xref: /openbmc/u-boot/drivers/usb/gadget/ci_udc.c (revision 8379c799)
1 /*
2  * Copyright 2011, Marvell Semiconductor Inc.
3  * Lei Wen <leiwen@marvell.com>
4  *
5  * SPDX-License-Identifier:	GPL-2.0+
6  *
7  * Back ported to the 8xx platform (from the 8260 platform) by
8  * Murray.Jensen@cmst.csiro.au, 27-Jan-01.
9  */
10 
11 #include <common.h>
12 #include <command.h>
13 #include <config.h>
14 #include <net.h>
15 #include <malloc.h>
16 #include <asm/byteorder.h>
17 #include <asm/errno.h>
18 #include <asm/io.h>
19 #include <asm/unaligned.h>
20 #include <linux/types.h>
21 #include <linux/usb/ch9.h>
22 #include <linux/usb/gadget.h>
23 #include <usb/ci_udc.h>
24 #include "../host/ehci.h"
25 #include "ci_udc.h"
26 
27 /*
28  * Check if the system has too long cachelines. If the cachelines are
29  * longer then 128b, the driver will not be able flush/invalidate data
30  * cache over separate QH entries. We use 128b because one QH entry is
31  * 64b long and there are always two QH list entries for each endpoint.
32  */
33 #if ARCH_DMA_MINALIGN > 128
34 #error This driver can not work on systems with caches longer than 128b
35 #endif
36 
37 /*
38  * Every QTD must be individually aligned, since we can program any
39  * QTD's address into HW. Cache flushing requires ARCH_DMA_MINALIGN,
40  * and the USB HW requires 32-byte alignment. Align to both:
41  */
42 #define ILIST_ALIGN		roundup(ARCH_DMA_MINALIGN, 32)
43 /* Each QTD is this size */
44 #define ILIST_ENT_RAW_SZ	sizeof(struct ept_queue_item)
45 /*
46  * Align the size of the QTD too, so we can add this value to each
47  * QTD's address to get another aligned address.
48  */
49 #define ILIST_ENT_SZ		roundup(ILIST_ENT_RAW_SZ, ILIST_ALIGN)
50 /* For each endpoint, we need 2 QTDs, one for each of IN and OUT */
51 #define ILIST_SZ		(NUM_ENDPOINTS * 2 * ILIST_ENT_SZ)
52 
53 #define EP_MAX_LENGTH_TRANSFER	0x4000
54 
55 #ifndef DEBUG
56 #define DBG(x...) do {} while (0)
57 #else
58 #define DBG(x...) printf(x)
59 static const char *reqname(unsigned r)
60 {
61 	switch (r) {
62 	case USB_REQ_GET_STATUS: return "GET_STATUS";
63 	case USB_REQ_CLEAR_FEATURE: return "CLEAR_FEATURE";
64 	case USB_REQ_SET_FEATURE: return "SET_FEATURE";
65 	case USB_REQ_SET_ADDRESS: return "SET_ADDRESS";
66 	case USB_REQ_GET_DESCRIPTOR: return "GET_DESCRIPTOR";
67 	case USB_REQ_SET_DESCRIPTOR: return "SET_DESCRIPTOR";
68 	case USB_REQ_GET_CONFIGURATION: return "GET_CONFIGURATION";
69 	case USB_REQ_SET_CONFIGURATION: return "SET_CONFIGURATION";
70 	case USB_REQ_GET_INTERFACE: return "GET_INTERFACE";
71 	case USB_REQ_SET_INTERFACE: return "SET_INTERFACE";
72 	default: return "*UNKNOWN*";
73 	}
74 }
75 #endif
76 
77 static struct usb_endpoint_descriptor ep0_desc = {
78 	.bLength = sizeof(struct usb_endpoint_descriptor),
79 	.bDescriptorType = USB_DT_ENDPOINT,
80 	.bEndpointAddress = USB_DIR_IN,
81 	.bmAttributes =	USB_ENDPOINT_XFER_CONTROL,
82 };
83 
84 static int ci_pullup(struct usb_gadget *gadget, int is_on);
85 static int ci_ep_enable(struct usb_ep *ep,
86 		const struct usb_endpoint_descriptor *desc);
87 static int ci_ep_disable(struct usb_ep *ep);
88 static int ci_ep_queue(struct usb_ep *ep,
89 		struct usb_request *req, gfp_t gfp_flags);
90 static struct usb_request *
91 ci_ep_alloc_request(struct usb_ep *ep, unsigned int gfp_flags);
92 static void ci_ep_free_request(struct usb_ep *ep, struct usb_request *_req);
93 
94 static struct usb_gadget_ops ci_udc_ops = {
95 	.pullup = ci_pullup,
96 };
97 
98 static struct usb_ep_ops ci_ep_ops = {
99 	.enable         = ci_ep_enable,
100 	.disable        = ci_ep_disable,
101 	.queue          = ci_ep_queue,
102 	.alloc_request  = ci_ep_alloc_request,
103 	.free_request   = ci_ep_free_request,
104 };
105 
106 /* Init values for USB endpoints. */
107 static const struct usb_ep ci_ep_init[5] = {
108 	[0] = {	/* EP 0 */
109 		.maxpacket	= 64,
110 		.name		= "ep0",
111 		.ops		= &ci_ep_ops,
112 	},
113 	[1] = {
114 		.maxpacket	= 512,
115 		.name		= "ep1in-bulk",
116 		.ops		= &ci_ep_ops,
117 	},
118 	[2] = {
119 		.maxpacket	= 512,
120 		.name		= "ep2out-bulk",
121 		.ops		= &ci_ep_ops,
122 	},
123 	[3] = {
124 		.maxpacket	= 512,
125 		.name		= "ep3in-int",
126 		.ops		= &ci_ep_ops,
127 	},
128 	[4] = {
129 		.maxpacket	= 512,
130 		.name		= "ep-",
131 		.ops		= &ci_ep_ops,
132 	},
133 };
134 
135 static struct ci_drv controller = {
136 	.gadget	= {
137 		.name	= "ci_udc",
138 		.ops	= &ci_udc_ops,
139 		.is_dualspeed = 1,
140 	},
141 };
142 
143 /**
144  * ci_get_qh() - return queue head for endpoint
145  * @ep_num:	Endpoint number
146  * @dir_in:	Direction of the endpoint (IN = 1, OUT = 0)
147  *
148  * This function returns the QH associated with particular endpoint
149  * and it's direction.
