xref: /openbmc/u-boot/drivers/usb/gadget/ci_udc.c (revision 63b4b5ba)
1 /*
2  * Copyright 2011, Marvell Semiconductor Inc.
3  * Lei Wen <leiwen@marvell.com>
4  *
5  * SPDX-License-Identifier:	GPL-2.0+
6  *
7  * Back ported to the 8xx platform (from the 8260 platform) by
8  * Murray.Jensen@cmst.csiro.au, 27-Jan-01.
9  */
10 
11 #include <common.h>
12 #include <command.h>
13 #include <config.h>
14 #include <net.h>
15 #include <malloc.h>
16 #include <asm/byteorder.h>
17 #include <asm/errno.h>
18 #include <asm/io.h>
19 #include <asm/unaligned.h>
20 #include <linux/types.h>
21 #include <linux/usb/ch9.h>
22 #include <linux/usb/gadget.h>
23 #include <usb/ci_udc.h>
24 #include "../host/ehci.h"
25 #include "ci_udc.h"
26 
27 /*
28  * Check if the system has too long cachelines. If the cachelines are
29  * longer then 128b, the driver will not be able flush/invalidate data
30  * cache over separate QH entries. We use 128b because one QH entry is
31  * 64b long and there are always two QH list entries for each endpoint.
32  */
33 #if ARCH_DMA_MINALIGN > 128
34 #error This driver can not work on systems with caches longer than 128b
35 #endif
36 
37 #ifndef DEBUG
38 #define DBG(x...) do {} while (0)
39 #else
40 #define DBG(x...) printf(x)
41 static const char *reqname(unsigned r)
42 {
43 	switch (r) {
44 	case USB_REQ_GET_STATUS: return "GET_STATUS";
45 	case USB_REQ_CLEAR_FEATURE: return "CLEAR_FEATURE";
46 	case USB_REQ_SET_FEATURE: return "SET_FEATURE";
47 	case USB_REQ_SET_ADDRESS: return "SET_ADDRESS";
48 	case USB_REQ_GET_DESCRIPTOR: return "GET_DESCRIPTOR";
49 	case USB_REQ_SET_DESCRIPTOR: return "SET_DESCRIPTOR";
50 	case USB_REQ_GET_CONFIGURATION: return "GET_CONFIGURATION";
51 	case USB_REQ_SET_CONFIGURATION: return "SET_CONFIGURATION";
52 	case USB_REQ_GET_INTERFACE: return "GET_INTERFACE";
53 	case USB_REQ_SET_INTERFACE: return "SET_INTERFACE";
54 	default: return "*UNKNOWN*";
55 	}
56 }
57 #endif
58 
59 static struct usb_endpoint_descriptor ep0_desc = {
60 	.bLength = sizeof(struct usb_endpoint_descriptor),
61 	.bDescriptorType = USB_DT_ENDPOINT,
62 	.bEndpointAddress = USB_DIR_IN,
63 	.bmAttributes =	USB_ENDPOINT_XFER_CONTROL,
64 };
65 
66 static int ci_pullup(struct usb_gadget *gadget, int is_on);
67 static int ci_ep_enable(struct usb_ep *ep,
68 		const struct usb_endpoint_descriptor *desc);
69 static int ci_ep_disable(struct usb_ep *ep);
70 static int ci_ep_queue(struct usb_ep *ep,
71 		struct usb_request *req, gfp_t gfp_flags);
72 static struct usb_request *
73 ci_ep_alloc_request(struct usb_ep *ep, unsigned int gfp_flags);
74 static void ci_ep_free_request(struct usb_ep *ep, struct usb_request *_req);
75 
76 static struct usb_gadget_ops ci_udc_ops = {
77 	.pullup = ci_pullup,
78 };
79 
80 static struct usb_ep_ops ci_ep_ops = {
81 	.enable         = ci_ep_enable,
82 	.disable        = ci_ep_disable,
83 	.queue          = ci_ep_queue,
84 	.alloc_request  = ci_ep_alloc_request,
85 	.free_request   = ci_ep_free_request,
86 };
87 
88 /* Init values for USB endpoints. */
89 static const struct usb_ep ci_ep_init[2] = {
90 	[0] = {	/* EP 0 */
91 		.maxpacket	= 64,
92 		.name		= "ep0",
93 		.ops		= &ci_ep_ops,
94 	},
95 	[1] = {	/* EP 1..n */
96 		.maxpacket	= 512,
97 		.name		= "ep-",
98 		.ops		= &ci_ep_ops,
99 	},
100 };
101 
102 static struct ci_drv controller = {
103 	.gadget	= {
104 		.name	= "ci_udc",
105 		.ops	= &ci_udc_ops,
106 		.is_dualspeed = 1,
107 	},
108 };
109 
110 /**
111  * ci_get_qh() - return queue head for endpoint
112  * @ep_num:	Endpoint number
113  * @dir_in:	Direction of the endpoint (IN = 1, OUT = 0)
114  *
115  * This function returns the QH associated with particular endpoint
116  * and it's direction.
