xref: /openbmc/u-boot/drivers/usb/gadget/ci_udc.c (revision 9ab403d0dd3c88370612c97f8c4cb88199302833)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright 2011, Marvell Semiconductor Inc.
4  * Lei Wen <leiwen@marvell.com>
5  *
6  * Back ported to the 8xx platform (from the 8260 platform) by
7  * Murray.Jensen@cmst.csiro.au, 27-Jan-01.
8  */
9 
10 #include <common.h>
11 #include <command.h>
12 #include <config.h>
13 #include <net.h>
14 #include <malloc.h>
15 #include <asm/byteorder.h>
16 #include <linux/errno.h>
17 #include <asm/io.h>
18 #include <asm/unaligned.h>
19 #include <linux/types.h>
20 #include <linux/usb/ch9.h>
21 #include <linux/usb/gadget.h>
22 #include <usb/ci_udc.h>
23 #include "../host/ehci.h"
24 #include "ci_udc.h"
25 
26 /*
27  * Check if the system has too long cachelines. If the cachelines are
28  * longer then 128b, the driver will not be able flush/invalidate data
29  * cache over separate QH entries. We use 128b because one QH entry is
30  * 64b long and there are always two QH list entries for each endpoint.
31  */
32 #if ARCH_DMA_MINALIGN > 128
33 #error This driver can not work on systems with caches longer than 128b
34 #endif
35 
36 /*
37  * Every QTD must be individually aligned, since we can program any
38  * QTD's address into HW. Cache flushing requires ARCH_DMA_MINALIGN,
39  * and the USB HW requires 32-byte alignment. Align to both:
40  */
41 #define ILIST_ALIGN		roundup(ARCH_DMA_MINALIGN, 32)
42 /* Each QTD is this size */
43 #define ILIST_ENT_RAW_SZ	sizeof(struct ept_queue_item)
44 /*
45  * Align the size of the QTD too, so we can add this value to each
46  * QTD's address to get another aligned address.
47  */
48 #define ILIST_ENT_SZ		roundup(ILIST_ENT_RAW_SZ, ILIST_ALIGN)
49 /* For each endpoint, we need 2 QTDs, one for each of IN and OUT */
50 #define ILIST_SZ		(NUM_ENDPOINTS * 2 * ILIST_ENT_SZ)
51 
52 #define EP_MAX_LENGTH_TRANSFER	0x4000
53 
54 #ifndef DEBUG
55 #define DBG(x...) do {} while (0)
56 #else
57 #define DBG(x...) printf(x)
58 static const char *reqname(unsigned r)
59 {
60 	switch (r) {
61 	case USB_REQ_GET_STATUS: return "GET_STATUS";
62 	case USB_REQ_CLEAR_FEATURE: return "CLEAR_FEATURE";
63 	case USB_REQ_SET_FEATURE: return "SET_FEATURE";
64 	case USB_REQ_SET_ADDRESS: return "SET_ADDRESS";
65 	case USB_REQ_GET_DESCRIPTOR: return "GET_DESCRIPTOR";
66 	case USB_REQ_SET_DESCRIPTOR: return "SET_DESCRIPTOR";
67 	case USB_REQ_GET_CONFIGURATION: return "GET_CONFIGURATION";
68 	case USB_REQ_SET_CONFIGURATION: return "SET_CONFIGURATION";
69 	case USB_REQ_GET_INTERFACE: return "GET_INTERFACE";
70 	case USB_REQ_SET_INTERFACE: return "SET_INTERFACE";
71 	default: return "*UNKNOWN*";
72 	}
73 }
74 #endif
75 
76 static struct usb_endpoint_descriptor ep0_desc = {
77 	.bLength = sizeof(struct usb_endpoint_descriptor),
78 	.bDescriptorType = USB_DT_ENDPOINT,
79 	.bEndpointAddress = USB_DIR_IN,
80 	.bmAttributes =	USB_ENDPOINT_XFER_CONTROL,
81 };
82 
83 static int ci_pullup(struct usb_gadget *gadget, int is_on);
84 static int ci_ep_enable(struct usb_ep *ep,
85 		const struct usb_endpoint_descriptor *desc);
86 static int ci_ep_disable(struct usb_ep *ep);
87 static int ci_ep_queue(struct usb_ep *ep,
88 		struct usb_request *req, gfp_t gfp_flags);
89 static int ci_ep_dequeue(struct usb_ep *ep, struct usb_request *req);
90 static struct usb_request *
91 ci_ep_alloc_request(struct usb_ep *ep, unsigned int gfp_flags);
92 static void ci_ep_free_request(struct usb_ep *ep, struct usb_request *_req);
93 
94 static struct usb_gadget_ops ci_udc_ops = {
95 	.pullup = ci_pullup,
96 };
97 
98 static struct usb_ep_ops ci_ep_ops = {
99 	.enable         = ci_ep_enable,
100 	.disable        = ci_ep_disable,
101 	.queue          = ci_ep_queue,
102 	.dequeue	= ci_ep_dequeue,
103 	.alloc_request  = ci_ep_alloc_request,
104 	.free_request   = ci_ep_free_request,
105 };
106 
107 __weak void ci_init_after_reset(struct ehci_ctrl *ctrl)
108 {
109 }
110 
111 /* Init values for USB endpoints. */
112 static const struct usb_ep ci_ep_init[5] = {
113 	[0] = {	/* EP 0 */
114 		.maxpacket	= 64,
115 		.name		= "ep0",
116 		.ops		= &ci_ep_ops,
117 	},
118 	[1] = {
119 		.maxpacket	= 512,
120 		.name		= "ep1in-bulk",
121 		.ops		= &ci_ep_ops,
122 	},
123 	[2] = {
124 		.maxpacket	= 512,
125 		.name		= "ep2out-bulk",
126 		.ops		= &ci_ep_ops,
127 	},
128 	[3] = {
129 		.maxpacket	= 512,
130 		.name		= "ep3in-int",
131 		.ops		= &ci_ep_ops,
132 	},
133 	[4] = {
134 		.maxpacket	= 512,
135 		.name		= "ep-",
136 		.ops		= &ci_ep_ops,
137 	},
138 };
139 
140 static struct ci_drv controller = {
141 	.gadget	= {
142 		.name	= "ci_udc",
143 		.ops	= &ci_udc_ops,
144 		.is_dualspeed = 1,
145 	},
146 };
147 
148 /**
149  * ci_get_qh() - return queue head for endpoint
150  * @ep_num:	Endpoint number
151  * @dir_in:	Direction of the endpoint (IN = 1, OUT = 0)
152  *
153  * This function returns the QH associated with particular endpoint
154  * and it's direction.