150  */
151 static struct ept_queue_head *ci_get_qh(int ep_num, int dir_in)
152 {
153 	return &controller.epts[(ep_num * 2) + dir_in];
154 }
155 
156 /**
157  * ci_get_qtd() - return queue item for endpoint
158  * @ep_num:	Endpoint number
159  * @dir_in:	Direction of the endpoint (IN = 1, OUT = 0)
160  *
161  * This function returns the QH associated with particular endpoint
162  * and it's direction.
163  */
164 static struct ept_queue_item *ci_get_qtd(int ep_num, int dir_in)
165 {
166 	int index = (ep_num * 2) + dir_in;
167 	uint8_t *imem = controller.items_mem + (index * ILIST_ENT_SZ);
168 	return (struct ept_queue_item *)imem;
169 }
170 
171 /**
172  * ci_flush_qh - flush cache over queue head
173  * @ep_num:	Endpoint number
174  *
175  * This function flushes cache over QH for particular endpoint.
176  */
177 static void ci_flush_qh(int ep_num)
178 {
179 	struct ept_queue_head *head = ci_get_qh(ep_num, 0);
180 	const unsigned long start = (unsigned long)head;
181 	const unsigned long end = start + 2 * sizeof(*head);
182 
183 	flush_dcache_range(start, end);
184 }
185 
186 /**
187  * ci_invalidate_qh - invalidate cache over queue head
188  * @ep_num:	Endpoint number
189  *
190  * This function invalidates cache over QH for particular endpoint.
191  */
192 static void ci_invalidate_qh(int ep_num)
193 {
194 	struct ept_queue_head *head = ci_get_qh(ep_num, 0);
195 	unsigned long start = (unsigned long)head;
196 	unsigned long end = start + 2 * sizeof(*head);
197 
198 	invalidate_dcache_range(start, end);
199 }
200 
201 /**
202  * ci_flush_qtd - flush cache over queue item
203  * @ep_num:	Endpoint number
204  *
205  * This function flushes cache over qTD pair for particular endpoint.
206  */
207 static void ci_flush_qtd(int ep_num)
208 {
209 	struct ept_queue_item *item = ci_get_qtd(ep_num, 0);
210 	const unsigned long start = (unsigned long)item;
211 	const unsigned long end = start + 2 * ILIST_ENT_SZ;
212 
213 	flush_dcache_range(start, end);
214 }
215 
216 /**
217  * ci_flush_td - flush cache over queue item
218  * @td:	td pointer
219  *
220  * This function flushes cache for particular transfer descriptor.
221  */
222 static void ci_flush_td(struct ept_queue_item *td)
223 {
224 	const uint32_t  start = (uint32_t)td;
225 	const uint32_t end = (uint32_t) td + ILIST_ENT_SZ;
226 	flush_dcache_range(start, end);
227 }
228 
229 /**
230  * ci_invalidate_qtd - invalidate cache over queue item
231  * @ep_num:	Endpoint number
232  *
233  * This function invalidates cache over qTD pair for particular endpoint.
234  */
235 static void ci_invalidate_qtd(int ep_num)
236 {
237 	struct ept_queue_item *item = ci_get_qtd(ep_num, 0);
238 	const unsigned long start = (unsigned long)item;
239 	const unsigned long end = start + 2 * ILIST_ENT_SZ;
240 
241 	invalidate_dcache_range(start, end);
242 }
243 
244 /**
245  * ci_invalidate_td - invalidate cache over queue item
246  * @td:	td pointer
247  *
248  * This function invalidates cache for particular transfer descriptor.