117  */
118 static struct ept_queue_head *ci_get_qh(int ep_num, int dir_in)
119 {
120 	return &controller.epts[(ep_num * 2) + dir_in];
121 }
122 
123 /**
124  * ci_get_qtd() - return queue item for endpoint
125  * @ep_num:	Endpoint number
126  * @dir_in:	Direction of the endpoint (IN = 1, OUT = 0)
127  *
128  * This function returns the QH associated with particular endpoint
129  * and it's direction.
130  */
131 static struct ept_queue_item *ci_get_qtd(int ep_num, int dir_in)
132 {
133 	return controller.items[(ep_num * 2) + dir_in];
134 }
135 
136 /**
137  * ci_flush_qh - flush cache over queue head
138  * @ep_num:	Endpoint number
139  *
140  * This function flushes cache over QH for particular endpoint.
141  */
142 static void ci_flush_qh(int ep_num)
143 {
144 	struct ept_queue_head *head = ci_get_qh(ep_num, 0);
145 	const uint32_t start = (uint32_t)head;
146 	const uint32_t end = start + 2 * sizeof(*head);
147 
148 	flush_dcache_range(start, end);
149 }
150 
151 /**
152  * ci_invalidate_qh - invalidate cache over queue head
153  * @ep_num:	Endpoint number
154  *
155  * This function invalidates cache over QH for particular endpoint.
156  */
157 static void ci_invalidate_qh(int ep_num)
158 {
159 	struct ept_queue_head *head = ci_get_qh(ep_num, 0);
160 	uint32_t start = (uint32_t)head;
161 	uint32_t end = start + 2 * sizeof(*head);
162 
163 	invalidate_dcache_range(start, end);
164 }
165 
166 /**
167  * ci_flush_qtd - flush cache over queue item
168  * @ep_num:	Endpoint number
169  *
170  * This function flushes cache over qTD pair for particular endpoint.
171  */
172 static void ci_flush_qtd(int ep_num)
173 {
174 	struct ept_queue_item *item = ci_get_qtd(ep_num, 0);
175 	const uint32_t start = (uint32_t)item;
176 	const uint32_t end_raw = start + 2 * sizeof(*item);
177 	const uint32_t end = roundup(end_raw, ARCH_DMA_MINALIGN);
178 
179 	flush_dcache_range(start, end);
180 }
181 
182 /**
183  * ci_invalidate_qtd - invalidate cache over queue item
184  * @ep_num:	Endpoint number
185  *
186  * This function invalidates cache over qTD pair for particular endpoint.
187  */
188 static void ci_invalidate_qtd(int ep_num)
189 {
190 	struct ept_queue_item *item = ci_get_qtd(ep_num, 0);
191 	const uint32_t start = (uint32_t)item;
192 	const uint32_t end_raw = start + 2 * sizeof(*item);
193 	const uint32_t end = roundup(end_raw, ARCH_DMA_MINALIGN);
194 
195 	invalidate_dcache_range(start, end);
196 }
197 
198 static struct usb_request *
199 ci_ep_alloc_request(struct usb_ep *ep, unsigned int gfp_flags)
200 {
201 	struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
202 	int num;
203 	struct ci_req *ci_req;
204 
205 	num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
206 	if (num == 0 && controller.ep0_req)
207 		return &controller.ep0_req->req;
208 
209 	ci_req = memalign(ARCH_DMA_MINALIGN, sizeof(*ci_req));
210 	if (!ci_req)
211 		return NULL;
212 
213 	INIT_LIST_HEAD(&ci_req->queue);
214 	ci_req->b_buf = 0;
215 
216 	if (num == 0)
217 		controller.ep0_req = ci_req;
218 
219 	return &ci_req->req;
220 }
221 
222 static void ci_ep_free_request(struct usb_ep *ep, struct usb_request *req)
223 {
224 	struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
225 	struct ci_req *ci_req = container_of(req, struct ci_req, req);
226 	int num;
227 
228 	num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
229 	if (num == 0)
230 		controller.ep0_req = 0;
231 
232 	if (ci_req->b_buf)
233 		free(ci_req->b_buf);
234 	free(ci_req);
