326 	int num, in;
327 	num = desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
328 	in = (desc->bEndpointAddress & USB_DIR_IN) != 0;
329 	ci_ep->desc = desc;
330 
331 	if (num) {
332 		int max = get_unaligned_le16(&desc->wMaxPacketSize);
333 
334 		if ((max > 64) && (controller.gadget.speed == USB_SPEED_FULL))
335 			max = 64;
336 		if (ep->maxpacket != max) {
337 			DBG("%s: from %d to %d\n", __func__,
338 			    ep->maxpacket, max);
339 			ep->maxpacket = max;
340 		}
341 	}
342 	ep_enable(num, in, ep->maxpacket);
343 	DBG("%s: num=%d maxpacket=%d\n", __func__, num, ep->maxpacket);
344 	return 0;
345 }
346 
347 static int ci_ep_disable(struct usb_ep *ep)
348 {
349 	struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
350 
351 	ci_ep->desc = NULL;
352 	return 0;
353 }
354 
355 static int ci_bounce(struct ci_req *ci_req, int in)
356 {
357 	struct usb_request *req = &ci_req->req;
358 	unsigned long addr = (unsigned long)req->buf;
359 	unsigned long hwaddr;
360 	uint32_t aligned_used_len;
361 
362 	/* Input buffer address is not aligned. */
363 	if (addr & (ARCH_DMA_MINALIGN - 1))
364 		goto align;
365 
366 	/* Input buffer length is not aligned. */
367 	if (req->length & (ARCH_DMA_MINALIGN - 1))
368 		goto align;
369 
370 	/* The buffer is well aligned, only flush cache. */
371 	ci_req->hw_len = req->length;
372 	ci_req->hw_buf = req->buf;
373 	goto flush;
374 
375 align:
376 	if (ci_req->b_buf && req->length > ci_req->b_len) {
377 		free(ci_req->b_buf);
378 		ci_req->b_buf = 0;
379 	}
380 	if (!ci_req->b_buf) {
381 		ci_req->b_len = roundup(req->length, ARCH_DMA_MINALIGN);
382 		ci_req->b_buf = memalign(ARCH_DMA_MINALIGN, ci_req->b_len);
383 		if (!ci_req->b_buf)
384 			return -ENOMEM;
385 	}
386 	ci_req->hw_len = ci_req->b_len;
387 	ci_req->hw_buf = ci_req->b_buf;
388 
389 	if (in)
390 		memcpy(ci_req->hw_buf, req->buf, req->length);
391 
392 flush:
393 	hwaddr = (unsigned long)ci_req->hw_buf;
394 	aligned_used_len = roundup(req->length, ARCH_DMA_MINALIGN);
395 	flush_dcache_range(hwaddr, hwaddr + aligned_used_len);
396 
397 	return 0;
398 }
399 
400 static void ci_debounce(struct ci_req *ci_req, int in)
401 {
402 	struct usb_request *req = &ci_req->req;
403 	unsigned long addr = (unsigned long)req->buf;
404 	unsigned long hwaddr = (unsigned long)ci_req->hw_buf;
405 	uint32_t aligned_used_len;
406 
407 	if (in)
408 		return;
409 
410 	aligned_used_len = roundup(req->actual, ARCH_DMA_MINALIGN);
411 	invalidate_dcache_range(hwaddr, hwaddr + aligned_used_len);
412 
413 	if (addr == hwaddr)
414 		return; /* not a bounce */
415 
416 	memcpy(req->buf, ci_req->hw_buf, req->actual);
417 }
418 
419 static void ci_ep_submit_next_request(struct ci_ep *ci_ep)
420 {
421 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
422 	struct ept_queue_item *item;
423 	struct ept_queue_head *head;
424 	int bit, num, len, in;
425 	struct ci_req *ci_req;
426 	u8 *buf;
427 	uint32_t length, actlen;
428 	struct ept_queue_item *dtd, *qtd;
429 
430 	ci_ep->req_primed = true;
431 
432 	num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
433 	in = (ci_ep->desc->bEndpointAddress & USB_DIR_IN) != 0;
434 	item = ci_get_qtd(num, in);
435 	head = ci_get_qh(num, in);
436 
437 	ci_req = list_first_entry(&ci_ep->queue, struct ci_req, queue);
438 	len = ci_req->req.length;
439 
440 	head->next = (unsigned long)item;
441 	head->info = 0;
442 
443 	ci_req->dtd_count = 0;
444 	buf = ci_req->hw_buf;
445 	actlen = 0;
446 	dtd = item;
447 
448 	do {
449 		length = min(ci_req->req.length - actlen,
450 			     (unsigned)EP_MAX_LENGTH_TRANSFER);
451 
452 		dtd->info = INFO_BYTES(length) | INFO_ACTIVE;