249  */
250 static void ci_invalidate_td(struct ept_queue_item *td)
251 {
252 	const uint32_t start = (uint32_t)td;
253 	const uint32_t end = start + ILIST_ENT_SZ;
254 	invalidate_dcache_range(start, end);
255 }
256 
257 static struct usb_request *
258 ci_ep_alloc_request(struct usb_ep *ep, unsigned int gfp_flags)
259 {
260 	struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
261 	int num;
262 	struct ci_req *ci_req;
263 
264 	num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
265 	if (num == 0 && controller.ep0_req)
266 		return &controller.ep0_req->req;
267 
268 	ci_req = calloc(1, sizeof(*ci_req));
269 	if (!ci_req)
270 		return NULL;
271 
272 	INIT_LIST_HEAD(&ci_req->queue);
273 
274 	if (num == 0)
275 		controller.ep0_req = ci_req;
276 
277 	return &ci_req->req;
278 }
279 
280 static void ci_ep_free_request(struct usb_ep *ep, struct usb_request *req)
281 {
282 	struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
283 	struct ci_req *ci_req = container_of(req, struct ci_req, req);
284 	int num;
285 
286 	num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
287 	if (num == 0) {
288 		if (!controller.ep0_req)
289 			return;
290 		controller.ep0_req = 0;
291 	}
292 
293 	if (ci_req->b_buf)
294 		free(ci_req->b_buf);
295 	free(ci_req);
296 }
297 
298 static void ep_enable(int num, int in, int maxpacket)
299 {
300 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
301 	unsigned n;
302 
303 	n = readl(&udc->epctrl[num]);
304 	if (in)
305 		n |= (CTRL_TXE | CTRL_TXR | CTRL_TXT_BULK);
306 	else
307 		n |= (CTRL_RXE | CTRL_RXR | CTRL_RXT_BULK);
308 
309 	if (num != 0) {
310 		struct ept_queue_head *head = ci_get_qh(num, in);
311 
312 		head->config = CONFIG_MAX_PKT(maxpacket) | CONFIG_ZLT;
313 		ci_flush_qh(num);
314 	}
315 	writel(n, &udc->epctrl[num]);
316 }
317 
318 static int ci_ep_enable(struct usb_ep *ep,
319 		const struct usb_endpoint_descriptor *desc)
320 {
321 	struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
322 	int num, in;
323 	num = desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
324 	in = (desc->bEndpointAddress & USB_DIR_IN) != 0;
325 	ci_ep->desc = desc;
326 
327 	if (num) {
328 		int max = get_unaligned_le16(&desc->wMaxPacketSize);
329 
330 		if ((max > 64) && (controller.gadget.speed == USB_SPEED_FULL))
331 			max = 64;
332 		if (ep->maxpacket != max) {
333 			DBG("%s: from %d to %d\n", __func__,
334 			    ep->maxpacket, max);
335 			ep->maxpacket = max;
336 		}
337 	}
338 	ep_enable(num, in, ep->maxpacket);
339 	DBG("%s: num=%d maxpacket=%d\n", __func__, num, ep->maxpacket);
340 	return 0;
341 }
342 
343 static int ci_ep_disable(struct usb_ep *ep)
344 {
345 	struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
346 
347 	ci_ep->desc = NULL;
348 	return 0;
349 }
350 
351 static int ci_bounce(struct ci_req *ci_req, int in)
352 {
353 	struct usb_request *req = &ci_req->req;
354 	unsigned long addr = (unsigned long)req->buf;
355 	unsigned long hwaddr;
356 	uint32_t aligned_used_len;
357 
358 	/* Input buffer address is not aligned. */
359 	if (addr & (ARCH_DMA_MINALIGN - 1))
360 		goto align;
361 
362 	/* Input buffer length is not aligned. */
363 	if (req->length & (ARCH_DMA_MINALIGN - 1))
364 		goto align;
365 
366 	/* The buffer is well aligned, only flush cache. */
367 	ci_req->hw_len = req->length;
368 	ci_req->hw_buf = req->buf;
369 	goto flush;
370 
371 align:
372 	if (ci_req->b_buf && req->length > ci_req->b_len) {
373 		free(ci_req->b_buf);
374 		ci_req->b_buf = 0;
375 	}
376 	if (!ci_req->b_buf) {
377 		ci_req->b_len = roundup(req->length, ARCH_DMA_MINALIGN);
378 		ci_req->b_buf = memalign(ARCH_DMA_MINALIGN, ci_req->b_len);
379 		if (!ci_req->b_buf)
380 			return -ENOMEM;
381 	}
382 	ci_req->hw_len = ci_req->b_len;
383 	ci_req->hw_buf = ci_req->b_buf;
384 
385 	if (in)
386 		memcpy(ci_req->hw_buf, req->buf, req->length);
387 
388 flush:
389 	hwaddr = (unsigned long)ci_req->hw_buf;
390 	aligned_used_len = roundup(req->length, ARCH_DMA_MINALIGN);
391 	flush_dcache_range(hwaddr, hwaddr + aligned_used_len);
392 
393 	return 0;
394 }
395 
396 static void ci_debounce(struct ci_req *ci_req, int in)
397 {
398 	struct usb_request *req = &ci_req->req;
399 	unsigned long addr = (unsigned long)req->buf;
400 	unsigned long hwaddr = (unsigned long)ci_req->hw_buf;
401 	uint32_t aligned_used_len;
402 
403 	if (in)
404 		return;
405 
406 	aligned_used_len = roundup(req->actual, ARCH_DMA_MINALIGN);
407 	invalidate_dcache_range(hwaddr, hwaddr + aligned_used_len);
408 
409 	if (addr == hwaddr)
410 		return; /* not a bounce */
411 
412 	memcpy(req->buf, ci_req->hw_buf, req->actual);