235 }
236 
237 static void ep_enable(int num, int in, int maxpacket)
238 {
239 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
240 	unsigned n;
241 
242 	n = readl(&udc->epctrl[num]);
243 	if (in)
244 		n |= (CTRL_TXE | CTRL_TXR | CTRL_TXT_BULK);
245 	else
246 		n |= (CTRL_RXE | CTRL_RXR | CTRL_RXT_BULK);
247 
248 	if (num != 0) {
249 		struct ept_queue_head *head = ci_get_qh(num, in);
250 
251 		head->config = CONFIG_MAX_PKT(maxpacket) | CONFIG_ZLT;
252 		ci_flush_qh(num);
253 	}
254 	writel(n, &udc->epctrl[num]);
255 }
256 
257 static int ci_ep_enable(struct usb_ep *ep,
258 		const struct usb_endpoint_descriptor *desc)
259 {
260 	struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
261 	int num, in;
262 	num = desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
263 	in = (desc->bEndpointAddress & USB_DIR_IN) != 0;
264 	ci_ep->desc = desc;
265 
266 	if (num) {
267 		int max = get_unaligned_le16(&desc->wMaxPacketSize);
268 
269 		if ((max > 64) && (controller.gadget.speed == USB_SPEED_FULL))
270 			max = 64;
271 		if (ep->maxpacket != max) {
272 			DBG("%s: from %d to %d\n", __func__,
273 			    ep->maxpacket, max);
274 			ep->maxpacket = max;
275 		}
276 	}
277 	ep_enable(num, in, ep->maxpacket);
278 	DBG("%s: num=%d maxpacket=%d\n", __func__, num, ep->maxpacket);
279 	return 0;
280 }
281 
282 static int ci_ep_disable(struct usb_ep *ep)
283 {
284 	struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
285 
286 	ci_ep->desc = NULL;
287 	return 0;
288 }
289 
290 static int ci_bounce(struct ci_req *ci_req, int in)
291 {
292 	struct usb_request *req = &ci_req->req;
293 	uint32_t addr = (uint32_t)req->buf;
294 	uint32_t hwaddr;
295 	uint32_t aligned_used_len;
296 
297 	/* Input buffer address is not aligned. */
298 	if (addr & (ARCH_DMA_MINALIGN - 1))
299 		goto align;
300 
301 	/* Input buffer length is not aligned. */
302 	if (req->length & (ARCH_DMA_MINALIGN - 1))
303 		goto align;
304 
305 	/* The buffer is well aligned, only flush cache. */
306 	ci_req->hw_len = req->length;
307 	ci_req->hw_buf = req->buf;
308 	goto flush;
309 
310 align:
311 	if (ci_req->b_buf && req->length > ci_req->b_len) {
312 		free(ci_req->b_buf);
313 		ci_req->b_buf = 0;
314 	}
315 	if (!ci_req->b_buf) {
316 		ci_req->b_len = roundup(req->length, ARCH_DMA_MINALIGN);
317 		ci_req->b_buf = memalign(ARCH_DMA_MINALIGN, ci_req->b_len);
318 		if (!ci_req->b_buf)
319 			return -ENOMEM;
320 	}
321 	ci_req->hw_len = ci_req->b_len;
322 	ci_req->hw_buf = ci_req->b_buf;
323 
324 	if (in)
325 		memcpy(ci_req->hw_buf, req->buf, req->length);
326 
327 flush:
328 	hwaddr = (uint32_t)ci_req->hw_buf;
329 	aligned_used_len = roundup(req->length, ARCH_DMA_MINALIGN);
330 	flush_dcache_range(hwaddr, hwaddr + aligned_used_len);
331 
332 	return 0;
333 }
334 
335 static void ci_debounce(struct ci_req *ci_req, int in)
336 {
337 	struct usb_request *req = &ci_req->req;
338 	uint32_t addr = (uint32_t)req->buf;
339 	uint32_t hwaddr = (uint32_t)ci_req->hw_buf;
340 	uint32_t aligned_used_len;
341 
342 	if (in)
343 		return;
344 
345 	aligned_used_len = roundup(req->actual, ARCH_DMA_MINALIGN);
346 	invalidate_dcache_range(hwaddr, hwaddr + aligned_used_len);
347 
348 	if (addr == hwaddr)
349 		return; /* not a bounce */
350 
351 	memcpy(req->buf, ci_req->hw_buf, req->actual);
352 }
353 
354 static void ci_ep_submit_next_request(struct ci_ep *ci_ep)
355 {
356 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
357 	struct ept_queue_item *item;
358 	struct ept_queue_head *head;