155  */
156 static struct ept_queue_head *ci_get_qh(int ep_num, int dir_in)
157 {
158 	return &controller.epts[(ep_num * 2) + dir_in];
159 }
160 
161 /**
162  * ci_get_qtd() - return queue item for endpoint
163  * @ep_num:	Endpoint number
164  * @dir_in:	Direction of the endpoint (IN = 1, OUT = 0)
165  *
166  * This function returns the QH associated with particular endpoint
167  * and it's direction.
168  */
169 static struct ept_queue_item *ci_get_qtd(int ep_num, int dir_in)
170 {
171 	int index = (ep_num * 2) + dir_in;
172 	uint8_t *imem = controller.items_mem + (index * ILIST_ENT_SZ);
173 	return (struct ept_queue_item *)imem;
174 }
175 
176 /**
177  * ci_flush_qh - flush cache over queue head
178  * @ep_num:	Endpoint number
179  *
180  * This function flushes cache over QH for particular endpoint.
181  */
182 static void ci_flush_qh(int ep_num)
183 {
184 	struct ept_queue_head *head = ci_get_qh(ep_num, 0);
185 	const unsigned long start = (unsigned long)head;
186 	const unsigned long end = start + 2 * sizeof(*head);
187 
188 	flush_dcache_range(start, end);
189 }
190 
191 /**
192  * ci_invalidate_qh - invalidate cache over queue head
193  * @ep_num:	Endpoint number
194  *
195  * This function invalidates cache over QH for particular endpoint.
196  */
197 static void ci_invalidate_qh(int ep_num)
198 {
199 	struct ept_queue_head *head = ci_get_qh(ep_num, 0);
200 	unsigned long start = (unsigned long)head;
201 	unsigned long end = start + 2 * sizeof(*head);
202 
203 	invalidate_dcache_range(start, end);
204 }
205 
206 /**
207  * ci_flush_qtd - flush cache over queue item
208  * @ep_num:	Endpoint number
209  *
210  * This function flushes cache over qTD pair for particular endpoint.
211  */
212 static void ci_flush_qtd(int ep_num)
213 {
214 	struct ept_queue_item *item = ci_get_qtd(ep_num, 0);
215 	const unsigned long start = (unsigned long)item;
216 	const unsigned long end = start + 2 * ILIST_ENT_SZ;
217 
218 	flush_dcache_range(start, end);
219 }
220 
221 /**
222  * ci_flush_td - flush cache over queue item
223  * @td:	td pointer
224  *
225  * This function flushes cache for particular transfer descriptor.
226  */
227 static void ci_flush_td(struct ept_queue_item *td)
228 {
229 	const unsigned long start = (unsigned long)td;
230 	const unsigned long end = (unsigned long)td + ILIST_ENT_SZ;
231 	flush_dcache_range(start, end);
232 }
233 
234 /**
235  * ci_invalidate_qtd - invalidate cache over queue item
236  * @ep_num:	Endpoint number
237  *
238  * This function invalidates cache over qTD pair for particular endpoint.
239  */
240 static void ci_invalidate_qtd(int ep_num)
241 {
242 	struct ept_queue_item *item = ci_get_qtd(ep_num, 0);
243 	const unsigned long start = (unsigned long)item;
244 	const unsigned long end = start + 2 * ILIST_ENT_SZ;
245 
246 	invalidate_dcache_range(start, end);
247 }
248 
249 /**
250  * ci_invalidate_td - invalidate cache over queue item
251  * @td:	td pointer
252  *
253  * This function invalidates cache for particular transfer descriptor.