413 }
414 
415 static void ci_ep_submit_next_request(struct ci_ep *ci_ep)
416 {
417 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
418 	struct ept_queue_item *item;
419 	struct ept_queue_head *head;
420 	int bit, num, len, in;
421 	struct ci_req *ci_req;
422 	u8 *buf;
423 	uint32_t length, actlen;
424 	struct ept_queue_item *dtd, *qtd;
425 
426 	ci_ep->req_primed = true;
427 
428 	num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
429 	in = (ci_ep->desc->bEndpointAddress & USB_DIR_IN) != 0;
430 	item = ci_get_qtd(num, in);
431 	head = ci_get_qh(num, in);
432 
433 	ci_req = list_first_entry(&ci_ep->queue, struct ci_req, queue);
434 	len = ci_req->req.length;
435 
436 	head->next = (unsigned long)item;
437 	head->info = 0;
438 
439 	ci_req->dtd_count = 0;
440 	buf = ci_req->hw_buf;
441 	actlen = 0;
442 	dtd = item;
443 
444 	do {
445 		length = min(ci_req->req.length - actlen,
446 			     (unsigned)EP_MAX_LENGTH_TRANSFER);
447 
448 		dtd->info = INFO_BYTES(length) | INFO_ACTIVE;
449 		dtd->page0 = (unsigned long)buf;
450 		dtd->page1 = ((unsigned long)buf & 0xfffff000) + 0x1000;
451 		dtd->page2 = ((unsigned long)buf & 0xfffff000) + 0x2000;
452 		dtd->page3 = ((unsigned long)buf & 0xfffff000) + 0x3000;
453 		dtd->page4 = ((unsigned long)buf & 0xfffff000) + 0x4000;
454 
455 		len -= length;
456 		actlen += length;
457 		buf += length;
458 
459 		if (len) {
460 			qtd = (struct ept_queue_item *)
461 			       memalign(ILIST_ALIGN, ILIST_ENT_SZ);
462 			dtd->next = (uint32_t)qtd;
463 			dtd = qtd;
464 			memset(dtd, 0, ILIST_ENT_SZ);
465 		}
466 
467 		ci_req->dtd_count++;
468 	} while (len);
469 
470 	item = dtd;
471 	/*
472 	 * When sending the data for an IN transaction, the attached host
473 	 * knows that all data for the IN is sent when one of the following
474 	 * occurs:
475 	 * a) A zero-length packet is transmitted.
476 	 * b) A packet with length that isn't an exact multiple of the ep's
477 	 *    maxpacket is transmitted.
478 	 * c) Enough data is sent to exactly fill the host's maximum expected
479 	 *    IN transaction size.
480 	 *
481 	 * One of these conditions MUST apply at the end of an IN transaction,
482 	 * or the transaction will not be considered complete by the host. If
483 	 * none of (a)..(c) already applies, then we must force (a) to apply
484 	 * by explicitly sending an extra zero-length packet.
485 	 */
486 	/*  IN    !a     !b                              !c */
487 	if (in && len && !(len % ci_ep->ep.maxpacket) && ci_req->req.zero) {
488 		/*
489 		 * Each endpoint has 2 items allocated, even though typically
490 		 * only 1 is used at a time since either an IN or an OUT but
491 		 * not both is queued. For an IN transaction, item currently
492 		 * points at the second of these items, so we know that we
493 		 * can use the other to transmit the extra zero-length packet.
494 		 */
495 		struct ept_queue_item *other_item = ci_get_qtd(num, 0);
496 		item->next = (unsigned long)other_item;
497 		item = other_item;
498 		item->info = INFO_ACTIVE;
499 	}
500 
501 	item->next = TERMINATE;
502 	item->info |= INFO_IOC;
503 
504 	ci_flush_qtd(num);
505 
506 	item = (struct ept_queue_item *)head->next;
507 	while (item->next != TERMINATE) {
508 		ci_flush_td((struct ept_queue_item *)item->next);
509 		item = (struct ept_queue_item *)item->next;
510 	}
511 
512 	DBG("ept%d %s queue len %x, req %p, buffer %p\n",
513 	    num, in ? "in" : "out", len, ci_req, ci_req->hw_buf);
514 	ci_flush_qh(num);
515 
516 	if (in)
517 		bit = EPT_TX(num);
518 	else
519 		bit = EPT_RX(num);
520 
521 	writel(bit, &udc->epprime);
522 }
523 
524 static int ci_ep_queue(struct usb_ep *ep,
525 		struct usb_request *req, gfp_t gfp_flags)
526 {
527 	struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
528 	struct ci_req *ci_req = container_of(req, struct ci_req, req);
529 	int in, ret;
530 	int __maybe_unused num;
531 
532 	num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
533 	in = (ci_ep->desc->bEndpointAddress & USB_DIR_IN) != 0;
534 
535 	if (!num && ci_ep->req_primed) {
536 		/*
537 		 * The flipping of ep0 between IN and OUT relies on
538 		 * ci_ep_queue consuming the current IN/OUT setting
539 		 * immediately. If this is deferred to a later point when the
540 		 * req is pulled out of ci_req->queue, then the IN/OUT setting
541 		 * may have been changed since the req was queued, and state
542 		 * will get out of sync. This condition doesn't occur today,
543 		 * but could if bugs were introduced later, and this error
544 		 * check will save a lot of debugging time.