453 		dtd->page0 = (unsigned long)buf;
454 		dtd->page1 = ((unsigned long)buf & 0xfffff000) + 0x1000;
455 		dtd->page2 = ((unsigned long)buf & 0xfffff000) + 0x2000;
456 		dtd->page3 = ((unsigned long)buf & 0xfffff000) + 0x3000;
457 		dtd->page4 = ((unsigned long)buf & 0xfffff000) + 0x4000;
458 
459 		len -= length;
460 		actlen += length;
461 		buf += length;
462 
463 		if (len) {
464 			qtd = (struct ept_queue_item *)
465 			       memalign(ILIST_ALIGN, ILIST_ENT_SZ);
466 			dtd->next = (unsigned long)qtd;
467 			dtd = qtd;
468 			memset(dtd, 0, ILIST_ENT_SZ);
469 		}
470 
471 		ci_req->dtd_count++;
472 	} while (len);
473 
474 	item = dtd;
475 	/*
476 	 * When sending the data for an IN transaction, the attached host
477 	 * knows that all data for the IN is sent when one of the following
478 	 * occurs:
479 	 * a) A zero-length packet is transmitted.
480 	 * b) A packet with length that isn't an exact multiple of the ep's
481 	 *    maxpacket is transmitted.
482 	 * c) Enough data is sent to exactly fill the host's maximum expected
483 	 *    IN transaction size.
484 	 *
485 	 * One of these conditions MUST apply at the end of an IN transaction,
486 	 * or the transaction will not be considered complete by the host. If
487 	 * none of (a)..(c) already applies, then we must force (a) to apply
488 	 * by explicitly sending an extra zero-length packet.
489 	 */
490 	/*  IN    !a     !b                              !c */
491 	if (in && len && !(len % ci_ep->ep.maxpacket) && ci_req->req.zero) {
492 		/*
493 		 * Each endpoint has 2 items allocated, even though typically
494 		 * only 1 is used at a time since either an IN or an OUT but
495 		 * not both is queued. For an IN transaction, item currently
496 		 * points at the second of these items, so we know that we
497 		 * can use the other to transmit the extra zero-length packet.
498 		 */
499 		struct ept_queue_item *other_item = ci_get_qtd(num, 0);
500 		item->next = (unsigned long)other_item;
501 		item = other_item;
502 		item->info = INFO_ACTIVE;
503 	}
504 
505 	item->next = TERMINATE;
506 	item->info |= INFO_IOC;
507 
508 	ci_flush_qtd(num);
509 
510 	item = (struct ept_queue_item *)(unsigned long)head->next;
511 	while (item->next != TERMINATE) {
512 		ci_flush_td((struct ept_queue_item *)(unsigned long)item->next);
513 		item = (struct ept_queue_item *)(unsigned long)item->next;
514 	}
515 
516 	DBG("ept%d %s queue len %x, req %p, buffer %p\n",
517 	    num, in ? "in" : "out", len, ci_req, ci_req->hw_buf);
518 	ci_flush_qh(num);
519 
520 	if (in)
521 		bit = EPT_TX(num);
522 	else
523 		bit = EPT_RX(num);
524 
525 	writel(bit, &udc->epprime);
526 }
527 
528 static int ci_ep_queue(struct usb_ep *ep,
529 		struct usb_request *req, gfp_t gfp_flags)
530 {
531 	struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
532 	struct ci_req *ci_req = container_of(req, struct ci_req, req);
533 	int in, ret;
534 	int __maybe_unused num;
535 
536 	num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
537 	in = (ci_ep->desc->bEndpointAddress & USB_DIR_IN) != 0;
538 
539 	if (!num && ci_ep->req_primed) {
540 		/*
541 		 * The flipping of ep0 between IN and OUT relies on
542 		 * ci_ep_queue consuming the current IN/OUT setting
543 		 * immediately. If this is deferred to a later point when the
544 		 * req is pulled out of ci_req->queue, then the IN/OUT setting
545 		 * may have been changed since the req was queued, and state
546 		 * will get out of sync. This condition doesn't occur today,
547 		 * but could if bugs were introduced later, and this error
548 		 * check will save a lot of debugging time.