254  */
255 static void ci_invalidate_td(struct ept_queue_item *td)
256 {
257 	const unsigned long start = (unsigned long)td;
258 	const unsigned long end = start + ILIST_ENT_SZ;
259 	invalidate_dcache_range(start, end);
260 }
261 
262 static struct usb_request *
263 ci_ep_alloc_request(struct usb_ep *ep, unsigned int gfp_flags)
264 {
265 	struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
266 	int num = -1;
267 	struct ci_req *ci_req;
268 
269 	if (ci_ep->desc)
270 		num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
271 
272 	if (num == 0 && controller.ep0_req)
273 		return &controller.ep0_req->req;
274 
275 	ci_req = calloc(1, sizeof(*ci_req));
276 	if (!ci_req)
277 		return NULL;
278 
279 	INIT_LIST_HEAD(&ci_req->queue);
280 
281 	if (num == 0)
282 		controller.ep0_req = ci_req;
283 
284 	return &ci_req->req;
285 }
286 
287 static void ci_ep_free_request(struct usb_ep *ep, struct usb_request *req)
288 {
289 	struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
290 	struct ci_req *ci_req = container_of(req, struct ci_req, req);
291 	int num = -1;
292 
293 	if (ci_ep->desc)
294 		num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
295 
296 	if (num == 0) {
297 		if (!controller.ep0_req)
298 			return;
299 		controller.ep0_req = 0;
300 	}
301 
302 	if (ci_req->b_buf)
303 		free(ci_req->b_buf);
304 	free(ci_req);
305 }
306 
307 static void ep_enable(int num, int in, int maxpacket)
308 {
309 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
310 	unsigned n;
311 
312 	n = readl(&udc->epctrl[num]);
313 	if (in)
314 		n |= (CTRL_TXE | CTRL_TXR | CTRL_TXT_BULK);
315 	else
316 		n |= (CTRL_RXE | CTRL_RXR | CTRL_RXT_BULK);
317 
318 	if (num != 0) {
319 		struct ept_queue_head *head = ci_get_qh(num, in);
320 
321 		head->config = CONFIG_MAX_PKT(maxpacket) | CONFIG_ZLT;
322 		ci_flush_qh(num);
323 	}
324 	writel(n, &udc->epctrl[num]);
325 }
326 
327 static int ci_ep_enable(struct usb_ep *ep,
328 		const struct usb_endpoint_descriptor *desc)
329 {
330 	struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
331 	int num, in;
332 	num = desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
333 	in = (desc->bEndpointAddress & USB_DIR_IN) != 0;
334 	ci_ep->desc = desc;
335 
336 	if (num) {
337 		int max = get_unaligned_le16(&desc->wMaxPacketSize);
338 
339 		if ((max > 64) && (controller.gadget.speed == USB_SPEED_FULL))
340 			max = 64;
341 		if (ep->maxpacket != max) {
342 			DBG("%s: from %d to %d\n", __func__,
343 			    ep->maxpacket, max);
344 			ep->maxpacket = max;
345 		}
346 	}
347 	ep_enable(num, in, ep->maxpacket);
348 	DBG("%s: num=%d maxpacket=%d\n", __func__, num, ep->maxpacket);
349 	return 0;
350 }
351 
352 static int ci_ep_disable(struct usb_ep *ep)
353 {
354 	struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
355 
356 	ci_ep->desc = NULL;
357 	return 0;
358 }
359 
360 static int ci_bounce(struct ci_req *ci_req, int in)
361 {
362 	struct usb_request *req = &ci_req->req;
363 	unsigned long addr = (unsigned long)req->buf;
364 	unsigned long hwaddr;
365 	uint32_t aligned_used_len;
366 
367 	/* Input buffer address is not aligned. */
368 	if (addr & (ARCH_DMA_MINALIGN - 1))
369 		goto align;
370 
371 	/* Input buffer length is not aligned. */
372 	if (req->length & (ARCH_DMA_MINALIGN - 1))
373 		goto align;
374 
375 	/* The buffer is well aligned, only flush cache. */
376 	ci_req->hw_len = req->length;
377 	ci_req->hw_buf = req->buf;
378 	goto flush;
379 
380 align:
381 	if (ci_req->b_buf && req->length > ci_req->b_len) {
382 		free(ci_req->b_buf);
383 		ci_req->b_buf = 0;
384 	}
385 	if (!ci_req->b_buf) {
386 		ci_req->b_len = roundup(req->length, ARCH_DMA_MINALIGN);
387 		ci_req->b_buf = memalign(ARCH_DMA_MINALIGN, ci_req->b_len);
388 		if (!ci_req->b_buf)
389 			return -ENOMEM;