359 	int bit, num, len, in;
360 	struct ci_req *ci_req;
361 
362 	ci_ep->req_primed = true;
363 
364 	num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
365 	in = (ci_ep->desc->bEndpointAddress & USB_DIR_IN) != 0;
366 	item = ci_get_qtd(num, in);
367 	head = ci_get_qh(num, in);
368 
369 	ci_req = list_first_entry(&ci_ep->queue, struct ci_req, queue);
370 	len = ci_req->req.length;
371 
372 	item->info = INFO_BYTES(len) | INFO_ACTIVE;
373 	item->page0 = (uint32_t)ci_req->hw_buf;
374 	item->page1 = ((uint32_t)ci_req->hw_buf & 0xfffff000) + 0x1000;
375 	item->page2 = ((uint32_t)ci_req->hw_buf & 0xfffff000) + 0x2000;
376 	item->page3 = ((uint32_t)ci_req->hw_buf & 0xfffff000) + 0x3000;
377 	item->page4 = ((uint32_t)ci_req->hw_buf & 0xfffff000) + 0x4000;
378 
379 	head->next = (unsigned) item;
380 	head->info = 0;
381 
382 	/*
383 	 * When sending the data for an IN transaction, the attached host
384 	 * knows that all data for the IN is sent when one of the following
385 	 * occurs:
386 	 * a) A zero-length packet is transmitted.
387 	 * b) A packet with length that isn't an exact multiple of the ep's
388 	 *    maxpacket is transmitted.
389 	 * c) Enough data is sent to exactly fill the host's maximum expected
390 	 *    IN transaction size.
391 	 *
392 	 * One of these conditions MUST apply at the end of an IN transaction,
393 	 * or the transaction will not be considered complete by the host. If
394 	 * none of (a)..(c) already applies, then we must force (a) to apply
395 	 * by explicitly sending an extra zero-length packet.
396 	 */
397 	/*  IN    !a     !b                              !c */
398 	if (in && len && !(len % ci_ep->ep.maxpacket) && ci_req->req.zero) {
399 		/*
400 		 * Each endpoint has 2 items allocated, even though typically
401 		 * only 1 is used at a time since either an IN or an OUT but
402 		 * not both is queued. For an IN transaction, item currently
403 		 * points at the second of these items, so we know that we
404 		 * can use (item - 1) to transmit the extra zero-length packet
405 		 */
406 		item->next = (unsigned)(item - 1);
407 		item--;
408 		item->info = INFO_ACTIVE;
409 	}
410 
411 	item->next = TERMINATE;
412 	item->info |= INFO_IOC;
413 
414 	ci_flush_qtd(num);
415 
416 	DBG("ept%d %s queue len %x, req %p, buffer %p\n",
417 	    num, in ? "in" : "out", len, ci_req, ci_req->hw_buf);
418 	ci_flush_qh(num);
419 
420 	if (in)
421 		bit = EPT_TX(num);
422 	else
423 		bit = EPT_RX(num);
424 
425 	writel(bit, &udc->epprime);
426 }
427 
428 static int ci_ep_queue(struct usb_ep *ep,
429 		struct usb_request *req, gfp_t gfp_flags)
430 {
431 	struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
432 	struct ci_req *ci_req = container_of(req, struct ci_req, req);
433 	int in, ret;
434 	int __maybe_unused num;
435 
436 	num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
437 	in = (ci_ep->desc->bEndpointAddress & USB_DIR_IN) != 0;
438 
439 	if (!num && ci_ep->req_primed) {
440 		/*
441 		 * The flipping of ep0 between IN and OUT relies on
442 		 * ci_ep_queue consuming the current IN/OUT setting
443 		 * immediately. If this is deferred to a later point when the
444 		 * req is pulled out of ci_req->queue, then the IN/OUT setting
445 		 * may have been changed since the req was queued, and state
446 		 * will get out of sync. This condition doesn't occur today,
447 		 * but could if bugs were introduced later, and this error
448 		 * check will save a lot of debugging time.