549 		 */
550 		printf("%s: ep0 transaction already in progress\n", __func__);
551 		return -EPROTO;
552 	}
553 
554 	ret = ci_bounce(ci_req, in);
555 	if (ret)
556 		return ret;
557 
558 	DBG("ept%d %s pre-queue req %p, buffer %p\n",
559 	    num, in ? "in" : "out", ci_req, ci_req->hw_buf);
560 	list_add_tail(&ci_req->queue, &ci_ep->queue);
561 
562 	if (!ci_ep->req_primed)
563 		ci_ep_submit_next_request(ci_ep);
564 
565 	return 0;
566 }
567 
568 static void flip_ep0_direction(void)
569 {
570 	if (ep0_desc.bEndpointAddress == USB_DIR_IN) {
571 		DBG("%s: Flipping ep0 to OUT\n", __func__);
572 		ep0_desc.bEndpointAddress = 0;
573 	} else {
574 		DBG("%s: Flipping ep0 to IN\n", __func__);
575 		ep0_desc.bEndpointAddress = USB_DIR_IN;
576 	}
577 }
578 
579 static void handle_ep_complete(struct ci_ep *ci_ep)
580 {
581 	struct ept_queue_item *item, *next_td;
582 	int num, in, len, j;
583 	struct ci_req *ci_req;
584 
585 	num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
586 	in = (ci_ep->desc->bEndpointAddress & USB_DIR_IN) != 0;
587 	item = ci_get_qtd(num, in);
588 	ci_invalidate_qtd(num);
589 	ci_req = list_first_entry(&ci_ep->queue, struct ci_req, queue);
590 
591 	next_td = item;
592 	len = 0;
593 	for (j = 0; j < ci_req->dtd_count; j++) {
594 		ci_invalidate_td(next_td);
595 		item = next_td;
596 		len += (item->info >> 16) & 0x7fff;
597 		if (item->info & 0xff)
598 			printf("EP%d/%s FAIL info=%x pg0=%x\n",
599 			       num, in ? "in" : "out", item->info, item->page0);
600 		if (j != ci_req->dtd_count - 1)
601 			next_td = (struct ept_queue_item *)(unsigned long)
602 				item->next;
603 		if (j != 0)
604 			free(item);
605 	}
606 
607 	list_del_init(&ci_req->queue);
608 	ci_ep->req_primed = false;
609 
610 	if (!list_empty(&ci_ep->queue))
611 		ci_ep_submit_next_request(ci_ep);
612 
613 	ci_req->req.actual = ci_req->req.length - len;
614 	ci_debounce(ci_req, in);
615 
616 	DBG("ept%d %s req %p, complete %x\n",
617 	    num, in ? "in" : "out", ci_req, len);
618 	if (num != 0 || controller.ep0_data_phase)
619 		ci_req->req.complete(&ci_ep->ep, &ci_req->req);
620 	if (num == 0 && controller.ep0_data_phase) {
621 		/*
622 		 * Data Stage is complete, so flip ep0 dir for Status Stage,
623 		 * which always transfers a packet in the opposite direction.