390 	}
391 	ci_req->hw_len = ci_req->b_len;
392 	ci_req->hw_buf = ci_req->b_buf;
393 
394 	if (in)
395 		memcpy(ci_req->hw_buf, req->buf, req->length);
396 
397 flush:
398 	hwaddr = (unsigned long)ci_req->hw_buf;
399 	aligned_used_len = roundup(req->length, ARCH_DMA_MINALIGN);
400 	flush_dcache_range(hwaddr, hwaddr + aligned_used_len);
401 
402 	return 0;
403 }
404 
405 static void ci_debounce(struct ci_req *ci_req, int in)
406 {
407 	struct usb_request *req = &ci_req->req;
408 	unsigned long addr = (unsigned long)req->buf;
409 	unsigned long hwaddr = (unsigned long)ci_req->hw_buf;
410 	uint32_t aligned_used_len;
411 
412 	if (in)
413 		return;
414 
415 	aligned_used_len = roundup(req->actual, ARCH_DMA_MINALIGN);
416 	invalidate_dcache_range(hwaddr, hwaddr + aligned_used_len);
417 
418 	if (addr == hwaddr)
419 		return; /* not a bounce */
420 
421 	memcpy(req->buf, ci_req->hw_buf, req->actual);
422 }
423 
424 static void ci_ep_submit_next_request(struct ci_ep *ci_ep)
425 {
426 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
427 	struct ept_queue_item *item;
428 	struct ept_queue_head *head;
429 	int bit, num, len, in;
430 	struct ci_req *ci_req;
431 	u8 *buf;
432 	uint32_t len_left, len_this_dtd;
433 	struct ept_queue_item *dtd, *qtd;
434 
435 	ci_ep->req_primed = true;
436 
437 	num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
438 	in = (ci_ep->desc->bEndpointAddress & USB_DIR_IN) != 0;
439 	item = ci_get_qtd(num, in);
440 	head = ci_get_qh(num, in);
441 
442 	ci_req = list_first_entry(&ci_ep->queue, struct ci_req, queue);
443 	len = ci_req->req.length;
444 
445 	head->next = (unsigned long)item;
446 	head->info = 0;
447 
448 	ci_req->dtd_count = 0;
449 	buf = ci_req->hw_buf;
450 	len_left = len;
451 	dtd = item;
452 
453 	do {
454 		len_this_dtd = min(len_left, (unsigned)EP_MAX_LENGTH_TRANSFER);
455 
456 		dtd->info = INFO_BYTES(len_this_dtd) | INFO_ACTIVE;
457 		dtd->page0 = (unsigned long)buf;
458 		dtd->page1 = ((unsigned long)buf & 0xfffff000) + 0x1000;
459 		dtd->page2 = ((unsigned long)buf & 0xfffff000) + 0x2000;
460 		dtd->page3 = ((unsigned long)buf & 0xfffff000) + 0x3000;
461 		dtd->page4 = ((unsigned long)buf & 0xfffff000) + 0x4000;
462 
463 		len_left -= len_this_dtd;
464 		buf += len_this_dtd;
465 
466 		if (len_left) {
467 			qtd = (struct ept_queue_item *)
468 			       memalign(ILIST_ALIGN, ILIST_ENT_SZ);
469 			dtd->next = (unsigned long)qtd;
470 			dtd = qtd;
471 			memset(dtd, 0, ILIST_ENT_SZ);
472 		}
473 
474 		ci_req->dtd_count++;
475 	} while (len_left);
476 
477 	item = dtd;
478 	/*
479 	 * When sending the data for an IN transaction, the attached host
480 	 * knows that all data for the IN is sent when one of the following
481 	 * occurs:
482 	 * a) A zero-length packet is transmitted.
483 	 * b) A packet with length that isn't an exact multiple of the ep's
484 	 *    maxpacket is transmitted.
485 	 * c) Enough data is sent to exactly fill the host's maximum expected
486 	 *    IN transaction size.
487 	 *
488 	 * One of these conditions MUST apply at the end of an IN transaction,
489 	 * or the transaction will not be considered complete by the host. If
490 	 * none of (a)..(c) already applies, then we must force (a) to apply
491 	 * by explicitly sending an extra zero-length packet.
492 	 */
493 	/*  IN    !a     !b                              !c */
494 	if (in && len && !(len % ci_ep->ep.maxpacket) && ci_req->req.zero) {
495 		/*
496 		 * Each endpoint has 2 items allocated, even though typically
497 		 * only 1 is used at a time since either an IN or an OUT but
498 		 * not both is queued. For an IN transaction, item currently
499 		 * points at the second of these items, so we know that we
500 		 * can use the other to transmit the extra zero-length packet.