449 		 */
450 		printf("%s: ep0 transaction already in progress\n", __func__);
451 		return -EPROTO;
452 	}
453 
454 	ret = ci_bounce(ci_req, in);
455 	if (ret)
456 		return ret;
457 
458 	DBG("ept%d %s pre-queue req %p, buffer %p\n",
459 	    num, in ? "in" : "out", ci_req, ci_req->hw_buf);
460 	list_add_tail(&ci_req->queue, &ci_ep->queue);
461 
462 	if (!ci_ep->req_primed)
463 		ci_ep_submit_next_request(ci_ep);
464 
465 	return 0;
466 }
467 
468 static void flip_ep0_direction(void)
469 {
470 	if (ep0_desc.bEndpointAddress == USB_DIR_IN) {
471 		DBG("%s: Flipping ep0 ot OUT\n", __func__);
472 		ep0_desc.bEndpointAddress = 0;
473 	} else {
474 		DBG("%s: Flipping ep0 ot IN\n", __func__);
475 		ep0_desc.bEndpointAddress = USB_DIR_IN;
476 	}
477 }
478 
479 static void handle_ep_complete(struct ci_ep *ep)
480 {
481 	struct ept_queue_item *item;
482 	int num, in, len;
483 	struct ci_req *ci_req;
484 
485 	num = ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
486 	in = (ep->desc->bEndpointAddress & USB_DIR_IN) != 0;
487 	item = ci_get_qtd(num, in);
488 	ci_invalidate_qtd(num);
489 
490 	len = (item->info >> 16) & 0x7fff;
491 	if (item->info & 0xff)
492 		printf("EP%d/%s FAIL info=%x pg0=%x\n",
493 		       num, in ? "in" : "out", item->info, item->page0);
494 
495 	ci_req = list_first_entry(&ep->queue, struct ci_req, queue);
496 	list_del_init(&ci_req->queue);
497 	ep->req_primed = false;
498 
499 	if (!list_empty(&ep->queue))
500 		ci_ep_submit_next_request(ep);
501 
502 	ci_req->req.actual = ci_req->req.length - len;
503 	ci_debounce(ci_req, in);
504 
505 	DBG("ept%d %s req %p, complete %x\n",
506 	    num, in ? "in" : "out", ci_req, len);
507 	if (num != 0 || controller.ep0_data_phase)
508 		ci_req->req.complete(&ep->ep, &ci_req->req);
509 	if (num == 0 && controller.ep0_data_phase) {
510 		/*
511 		 * Data Stage is complete, so flip ep0 dir for Status Stage,
512 		 * which always transfers a packet in the opposite direction.
513 		 */
514 		DBG("%s: flip ep0 dir for Status Stage\n", __func__);
515 		flip_ep0_direction();
516 		controller.ep0_data_phase = false;
517 		ci_req->req.length = 0;
518 		usb_ep_queue(&ep->ep, &ci_req->req, 0);
519 	}
520 }
521 
522 #define SETUP(type, request) (((type) << 8) | (request))
523 
524 static void handle_setup(void)
525 {
526 	struct ci_ep *ci_ep = &controller.ep[0];
527 	struct ci_req *ci_req;
528 	struct usb_request *req;
529 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
530 	struct ept_queue_head *head;
531 	struct usb_ctrlrequest r;
532 	int status = 0;
533 	int num, in, _num, _in, i;
534 	char *buf;
535 
536 	ci_req = controller.ep0_req;
537 	req = &ci_req->req;
538 	head = ci_get_qh(0, 0);	/* EP0 OUT */
539 
540 	ci_invalidate_qh(0);
541 	memcpy(&r, head->setup_data, sizeof(struct usb_ctrlrequest));
542 #ifdef CONFIG_CI_UDC_HAS_HOSTPC
543 	writel(EPT_RX(0), &udc->epsetupstat);
544 #else
545 	writel(EPT_RX(0), &udc->epstat);
546 #endif
547 	DBG("handle setup %s, %x, %x index %x value %x length %x\n",
548 	    reqname(r.bRequest), r.bRequestType, r.bRequest, r.wIndex,
549 	    r.wValue, r.wLength);
550 
551 	/* Set EP0 dir for Data Stage based on Setup Stage data */
552 	if (r.bRequestType & USB_DIR_IN) {
553 		DBG("%s: Set ep0 to IN for Data Stage\n", __func__);
554 		ep0_desc.bEndpointAddress = USB_DIR_IN;