624 		 */
625 		DBG("%s: flip ep0 dir for Status Stage\n", __func__);
626 		flip_ep0_direction();
627 		controller.ep0_data_phase = false;
628 		ci_req->req.length = 0;
629 		usb_ep_queue(&ci_ep->ep, &ci_req->req, 0);
630 	}
631 }
632 
633 #define SETUP(type, request) (((type) << 8) | (request))
634 
635 static void handle_setup(void)
636 {
637 	struct ci_ep *ci_ep = &controller.ep[0];
638 	struct ci_req *ci_req;
639 	struct usb_request *req;
640 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
641 	struct ept_queue_head *head;
642 	struct usb_ctrlrequest r;
643 	int status = 0;
644 	int num, in, _num, _in, i;
645 	char *buf;
646 
647 	ci_req = controller.ep0_req;
648 	req = &ci_req->req;
649 	head = ci_get_qh(0, 0);	/* EP0 OUT */
650 
651 	ci_invalidate_qh(0);
652 	memcpy(&r, head->setup_data, sizeof(struct usb_ctrlrequest));
653 #ifdef CONFIG_CI_UDC_HAS_HOSTPC
654 	writel(EPT_RX(0), &udc->epsetupstat);
655 #else
656 	writel(EPT_RX(0), &udc->epstat);
657 #endif
658 	DBG("handle setup %s, %x, %x index %x value %x length %x\n",
659 	    reqname(r.bRequest), r.bRequestType, r.bRequest, r.wIndex,
660 	    r.wValue, r.wLength);
661 
662 	/* Set EP0 dir for Data Stage based on Setup Stage data */
663 	if (r.bRequestType & USB_DIR_IN) {
664 		DBG("%s: Set ep0 to IN for Data Stage\n", __func__);
665 		ep0_desc.bEndpointAddress = USB_DIR_IN;
666 	} else {
667 		DBG("%s: Set ep0 to OUT for Data Stage\n", __func__);
668 		ep0_desc.bEndpointAddress = 0;
669 	}
670 	if (r.wLength) {
671 		controller.ep0_data_phase = true;
672 	} else {
673 		/* 0 length -> no Data Stage. Flip dir for Status Stage */
674 		DBG("%s: 0 length: flip ep0 dir for Status Stage\n", __func__);
675 		flip_ep0_direction();
676 		controller.ep0_data_phase = false;
677 	}
678 
679 	list_del_init(&ci_req->queue);
680 	ci_ep->req_primed = false;
681 
682 	switch (SETUP(r.bRequestType, r.bRequest)) {
683 	case SETUP(USB_RECIP_ENDPOINT, USB_REQ_CLEAR_FEATURE):
684 		_num = r.wIndex & 15;
685 		_in = !!(r.wIndex & 0x80);
686 
687 		if ((r.wValue == 0) && (r.wLength == 0)) {
688 			req->length = 0;
689 			for (i = 0; i < NUM_ENDPOINTS; i++) {
690 				struct ci_ep *ep = &controller.ep[i];
691 
692 				if (!ep->desc)
693 					continue;
694 				num = ep->desc->bEndpointAddress
695 						& USB_ENDPOINT_NUMBER_MASK;
696 				in = (ep->desc->bEndpointAddress
697 						& USB_DIR_IN) != 0;
698 				if ((num == _num) && (in == _in)) {
699 					ep_enable(num, in, ep->ep.maxpacket);
700 					usb_ep_queue(controller.gadget.ep0,
701 							req, 0);
702 					break;
703 				}
704 			}
705 		}
706 		return;
707 
708 	case SETUP(USB_RECIP_DEVICE, USB_REQ_SET_ADDRESS):
709 		/*
710 		 * write address delayed (will take effect
711 		 * after the next IN txn)
712 		 */
713 		writel((r.wValue << 25) | (1 << 24), &udc->devaddr);
714 		req->length = 0;
715 		usb_ep_queue(controller.gadget.ep0, req, 0);
716 		return;
717 