501 		 */
502 		struct ept_queue_item *other_item = ci_get_qtd(num, 0);
503 		item->next = (unsigned long)other_item;
504 		item = other_item;
505 		item->info = INFO_ACTIVE;
506 	}
507 
508 	item->next = TERMINATE;
509 	item->info |= INFO_IOC;
510 
511 	ci_flush_qtd(num);
512 
513 	item = (struct ept_queue_item *)(unsigned long)head->next;
514 	while (item->next != TERMINATE) {
515 		ci_flush_td((struct ept_queue_item *)(unsigned long)item->next);
516 		item = (struct ept_queue_item *)(unsigned long)item->next;
517 	}
518 
519 	DBG("ept%d %s queue len %x, req %p, buffer %p\n",
520 	    num, in ? "in" : "out", len, ci_req, ci_req->hw_buf);
521 	ci_flush_qh(num);
522 
523 	if (in)
524 		bit = EPT_TX(num);
525 	else
526 		bit = EPT_RX(num);
527 
528 	writel(bit, &udc->epprime);
529 }
530 
531 static int ci_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
532 {
533 	struct ci_ep *ci_ep = container_of(_ep, struct ci_ep, ep);
534 	struct ci_req *ci_req;
535 
536 	list_for_each_entry(ci_req, &ci_ep->queue, queue) {
537 		if (&ci_req->req == _req)
538 			break;
539 	}
540 
541 	if (&ci_req->req != _req)
542 		return -EINVAL;
543 
544 	list_del_init(&ci_req->queue);
545 
546 	if (ci_req->req.status == -EINPROGRESS) {
547 		ci_req->req.status = -ECONNRESET;
548 		if (ci_req->req.complete)
549 			ci_req->req.complete(_ep, _req);
550 	}
551 
552 	return 0;
553 }
554 
555 static int ci_ep_queue(struct usb_ep *ep,
556 		struct usb_request *req, gfp_t gfp_flags)
557 {
558 	struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
559 	struct ci_req *ci_req = container_of(req, struct ci_req, req);
560 	int in, ret;
561 	int __maybe_unused num;
562 
563 	num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
564 	in = (ci_ep->desc->bEndpointAddress & USB_DIR_IN) != 0;
565 
566 	if (!num && ci_ep->req_primed) {
567 		/*
568 		 * The flipping of ep0 between IN and OUT relies on
569 		 * ci_ep_queue consuming the current IN/OUT setting
570 		 * immediately. If this is deferred to a later point when the
571 		 * req is pulled out of ci_req->queue, then the IN/OUT setting
572 		 * may have been changed since the req was queued, and state
573 		 * will get out of sync. This condition doesn't occur today,
574 		 * but could if bugs were introduced later, and this error
575 		 * check will save a lot of debugging time.
576 		 */
577 		printf("%s: ep0 transaction already in progress\n", __func__);
578 		return -EPROTO;
579 	}
580 
581 	ret = ci_bounce(ci_req, in);
582 	if (ret)
583 		return ret;
584 
585 	DBG("ept%d %s pre-queue req %p, buffer %p\n",
586 	    num, in ? "in" : "out", ci_req, ci_req->hw_buf);
587 	list_add_tail(&ci_req->queue, &ci_ep->queue);
588 
589 	if (!ci_ep->req_primed)
590 		ci_ep_submit_next_request(ci_ep);
591 
592 	return 0;
593 }
594 
595 static void flip_ep0_direction(void)
596 {
597 	if (ep0_desc.bEndpointAddress == USB_DIR_IN) {
598 		DBG("%s: Flipping ep0 to OUT\n", __func__);
599 		ep0_desc.bEndpointAddress = 0;
600 	} else {
601 		DBG("%s: Flipping ep0 to IN\n", __func__);
602 		ep0_desc.bEndpointAddress = USB_DIR_IN;
603 	}
604 }
605 
606 static void handle_ep_complete(struct ci_ep *ci_ep)
607 {
608 	struct ept_queue_item *item, *next_td;
609 	int num, in, len, j;
610 	struct ci_req *ci_req;
611 
612 	num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
613 	in = (ci_ep->desc->bEndpointAddress & USB_DIR_IN) != 0;
614 	item = ci_get_qtd(num, in);
615 	ci_invalidate_qtd(num);
616 	ci_req = list_first_entry(&ci_ep->queue, struct ci_req, queue);
617 
618 	next_td = item;
619 	len = 0;
620 	for (j = 0; j < ci_req->dtd_count; j++) {
621 		ci_invalidate_td(next_td);
622 		item = next_td;
623 		len += (item->info >> 16) & 0x7fff;
624 		if (item->info & 0xff)
625 			printf("EP%d/%s FAIL info=%x pg0=%x\n",
626 			       num, in ? "in" : "out", item->info, item->page0);
627 		if (j != ci_req->dtd_count - 1)
628 			next_td = (struct ept_queue_item *)(unsigned long)
629 				item->next;
630 		if (j != 0)
631 			free(item);
632 	}
633 
634 	list_del_init(&ci_req->queue);
635 	ci_ep->req_primed = false;
636 
637 	if (!list_empty(&ci_ep->queue))
638 		ci_ep_submit_next_request(ci_ep);
639 
640 	ci_req->req.actual = ci_req->req.length - len;
641 	ci_debounce(ci_req, in);
642 
643 	DBG("ept%d %s req %p, complete %x\n",
644 	    num, in ? "in" : "out", ci_req, len);
645 	if (num != 0 || controller.ep0_data_phase)
646 		ci_req->req.complete(&ci_ep->ep, &ci_req->req);
647 	if (num == 0 && controller.ep0_data_phase) {
648 		/*
649 		 * Data Stage is complete, so flip ep0 dir for Status Stage,
650 		 * which always transfers a packet in the opposite direction.