545 		 */
546 		printf("%s: ep0 transaction already in progress\n", __func__);
547 		return -EPROTO;
548 	}
549 
550 	ret = ci_bounce(ci_req, in);
551 	if (ret)
552 		return ret;
553 
554 	DBG("ept%d %s pre-queue req %p, buffer %p\n",
555 	    num, in ? "in" : "out", ci_req, ci_req->hw_buf);
556 	list_add_tail(&ci_req->queue, &ci_ep->queue);
557 
558 	if (!ci_ep->req_primed)
559 		ci_ep_submit_next_request(ci_ep);
560 
561 	return 0;
562 }
563 
564 static void flip_ep0_direction(void)
565 {
566 	if (ep0_desc.bEndpointAddress == USB_DIR_IN) {
567 		DBG("%s: Flipping ep0 to OUT\n", __func__);
568 		ep0_desc.bEndpointAddress = 0;
569 	} else {
570 		DBG("%s: Flipping ep0 to IN\n", __func__);
571 		ep0_desc.bEndpointAddress = USB_DIR_IN;
572 	}
573 }
574 
575 static void handle_ep_complete(struct ci_ep *ci_ep)
576 {
577 	struct ept_queue_item *item, *next_td;
578 	int num, in, len, j;
579 	struct ci_req *ci_req;
580 
581 	num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
582 	in = (ci_ep->desc->bEndpointAddress & USB_DIR_IN) != 0;
583 	item = ci_get_qtd(num, in);
584 	ci_invalidate_qtd(num);
585 	ci_req = list_first_entry(&ci_ep->queue, struct ci_req, queue);
586 
587 	next_td = item;
588 	len = 0;
589 	for (j = 0; j < ci_req->dtd_count; j++) {
590 		ci_invalidate_td(next_td);
591 		item = next_td;
592 		len += (item->info >> 16) & 0x7fff;
593 		if (item->info & 0xff)
594 			printf("EP%d/%s FAIL info=%x pg0=%x\n",
595 			       num, in ? "in" : "out", item->info, item->page0);
596 		if (j != ci_req->dtd_count - 1)
597 			next_td = (struct ept_queue_item *)item->next;
598 		if (j != 0)
599 			free(item);
600 	}
601 
602 	list_del_init(&ci_req->queue);
603 	ci_ep->req_primed = false;
604 
605 	if (!list_empty(&ci_ep->queue))
606 		ci_ep_submit_next_request(ci_ep);
607 
608 	ci_req->req.actual = ci_req->req.length - len;
609 	ci_debounce(ci_req, in);
610 
611 	DBG("ept%d %s req %p, complete %x\n",
612 	    num, in ? "in" : "out", ci_req, len);
613 	if (num != 0 || controller.ep0_data_phase)
614 		ci_req->req.complete(&ci_ep->ep, &ci_req->req);
615 	if (num == 0 && controller.ep0_data_phase) {
616 		/*
617 		 * Data Stage is complete, so flip ep0 dir for Status Stage,
618 		 * which always transfers a packet in the opposite direction.