718 	case SETUP(USB_DIR_IN | USB_RECIP_DEVICE, USB_REQ_GET_STATUS):
719 		req->length = 2;
720 		buf = (char *)req->buf;
721 		buf[0] = 1 << USB_DEVICE_SELF_POWERED;
722 		buf[1] = 0;
723 		usb_ep_queue(controller.gadget.ep0, req, 0);
724 		return;
725 	}
726 	/* pass request up to the gadget driver */
727 	if (controller.driver)
728 		status = controller.driver->setup(&controller.gadget, &r);
729 	else
730 		status = -ENODEV;
731 
732 	if (!status)
733 		return;
734 	DBG("STALL reqname %s type %x value %x, index %x\n",
735 	    reqname(r.bRequest), r.bRequestType, r.wValue, r.wIndex);
736 	writel((1<<16) | (1 << 0), &udc->epctrl[0]);
737 }
738 
739 static void stop_activity(void)
740 {
741 	int i, num, in;
742 	struct ept_queue_head *head;
743 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
744 	writel(readl(&udc->epcomp), &udc->epcomp);
745 #ifdef CONFIG_CI_UDC_HAS_HOSTPC
746 	writel(readl(&udc->epsetupstat), &udc->epsetupstat);
747 #endif
748 	writel(readl(&udc->epstat), &udc->epstat);
749 	writel(0xffffffff, &udc->epflush);
750 
751 	/* error out any pending reqs */
752 	for (i = 0; i < NUM_ENDPOINTS; i++) {
753 		if (i != 0)
754 			writel(0, &udc->epctrl[i]);
755 		if (controller.ep[i].desc) {
756 			num = controller.ep[i].desc->bEndpointAddress
757 				& USB_ENDPOINT_NUMBER_MASK;
758 			in = (controller.ep[i].desc->bEndpointAddress
759 				& USB_DIR_IN) != 0;
760 			head = ci_get_qh(num, in);
761 			head->info = INFO_ACTIVE;
762 			ci_flush_qh(num);
763 		}
764 	}
765 }
766 
767 void udc_irq(void)
768 {
769 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
770 	unsigned n = readl(&udc->usbsts);
771 	writel(n, &udc->usbsts);
772 	int bit, i, num, in;
773 
774 	n &= (STS_SLI | STS_URI | STS_PCI | STS_UI | STS_UEI);
775 	if (n == 0)
776 		return;
777 
778 	if (n & STS_URI) {
779 		DBG("-- reset --\n");
780 		stop_activity();
781 	}
782 	if (n & STS_SLI)
783 		DBG("-- suspend --\n");
784 
785 	if (n & STS_PCI) {
786 		int max = 64;
787 		int speed = USB_SPEED_FULL;
788 
789 #ifdef CONFIG_CI_UDC_HAS_HOSTPC
790 		bit = (readl(&udc->hostpc1_devlc) >> 25) & 3;
791 #else
792 		bit = (readl(&udc->portsc) >> 26) & 3;
793 #endif
794 		DBG("-- portchange %x %s\n", bit, (bit == 2) ? "High" : "Full");
795 		if (bit == 2) {
796 			speed = USB_SPEED_HIGH;
797 			max = 512;
798 		}
799 		controller.gadget.speed = speed;
800 		for (i = 1; i < NUM_ENDPOINTS; i++) {
801 			if (controller.ep[i].ep.maxpacket > max)
802 				controller.ep[i].ep.maxpacket = max;
803 		}
804 	}
805 
806 	if (n & STS_UEI)
807 		printf("<UEI %x>\n", readl(&udc->epcomp));
808 
809 	if ((n & STS_UI) || (n & STS_UEI)) {
810 #ifdef CONFIG_CI_UDC_HAS_HOSTPC
811 		n = readl(&udc->epsetupstat);
812 #else
813 		n = readl(&udc->epstat);
814 #endif
815 		if (n & EPT_RX(0))
816 			handle_setup();
817 
818 		n = readl(&udc->epcomp);
819 		if (n != 0)
820 			writel(n, &udc->epcomp);
821 
822 		for (i = 0; i < NUM_ENDPOINTS && n; i++) {