651 		 */
652 		DBG("%s: flip ep0 dir for Status Stage\n", __func__);
653 		flip_ep0_direction();
654 		controller.ep0_data_phase = false;
655 		ci_req->req.length = 0;
656 		usb_ep_queue(&ci_ep->ep, &ci_req->req, 0);
657 	}
658 }
659 
660 #define SETUP(type, request) (((type) << 8) | (request))
661 
662 static void handle_setup(void)
663 {
664 	struct ci_ep *ci_ep = &controller.ep[0];
665 	struct ci_req *ci_req;
666 	struct usb_request *req;
667 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
668 	struct ept_queue_head *head;
669 	struct usb_ctrlrequest r;
670 	int status = 0;
671 	int num, in, _num, _in, i;
672 	char *buf;
673 
674 	ci_req = controller.ep0_req;
675 	req = &ci_req->req;
676 	head = ci_get_qh(0, 0);	/* EP0 OUT */
677 
678 	ci_invalidate_qh(0);
679 	memcpy(&r, head->setup_data, sizeof(struct usb_ctrlrequest));
680 #ifdef CONFIG_CI_UDC_HAS_HOSTPC
681 	writel(EPT_RX(0), &udc->epsetupstat);
682 #else
683 	writel(EPT_RX(0), &udc->epstat);
684 #endif
685 	DBG("handle setup %s, %x, %x index %x value %x length %x\n",
686 	    reqname(r.bRequest), r.bRequestType, r.bRequest, r.wIndex,
687 	    r.wValue, r.wLength);
688 
689 	/* Set EP0 dir for Data Stage based on Setup Stage data */
690 	if (r.bRequestType & USB_DIR_IN) {
691 		DBG("%s: Set ep0 to IN for Data Stage\n", __func__);
692 		ep0_desc.bEndpointAddress = USB_DIR_IN;
693 	} else {
694 		DBG("%s: Set ep0 to OUT for Data Stage\n", __func__);
695 		ep0_desc.bEndpointAddress = 0;
696 	}
697 	if (r.wLength) {
698 		controller.ep0_data_phase = true;
699 	} else {
700 		/* 0 length -> no Data Stage. Flip dir for Status Stage */
701 		DBG("%s: 0 length: flip ep0 dir for Status Stage\n", __func__);
702 		flip_ep0_direction();
703 		controller.ep0_data_phase = false;
704 	}
705 
706 	list_del_init(&ci_req->queue);
707 	ci_ep->req_primed = false;
708 
709 	switch (SETUP(r.bRequestType, r.bRequest)) {
710 	case SETUP(USB_RECIP_ENDPOINT, USB_REQ_CLEAR_FEATURE):
711 		_num = r.wIndex & 15;
712 		_in = !!(r.wIndex & 0x80);
713 
714 		if ((r.wValue == 0) && (r.wLength == 0)) {
715 			req->length = 0;
716 			for (i = 0; i < NUM_ENDPOINTS; i++) {
717 				struct ci_ep *ep = &controller.ep[i];
718 
719 				if (!ep->desc)
720 					continue;
721 				num = ep->desc->bEndpointAddress
722 						& USB_ENDPOINT_NUMBER_MASK;
723 				in = (ep->desc->bEndpointAddress
724 						& USB_DIR_IN) != 0;
725 				if ((num == _num) && (in == _in)) {
726 					ep_enable(num, in, ep->ep.maxpacket);
727 					usb_ep_queue(controller.gadget.ep0,
728 							req, 0);
729 					break;
730 				}
731 			}
732 		}
733 		return;
734 
735 	case SETUP(USB_RECIP_DEVICE, USB_REQ_SET_ADDRESS):
736 		/*
737 		 * write address delayed (will take effect
738 		 * after the next IN txn)
739 		 */
740 		writel((r.wValue << 25) | (1 << 24), &udc->devaddr);
741 		req->length = 0;
742 		usb_ep_queue(controller.gadget.ep0, req, 0);
743 		return;
744 
745 	case SETUP(USB_DIR_IN | USB_RECIP_DEVICE, USB_REQ_GET_STATUS):
746 		req->length = 2;
747 		buf = (char *)req->buf;
748 		buf[0] = 1 << USB_DEVICE_SELF_POWERED;
749 		buf[1] = 0;
750 		usb_ep_queue(controller.gadget.ep0, req, 0);
751 		return;
752 	}
753 	/* pass request up to the gadget driver */
754 	if (controller.driver)
755 		status = controller.driver->setup(&controller.gadget, &r);
756 	else
757 		status = -ENODEV;
758 
759 	if (!status)
760 		return;
761 	DBG("STALL reqname %s type %x value %x, index %x\n",
762 	    reqname(r.bRequest), r.bRequestType, r.wValue, r.wIndex);
763 	writel((1<<16) | (1 << 0), &udc->epctrl[0]);
764 }
765 
766 static void stop_activity(void)
767 {
768 	int i, num, in;
769 	struct ept_queue_head *head;
770 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
771 	writel(readl(&udc->epcomp), &udc->epcomp);
772 #ifdef CONFIG_CI_UDC_HAS_HOSTPC
773 	writel(readl(&udc->epsetupstat), &udc->epsetupstat);
774 #endif
775 	writel(readl(&udc->epstat), &udc->epstat);
776 	writel(0xffffffff, &udc->epflush);
777 
778 	/* error out any pending reqs */
779 	for (i = 0; i < NUM_ENDPOINTS; i++) {
780 		if (i != 0)
781 			writel(0, &udc->epctrl[i]);
782 		if (controller.ep[i].desc) {
783 			num = controller.ep[i].desc->bEndpointAddress
784 				& USB_ENDPOINT_NUMBER_MASK;
785 			in = (controller.ep[i].desc->bEndpointAddress
786 				& USB_DIR_IN) != 0;
787 			head = ci_get_qh(num, in);
788 			head->info = INFO_ACTIVE;
789 			ci_flush_qh(num);
790 		}
791 	}