619 		 */
620 		DBG("%s: flip ep0 dir for Status Stage\n", __func__);
621 		flip_ep0_direction();
622 		controller.ep0_data_phase = false;
623 		ci_req->req.length = 0;
624 		usb_ep_queue(&ci_ep->ep, &ci_req->req, 0);
625 	}
626 }
627 
628 #define SETUP(type, request) (((type) << 8) | (request))
629 
630 static void handle_setup(void)
631 {
632 	struct ci_ep *ci_ep = &controller.ep[0];
633 	struct ci_req *ci_req;
634 	struct usb_request *req;
635 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
636 	struct ept_queue_head *head;
637 	struct usb_ctrlrequest r;
638 	int status = 0;
639 	int num, in, _num, _in, i;
640 	char *buf;
641 
642 	ci_req = controller.ep0_req;
643 	req = &ci_req->req;
644 	head = ci_get_qh(0, 0);	/* EP0 OUT */
645 
646 	ci_invalidate_qh(0);
647 	memcpy(&r, head->setup_data, sizeof(struct usb_ctrlrequest));
648 #ifdef CONFIG_CI_UDC_HAS_HOSTPC
649 	writel(EPT_RX(0), &udc->epsetupstat);
650 #else
651 	writel(EPT_RX(0), &udc->epstat);
652 #endif
653 	DBG("handle setup %s, %x, %x index %x value %x length %x\n",
654 	    reqname(r.bRequest), r.bRequestType, r.bRequest, r.wIndex,
655 	    r.wValue, r.wLength);
656 
657 	/* Set EP0 dir for Data Stage based on Setup Stage data */
658 	if (r.bRequestType & USB_DIR_IN) {
659 		DBG("%s: Set ep0 to IN for Data Stage\n", __func__);
660 		ep0_desc.bEndpointAddress = USB_DIR_IN;
661 	} else {
662 		DBG("%s: Set ep0 to OUT for Data Stage\n", __func__);
663 		ep0_desc.bEndpointAddress = 0;
664 	}
665 	if (r.wLength) {
666 		controller.ep0_data_phase = true;
667 	} else {
668 		/* 0 length -> no Data Stage. Flip dir for Status Stage */
669 		DBG("%s: 0 length: flip ep0 dir for Status Stage\n", __func__);
670 		flip_ep0_direction();
671 		controller.ep0_data_phase = false;
672 	}
673 
674 	list_del_init(&ci_req->queue);
675 	ci_ep->req_primed = false;
676 
677 	switch (SETUP(r.bRequestType, r.bRequest)) {
678 	case SETUP(USB_RECIP_ENDPOINT, USB_REQ_CLEAR_FEATURE):
679 		_num = r.wIndex & 15;
680 		_in = !!(r.wIndex & 0x80);
681 
682 		if ((r.wValue == 0) && (r.wLength == 0)) {
683 			req->length = 0;
684 			for (i = 0; i < NUM_ENDPOINTS; i++) {
685 				struct ci_ep *ep = &controller.ep[i];
686 
687 				if (!ep->desc)
688 					continue;
689 				num = ep->desc->bEndpointAddress
690 						& USB_ENDPOINT_NUMBER_MASK;
691 				in = (ep->desc->bEndpointAddress
692 						& USB_DIR_IN) != 0;
693 				if ((num == _num) && (in == _in)) {
694 					ep_enable(num, in, ep->ep.maxpacket);
695 					usb_ep_queue(controller.gadget.ep0,
696 							req, 0);
697 					break;
698 				}
699 			}
700 		}
701 		return;
702 
703 	case SETUP(USB_RECIP_DEVICE, USB_REQ_SET_ADDRESS):
704 		/*
705 		 * write address delayed (will take effect
706 		 * after the next IN txn)
707 		 */
708 		writel((r.wValue << 25) | (1 << 24), &udc->devaddr);
709 		req->length = 0;
710 		usb_ep_queue(controller.gadget.ep0, req, 0);
711 		return;
712 
713 	case SETUP(USB_DIR_IN | USB_RECIP_DEVICE, USB_REQ_GET_STATUS):
714 		req->length = 2;
715 		buf = (char *)req->buf;
716 		buf[0] = 1 << USB_DEVICE_SELF_POWERED;
717 		buf[1] = 0;
718 		usb_ep_queue(controller.gadget.ep0, req, 0);
719 		return;
720 	}
721 	/* pass request up to the gadget driver */
722 	if (controller.driver)
723 		status = controller.driver->setup(&controller.gadget, &r);
724 	else
725 		status = -ENODEV;
726 
727 	if (!status)
728 		return;
729 	DBG("STALL reqname %s type %x value %x, index %x\n",
730 	    reqname(r.bRequest), r.bRequestType, r.wValue, r.wIndex);
731 	writel((1<<16) | (1 << 0), &udc->epctrl[0]);
732 }
733 
734 static void stop_activity(void)
735 {
736 	int i, num, in;
737 	struct ept_queue_head *head;
738 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
739 	writel(readl(&udc->epcomp), &udc->epcomp);
740 #ifdef CONFIG_CI_UDC_HAS_HOSTPC
741 	writel(readl(&udc->epsetupstat), &udc->epsetupstat);
742 #endif
743 	writel(readl(&udc->epstat), &udc->epstat);
744 	writel(0xffffffff, &udc->epflush);
745 
746 	/* error out any pending reqs */
747 	for (i = 0; i < NUM_ENDPOINTS; i++) {
748 		if (i != 0)
749 			writel(0, &udc->epctrl[i]);
750 		if (controller.ep[i].desc) {
751 			num = controller.ep[i].desc->bEndpointAddress
752 				& USB_ENDPOINT_NUMBER_MASK;
753 			in = (controller.ep[i].desc->bEndpointAddress
754 				& USB_DIR_IN) != 0;
755 			head = ci_get_qh(num, in);
756 			head->info = INFO_ACTIVE;