823 			if (controller.ep[i].desc) {
824 				num = controller.ep[i].desc->bEndpointAddress
825 					& USB_ENDPOINT_NUMBER_MASK;
826 				in = (controller.ep[i].desc->bEndpointAddress
827 						& USB_DIR_IN) != 0;
828 				bit = (in) ? EPT_TX(num) : EPT_RX(num);
829 				if (n & bit)
830 					handle_ep_complete(&controller.ep[i]);
831 			}
832 		}
833 	}
834 }
835 
836 int usb_gadget_handle_interrupts(int index)
837 {
838 	u32 value;
839 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
840 
841 	value = readl(&udc->usbsts);
842 	if (value)
843 		udc_irq();
844 
845 	return value;
846 }
847 
848 void udc_disconnect(void)
849 {
850 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
851 	/* disable pullup */
852 	stop_activity();
853 	writel(USBCMD_FS2, &udc->usbcmd);
854 	udelay(800);
855 	if (controller.driver)
856 		controller.driver->disconnect(&controller.gadget);
857 }
858 
859 static int ci_pullup(struct usb_gadget *gadget, int is_on)
860 {
861 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
862 	if (is_on) {
863 		/* RESET */
864 		writel(USBCMD_ITC(MICRO_8FRAME) | USBCMD_RST, &udc->usbcmd);
865 		udelay(200);
866 
867 		writel((unsigned long)controller.epts, &udc->epinitaddr);
868 
869 		/* select DEVICE mode */
870 		writel(USBMODE_DEVICE, &udc->usbmode);
871 
872 #if !defined(CONFIG_USB_GADGET_DUALSPEED)
873 		/* Port force Full-Speed Connect */
874 		setbits_le32(&udc->portsc, PFSC);
875 #endif
876 
877 		writel(0xffffffff, &udc->epflush);
878 
879 		/* Turn on the USB connection by enabling the pullup resistor */
880 		writel(USBCMD_ITC(MICRO_8FRAME) | USBCMD_RUN, &udc->usbcmd);
881 	} else {
882 		udc_disconnect();
883 	}
884 
885 	return 0;
886 }
887 
888 static int ci_udc_probe(void)
889 {
890 	struct ept_queue_head *head;
891 	int i;
892 
893 	const int num = 2 * NUM_ENDPOINTS;
894 
895 	const int eplist_min_align = 4096;
896 	const int eplist_align = roundup(eplist_min_align, ARCH_DMA_MINALIGN);
897 	const int eplist_raw_sz = num * sizeof(struct ept_queue_head);
898 	const int eplist_sz = roundup(eplist_raw_sz, ARCH_DMA_MINALIGN);
899 
900 	/* The QH list must be aligned to 4096 bytes. */
901 	controller.epts = memalign(eplist_align, eplist_sz);
902 	if (!controller.epts)
903 		return -ENOMEM;
904 	memset(controller.epts, 0, eplist_sz);
905 
906 	controller.items_mem = memalign(ILIST_ALIGN, ILIST_SZ);
907 	if (!controller.items_mem) {
908 		free(controller.epts);
909 		return -ENOMEM;
910 	}
911 	memset(controller.items_mem, 0, ILIST_SZ);
912 
913 	for (i = 0; i < 2 * NUM_ENDPOINTS; i++) {
914 		/*
915 		 * Configure QH for each endpoint. The structure of the QH list
916 		 * is such that each two subsequent fields, N and N+1 where N is
917 		 * even, in the QH list represent QH for one endpoint. The Nth
918 		 * entry represents OUT configuration and the N+1th entry does
919 		 * represent IN configuration of the endpoint.