792 }
793 
794 void udc_irq(void)
795 {
796 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
797 	unsigned n = readl(&udc->usbsts);
798 	writel(n, &udc->usbsts);
799 	int bit, i, num, in;
800 
801 	n &= (STS_SLI | STS_URI | STS_PCI | STS_UI | STS_UEI);
802 	if (n == 0)
803 		return;
804 
805 	if (n & STS_URI) {
806 		DBG("-- reset --\n");
807 		stop_activity();
808 	}
809 	if (n & STS_SLI)
810 		DBG("-- suspend --\n");
811 
812 	if (n & STS_PCI) {
813 		int max = 64;
814 		int speed = USB_SPEED_FULL;
815 
816 #ifdef CONFIG_CI_UDC_HAS_HOSTPC
817 		bit = (readl(&udc->hostpc1_devlc) >> 25) & 3;
818 #else
819 		bit = (readl(&udc->portsc) >> 26) & 3;
820 #endif
821 		DBG("-- portchange %x %s\n", bit, (bit == 2) ? "High" : "Full");
822 		if (bit == 2) {
823 			speed = USB_SPEED_HIGH;
824 			max = 512;
825 		}
826 		controller.gadget.speed = speed;
827 		for (i = 1; i < NUM_ENDPOINTS; i++) {
828 			if (controller.ep[i].ep.maxpacket > max)
829 				controller.ep[i].ep.maxpacket = max;
830 		}
831 	}
832 
833 	if (n & STS_UEI)
834 		printf("<UEI %x>\n", readl(&udc->epcomp));
835 
836 	if ((n & STS_UI) || (n & STS_UEI)) {
837 #ifdef CONFIG_CI_UDC_HAS_HOSTPC
838 		n = readl(&udc->epsetupstat);
839 #else
840 		n = readl(&udc->epstat);
841 #endif
842 		if (n & EPT_RX(0))
843 			handle_setup();
844 
845 		n = readl(&udc->epcomp);
846 		if (n != 0)
847 			writel(n, &udc->epcomp);
848 
849 		for (i = 0; i < NUM_ENDPOINTS && n; i++) {
850 			if (controller.ep[i].desc) {
851 				num = controller.ep[i].desc->bEndpointAddress
852 					& USB_ENDPOINT_NUMBER_MASK;
853 				in = (controller.ep[i].desc->bEndpointAddress
854 						& USB_DIR_IN) != 0;
855 				bit = (in) ? EPT_TX(num) : EPT_RX(num);
856 				if (n & bit)
857 					handle_ep_complete(&controller.ep[i]);
858 			}
859 		}
860 	}
861 }
862 
863 int usb_gadget_handle_interrupts(int index)
864 {
865 	u32 value;
866 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
867 
868 	value = readl(&udc->usbsts);
869 	if (value)
870 		udc_irq();
871 
872 	return value;
873 }
874 
875 void udc_disconnect(void)
876 {
877 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
878 	/* disable pullup */
879 	stop_activity();
880 	writel(USBCMD_FS2, &udc->usbcmd);
881 	udelay(800);
882 	if (controller.driver)
883 		controller.driver->disconnect(&controller.gadget);
884 }
885 
886 static int ci_pullup(struct usb_gadget *gadget, int is_on)
887 {
888 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
889 	if (is_on) {
890 		/* RESET */
891 		writel(USBCMD_ITC(MICRO_8FRAME) | USBCMD_RST, &udc->usbcmd);
892 		udelay(200);
893 
894 		ci_init_after_reset(controller.ctrl);
895 
896 		writel((unsigned long)controller.epts, &udc->epinitaddr);
897 
898 		/* select DEVICE mode */
899 		writel(USBMODE_DEVICE, &udc->usbmode);
900 
901 #if !defined(CONFIG_USB_GADGET_DUALSPEED)
902 		/* Port force Full-Speed Connect */
903 		setbits_le32(&udc->portsc, PFSC);
904 #endif
905 
906 		writel(0xffffffff, &udc->epflush);
907 
908 		/* Turn on the USB connection by enabling the pullup resistor */
909 		setbits_le32(&udc->usbcmd, USBCMD_ITC(MICRO_8FRAME) |
910 			     USBCMD_RUN);
911 	} else {
912 		udc_disconnect();
913 	}
914 
915 	return 0;
916 }
917 
918 static int ci_udc_probe(void)
919 {
920 	struct ept_queue_head *head;
921 	int i;
922 
923 	const int num = 2 * NUM_ENDPOINTS;
924 
925 	const int eplist_min_align = 4096;
926 	const int eplist_align = roundup(eplist_min_align, ARCH_DMA_MINALIGN);
927 	const int eplist_raw_sz = num * sizeof(struct ept_queue_head);
928 	const int eplist_sz = roundup(eplist_raw_sz, ARCH_DMA_MINALIGN);
929 
930 	/* The QH list must be aligned to 4096 bytes. */
931 	controller.epts = memalign(eplist_align, eplist_sz);
932 	if (!controller.epts)
933 		return -ENOMEM;
934 	memset(controller.epts, 0, eplist_sz);
935 
936 	controller.items_mem = memalign(ILIST_ALIGN, ILIST_SZ);
937 	if (!controller.items_mem) {
938 		free(controller.epts);
939 		return -ENOMEM;
940 	}
941 	memset(controller.items_mem, 0, ILIST_SZ);
942 
943 	for (i = 0; i < 2 * NUM_ENDPOINTS; i++) {
944 		/*
945 		 * Configure QH for each endpoint. The structure of the QH list
946 		 * is such that each two subsequent fields, N and N+1 where N is
947 		 * even, in the QH list represent QH for one endpoint. The Nth
948 		 * entry represents OUT configuration and the N+1th entry does
949 		 * represent IN configuration of the endpoint.