757 			ci_flush_qh(num);
758 		}
759 	}
760 }
761 
762 void udc_irq(void)
763 {
764 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
765 	unsigned n = readl(&udc->usbsts);
766 	writel(n, &udc->usbsts);
767 	int bit, i, num, in;
768 
769 	n &= (STS_SLI | STS_URI | STS_PCI | STS_UI | STS_UEI);
770 	if (n == 0)
771 		return;
772 
773 	if (n & STS_URI) {
774 		DBG("-- reset --\n");
775 		stop_activity();
776 	}
777 	if (n & STS_SLI)
778 		DBG("-- suspend --\n");
779 
780 	if (n & STS_PCI) {
781 		int max = 64;
782 		int speed = USB_SPEED_FULL;
783 
784 #ifdef CONFIG_CI_UDC_HAS_HOSTPC
785 		bit = (readl(&udc->hostpc1_devlc) >> 25) & 3;
786 #else
787 		bit = (readl(&udc->portsc) >> 26) & 3;
788 #endif
789 		DBG("-- portchange %x %s\n", bit, (bit == 2) ? "High" : "Full");
790 		if (bit == 2) {
791 			speed = USB_SPEED_HIGH;
792 			max = 512;
793 		}
794 		controller.gadget.speed = speed;
795 		for (i = 1; i < NUM_ENDPOINTS; i++) {
796 			if (controller.ep[i].ep.maxpacket > max)
797 				controller.ep[i].ep.maxpacket = max;
798 		}
799 	}
800 
801 	if (n & STS_UEI)
802 		printf("<UEI %x>\n", readl(&udc->epcomp));
803 
804 	if ((n & STS_UI) || (n & STS_UEI)) {
805 #ifdef CONFIG_CI_UDC_HAS_HOSTPC
806 		n = readl(&udc->epsetupstat);
807 #else
808 		n = readl(&udc->epstat);
809 #endif
810 		if (n & EPT_RX(0))
811 			handle_setup();
812 
813 		n = readl(&udc->epcomp);
814 		if (n != 0)
815 			writel(n, &udc->epcomp);
816 
817 		for (i = 0; i < NUM_ENDPOINTS && n; i++) {
818 			if (controller.ep[i].desc) {
819 				num = controller.ep[i].desc->bEndpointAddress
820 					& USB_ENDPOINT_NUMBER_MASK;
821 				in = (controller.ep[i].desc->bEndpointAddress
822 						& USB_DIR_IN) != 0;
823 				bit = (in) ? EPT_TX(num) : EPT_RX(num);
824 				if (n & bit)
825 					handle_ep_complete(&controller.ep[i]);
826 			}
827 		}
828 	}
829 }
830 
831 int usb_gadget_handle_interrupts(int index)
832 {
833 	u32 value;
834 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
835 
836 	value = readl(&udc->usbsts);
837 	if (value)
838 		udc_irq();
839 
840 	return value;
841 }
842 
843 void udc_disconnect(void)
844 {
845 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
846 	/* disable pullup */
847 	stop_activity();
848 	writel(USBCMD_FS2, &udc->usbcmd);
849 	udelay(800);
850 	if (controller.driver)
851 		controller.driver->disconnect(&controller.gadget);
852 }
853 
854 static int ci_pullup(struct usb_gadget *gadget, int is_on)
855 {
856 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
857 	if (is_on) {
858 		/* RESET */
859 		writel(USBCMD_ITC(MICRO_8FRAME) | USBCMD_RST, &udc->usbcmd);
860 		udelay(200);
861 
862 		writel((unsigned long)controller.epts, &udc->epinitaddr);
863 
864 		/* select DEVICE mode */
865 		writel(USBMODE_DEVICE, &udc->usbmode);
866 
867 #if !defined(CONFIG_USB_GADGET_DUALSPEED)
868 		/* Port force Full-Speed Connect */
869 		setbits_le32(&udc->portsc, PFSC);
870 #endif
871 
872 		writel(0xffffffff, &udc->epflush);
873 
874 		/* Turn on the USB connection by enabling the pullup resistor */
875 		writel(USBCMD_ITC(MICRO_8FRAME) | USBCMD_RUN, &udc->usbcmd);
876 	} else {
877 		udc_disconnect();
878 	}
879 
880 	return 0;
881 }
882 
883 static int ci_udc_probe(void)
884 {
885 	struct ept_queue_head *head;
886 	int i;
887 
888 	const int num = 2 * NUM_ENDPOINTS;
889 
890 	const int eplist_min_align = 4096;
891 	const int eplist_align = roundup(eplist_min_align, ARCH_DMA_MINALIGN);
892 	const int eplist_raw_sz = num * sizeof(struct ept_queue_head);
893 	const int eplist_sz = roundup(eplist_raw_sz, ARCH_DMA_MINALIGN);
894 
895 	/* The QH list must be aligned to 4096 bytes. */
896 	controller.epts = memalign(eplist_align, eplist_sz);
897 	if (!controller.epts)
898 		return -ENOMEM;
899 	memset(controller.epts, 0, eplist_sz);
900 
901 	controller.items_mem = memalign(ILIST_ALIGN, ILIST_SZ);
902 	if (!controller.items_mem) {
903 		free(controller.epts);
904 		return -ENOMEM;
905 	}
906 	memset(controller.items_mem, 0, ILIST_SZ);
907 
908 	for (i = 0; i < 2 * NUM_ENDPOINTS; i++) {
909 		/*
910 		 * Configure QH for each endpoint. The structure of the QH list
911 		 * is such that each two subsequent fields, N and N+1 where N is
912 		 * even, in the QH list represent QH for one endpoint. The Nth
913 		 * entry represents OUT configuration and the N+1th entry does
914 		 * represent IN configuration of the endpoint.