920 		 */
921 		head = controller.epts + i;
922 		if (i < 2)
923 			head->config = CONFIG_MAX_PKT(EP0_MAX_PACKET_SIZE)
924 				| CONFIG_ZLT | CONFIG_IOS;
925 		else
926 			head->config = CONFIG_MAX_PKT(EP_MAX_PACKET_SIZE)
927 				| CONFIG_ZLT;
928 		head->next = TERMINATE;
929 		head->info = 0;
930 
931 		if (i & 1) {
932 			ci_flush_qh(i / 2);
933 			ci_flush_qtd(i / 2);
934 		}
935 	}
936 
937 	INIT_LIST_HEAD(&controller.gadget.ep_list);
938 
939 	/* Init EP 0 */
940 	memcpy(&controller.ep[0].ep, &ci_ep_init[0], sizeof(*ci_ep_init));
941 	controller.ep[0].desc = &ep0_desc;
942 	INIT_LIST_HEAD(&controller.ep[0].queue);
943 	controller.ep[0].req_primed = false;
944 	controller.gadget.ep0 = &controller.ep[0].ep;
945 	INIT_LIST_HEAD(&controller.gadget.ep0->ep_list);
946 
947 	/* Init EP 1..3 */
948 	for (i = 1; i < 4; i++) {
949 		memcpy(&controller.ep[i].ep, &ci_ep_init[i],
950 		       sizeof(*ci_ep_init));
951 		INIT_LIST_HEAD(&controller.ep[i].queue);
952 		controller.ep[i].req_primed = false;
953 		list_add_tail(&controller.ep[i].ep.ep_list,
954 			      &controller.gadget.ep_list);
955 	}
956 
957 	/* Init EP 4..n */
958 	for (i = 4; i < NUM_ENDPOINTS; i++) {
959 		memcpy(&controller.ep[i].ep, &ci_ep_init[4],
960 		       sizeof(*ci_ep_init));
961 		INIT_LIST_HEAD(&controller.ep[i].queue);
962 		controller.ep[i].req_primed = false;
963 		list_add_tail(&controller.ep[i].ep.ep_list,
964 			      &controller.gadget.ep_list);
965 	}
966 
967 	ci_ep_alloc_request(&controller.ep[0].ep, 0);
968 	if (!controller.ep0_req) {
969 		free(controller.items_mem);
970 		free(controller.epts);
971 		return -ENOMEM;
972 	}
973 
974 	return 0;
975 }
976 
977 int usb_gadget_register_driver(struct usb_gadget_driver *driver)
978 {
979 	int ret;
980 
981 	if (!driver)
982 		return -EINVAL;
983 	if (!driver->bind || !driver->setup || !driver->disconnect)
984 		return -EINVAL;
985 	if (driver->speed != USB_SPEED_FULL && driver->speed != USB_SPEED_HIGH)
986 		return -EINVAL;
987 
988 #ifdef CONFIG_DM_USB
989 	ret = usb_setup_ehci_gadget(&controller.ctrl);
990 #else
991 	ret = usb_lowlevel_init(0, USB_INIT_DEVICE, (void **)&controller.ctrl);
992 #endif
993 	if (ret)
994 		return ret;
995 
996 	ret = ci_udc_probe();
997 #if defined(CONFIG_USB_EHCI_MX6) || defined(CONFIG_USB_EHCI_MXS)
998 	/*
999 	 * FIXME: usb_lowlevel_init()->ehci_hcd_init() should be doing all
1000 	 * HW-specific initialization, e.g. ULPI-vs-UTMI PHY selection
1001 	 */
1002 	if (!ret) {
1003 		struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
1004 
1005 		/* select ULPI phy */
1006 		writel(PTS(PTS_ENABLE) | PFSC, &udc->portsc);
1007 	}
1008 #endif
1009 
1010 	ret = driver->bind(&controller.gadget);
1011 	if (ret) {
1012 		DBG("driver->bind() returned %d\n", ret);
1013 		return ret;
1014 	}
1015 	controller.driver = driver;
1016 
1017 	return 0;
1018 }
1019 
1020 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
1021 {
1022 	udc_disconnect();
1023 
1024 	driver->unbind(&controller.gadget);
1025 	controller.driver = NULL;
1026 
1027 	ci_ep_free_request(&controller.ep[0].ep, &controller.ep0_req->req);
1028 	free(controller.items_mem);
1029 	free(controller.epts);
1030 
1031 	return 0;
1032 }
1033 
1034 bool dfu_usb_get_reset(void)
1035 {
1036 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
1037 
1038 	return !!(readl(&udc->usbsts) & STS_URI);
1039 }
1040