950 		 */
951 		head = controller.epts + i;
952 		if (i < 2)
953 			head->config = CONFIG_MAX_PKT(EP0_MAX_PACKET_SIZE)
954 				| CONFIG_ZLT | CONFIG_IOS;
955 		else
956 			head->config = CONFIG_MAX_PKT(EP_MAX_PACKET_SIZE)
957 				| CONFIG_ZLT;
958 		head->next = TERMINATE;
959 		head->info = 0;
960 
961 		if (i & 1) {
962 			ci_flush_qh(i / 2);
963 			ci_flush_qtd(i / 2);
964 		}
965 	}
966 
967 	INIT_LIST_HEAD(&controller.gadget.ep_list);
968 
969 	/* Init EP 0 */
970 	memcpy(&controller.ep[0].ep, &ci_ep_init[0], sizeof(*ci_ep_init));
971 	controller.ep[0].desc = &ep0_desc;
972 	INIT_LIST_HEAD(&controller.ep[0].queue);
973 	controller.ep[0].req_primed = false;
974 	controller.gadget.ep0 = &controller.ep[0].ep;
975 	INIT_LIST_HEAD(&controller.gadget.ep0->ep_list);
976 
977 	/* Init EP 1..3 */
978 	for (i = 1; i < 4; i++) {
979 		memcpy(&controller.ep[i].ep, &ci_ep_init[i],
980 		       sizeof(*ci_ep_init));
981 		INIT_LIST_HEAD(&controller.ep[i].queue);
982 		controller.ep[i].req_primed = false;
983 		list_add_tail(&controller.ep[i].ep.ep_list,
984 			      &controller.gadget.ep_list);
985 	}
986 
987 	/* Init EP 4..n */
988 	for (i = 4; i < NUM_ENDPOINTS; i++) {
989 		memcpy(&controller.ep[i].ep, &ci_ep_init[4],
990 		       sizeof(*ci_ep_init));
991 		INIT_LIST_HEAD(&controller.ep[i].queue);
992 		controller.ep[i].req_primed = false;
993 		list_add_tail(&controller.ep[i].ep.ep_list,
994 			      &controller.gadget.ep_list);
995 	}
996 
997 	ci_ep_alloc_request(&controller.ep[0].ep, 0);
998 	if (!controller.ep0_req) {
999 		free(controller.items_mem);
1000 		free(controller.epts);
1001 		return -ENOMEM;
1002 	}
1003 
1004 	return 0;
1005 }
1006 
1007 int usb_gadget_register_driver(struct usb_gadget_driver *driver)
1008 {
1009 	int ret;
1010 
1011 	if (!driver)
1012 		return -EINVAL;
1013 	if (!driver->bind || !driver->setup || !driver->disconnect)
1014 		return -EINVAL;
1015 	if (driver->speed != USB_SPEED_FULL && driver->speed != USB_SPEED_HIGH)
1016 		return -EINVAL;
1017 
1018 #if CONFIG_IS_ENABLED(DM_USB)
1019 	ret = usb_setup_ehci_gadget(&controller.ctrl);
1020 #else
1021 	ret = usb_lowlevel_init(0, USB_INIT_DEVICE, (void **)&controller.ctrl);
1022 #endif
1023 	if (ret)
1024 		return ret;
1025 
1026 	ret = ci_udc_probe();
1027 	if (ret) {
1028 		DBG("udc probe failed, returned %d\n", ret);
1029 		return ret;
1030 	}
1031 
1032 	ret = driver->bind(&controller.gadget);
1033 	if (ret) {
1034 		DBG("driver->bind() returned %d\n", ret);
1035 		return ret;
1036 	}
1037 	controller.driver = driver;
1038 
1039 	return 0;
1040 }
1041 
1042 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
1043 {
1044 	udc_disconnect();
1045 
1046 	driver->unbind(&controller.gadget);
1047 	controller.driver = NULL;
1048 
1049 	ci_ep_free_request(&controller.ep[0].ep, &controller.ep0_req->req);
1050 	free(controller.items_mem);
1051 	free(controller.epts);
1052 
1053 	return 0;
1054 }
1055 
1056 bool dfu_usb_get_reset(void)
1057 {
1058 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
1059 
1060 	return !!(readl(&udc->usbsts) & STS_URI);
1061 }
1062