915 		 */
916 		head = controller.epts + i;
917 		if (i < 2)
918 			head->config = CONFIG_MAX_PKT(EP0_MAX_PACKET_SIZE)
919 				| CONFIG_ZLT | CONFIG_IOS;
920 		else
921 			head->config = CONFIG_MAX_PKT(EP_MAX_PACKET_SIZE)
922 				| CONFIG_ZLT;
923 		head->next = TERMINATE;
924 		head->info = 0;
925 
926 		if (i & 1) {
927 			ci_flush_qh(i / 2);
928 			ci_flush_qtd(i / 2);
929 		}
930 	}
931 
932 	INIT_LIST_HEAD(&controller.gadget.ep_list);
933 
934 	/* Init EP 0 */
935 	memcpy(&controller.ep[0].ep, &ci_ep_init[0], sizeof(*ci_ep_init));
936 	controller.ep[0].desc = &ep0_desc;
937 	INIT_LIST_HEAD(&controller.ep[0].queue);
938 	controller.ep[0].req_primed = false;
939 	controller.gadget.ep0 = &controller.ep[0].ep;
940 	INIT_LIST_HEAD(&controller.gadget.ep0->ep_list);
941 
942 	/* Init EP 1..3 */
943 	for (i = 1; i < 4; i++) {
944 		memcpy(&controller.ep[i].ep, &ci_ep_init[i],
945 		       sizeof(*ci_ep_init));
946 		INIT_LIST_HEAD(&controller.ep[i].queue);
947 		controller.ep[i].req_primed = false;
948 		list_add_tail(&controller.ep[i].ep.ep_list,
949 			      &controller.gadget.ep_list);
950 	}
951 
952 	/* Init EP 4..n */
953 	for (i = 4; i < NUM_ENDPOINTS; i++) {
954 		memcpy(&controller.ep[i].ep, &ci_ep_init[4],
955 		       sizeof(*ci_ep_init));
956 		INIT_LIST_HEAD(&controller.ep[i].queue);
957 		controller.ep[i].req_primed = false;
958 		list_add_tail(&controller.ep[i].ep.ep_list,
959 			      &controller.gadget.ep_list);
960 	}
961 
962 	ci_ep_alloc_request(&controller.ep[0].ep, 0);
963 	if (!controller.ep0_req) {
964 		free(controller.items_mem);
965 		free(controller.epts);
966 		return -ENOMEM;
967 	}
968 
969 	return 0;
970 }
971 
972 int usb_gadget_register_driver(struct usb_gadget_driver *driver)
973 {
974 	int ret;
975 
976 	if (!driver)
977 		return -EINVAL;
978 	if (!driver->bind || !driver->setup || !driver->disconnect)
979 		return -EINVAL;
980 	if (driver->speed != USB_SPEED_FULL && driver->speed != USB_SPEED_HIGH)
981 		return -EINVAL;
982 
983 #ifdef CONFIG_DM_USB
984 	ret = usb_setup_ehci_gadget(&controller.ctrl);
985 #else
986 	ret = usb_lowlevel_init(0, USB_INIT_DEVICE, (void **)&controller.ctrl);
987 #endif
988 	if (ret)
989 		return ret;
990 
991 	ret = ci_udc_probe();
992 #if defined(CONFIG_USB_EHCI_MX6) || defined(CONFIG_USB_EHCI_MXS)
993 	/*
994 	 * FIXME: usb_lowlevel_init()->ehci_hcd_init() should be doing all
995 	 * HW-specific initialization, e.g. ULPI-vs-UTMI PHY selection
996 	 */
997 	if (!ret) {
998 		struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
999 
1000 		/* select ULPI phy */
1001 		writel(PTS(PTS_ENABLE) | PFSC, &udc->portsc);
1002 	}
1003 #endif
1004 
1005 	ret = driver->bind(&controller.gadget);
1006 	if (ret) {
1007 		DBG("driver->bind() returned %d\n", ret);
1008 		return ret;
1009 	}
1010 	controller.driver = driver;
1011 
1012 	return 0;
1013 }
1014 
1015 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
1016 {
1017 	udc_disconnect();
1018 
1019 	driver->unbind(&controller.gadget);
1020 	controller.driver = NULL;
1021 
1022 	ci_ep_free_request(&controller.ep[0].ep, &controller.ep0_req->req);
1023 	free(controller.items_mem);
1024 	free(controller.epts);
1025 
1026 	return 0;
1027 }
1028 
1029 bool dfu_usb_get_reset(void)
1030 {
1031 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
1032 
1033 	return !!(readl(&udc->usbsts) & STS_URI);
1034 }
1035