555 	} else {
556 		DBG("%s: Set ep0 to OUT for Data Stage\n", __func__);
557 		ep0_desc.bEndpointAddress = 0;
558 	}
559 	if (r.wLength) {
560 		controller.ep0_data_phase = true;
561 	} else {
562 		/* 0 length -> no Data Stage. Flip dir for Status Stage */
563 		DBG("%s: 0 length: flip ep0 dir for Status Stage\n", __func__);
564 		flip_ep0_direction();
565 		controller.ep0_data_phase = false;
566 	}
567 
568 	list_del_init(&ci_req->queue);
569 	ci_ep->req_primed = false;
570 
571 	switch (SETUP(r.bRequestType, r.bRequest)) {
572 	case SETUP(USB_RECIP_ENDPOINT, USB_REQ_CLEAR_FEATURE):
573 		_num = r.wIndex & 15;
574 		_in = !!(r.wIndex & 0x80);
575 
576 		if ((r.wValue == 0) && (r.wLength == 0)) {
577 			req->length = 0;
578 			for (i = 0; i < NUM_ENDPOINTS; i++) {
579 				struct ci_ep *ep = &controller.ep[i];
580 
581 				if (!ep->desc)
582 					continue;
583 				num = ep->desc->bEndpointAddress
584 						& USB_ENDPOINT_NUMBER_MASK;
585 				in = (ep->desc->bEndpointAddress
586 						& USB_DIR_IN) != 0;
587 				if ((num == _num) && (in == _in)) {
588 					ep_enable(num, in, ep->ep.maxpacket);
589 					usb_ep_queue(controller.gadget.ep0,
590 							req, 0);
591 					break;
592 				}
593 			}
594 		}
595 		return;
596 
597 	case SETUP(USB_RECIP_DEVICE, USB_REQ_SET_ADDRESS):
598 		/*
599 		 * write address delayed (will take effect
600 		 * after the next IN txn)
601 		 */
602 		writel((r.wValue << 25) | (1 << 24), &udc->devaddr);
603 		req->length = 0;
604 		usb_ep_queue(controller.gadget.ep0, req, 0);
605 		return;
606 
607 	case SETUP(USB_DIR_IN | USB_RECIP_DEVICE, USB_REQ_GET_STATUS):
608 		req->length = 2;
609 		buf = (char *)req->buf;
610 		buf[0] = 1 << USB_DEVICE_SELF_POWERED;
611 		buf[1] = 0;
612 		usb_ep_queue(controller.gadget.ep0, req, 0);
613 		return;
614 	}
615 	/* pass request up to the gadget driver */
616 	if (controller.driver)
617 		status = controller.driver->setup(&controller.gadget, &r);
618 	else
619 		status = -ENODEV;
620 
621 	if (!status)
622 		return;
623 	DBG("STALL reqname %s type %x value %x, index %x\n",
624 	    reqname(r.bRequest), r.bRequestType, r.wValue, r.wIndex);
625 	writel((1<<16) | (1 << 0), &udc->epctrl[0]);
626 }
627 
628 static void stop_activity(void)
629 {
630 	int i, num, in;
631 	struct ept_queue_head *head;
632 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
633 	writel(readl(&udc->epcomp), &udc->epcomp);
634 #ifdef CONFIG_CI_UDC_HAS_HOSTPC
635 	writel(readl(&udc->epsetupstat), &udc->epsetupstat);
636 #endif
637 	writel(readl(&udc->epstat), &udc->epstat);
638 	writel(0xffffffff, &udc->epflush);
639 
640 	/* error out any pending reqs */
641 	for (i = 0; i < NUM_ENDPOINTS; i++) {
642 		if (i != 0)
643 			writel(0, &udc->epctrl[i]);
644 		if (controller.ep[i].desc) {
645 			num = controller.ep[i].desc->bEndpointAddress
646 				& USB_ENDPOINT_NUMBER_MASK;
647 			in = (controller.ep[i].desc->bEndpointAddress
648 				& USB_DIR_IN) != 0;
649 			head = ci_get_qh(num, in);
650 			head->info = INFO_ACTIVE;
651 			ci_flush_qh(num);
652 		}
653 	}
654 }
655 
656 void udc_irq(void)
657 {
658 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
659 	unsigned n = readl(&udc->usbsts);
660 	writel(n, &udc->usbsts);
661 	int bit, i, num, in;
662 
663 	n &= (STS_SLI | STS_URI | STS_PCI | STS_UI | STS_UEI);
664 	if (n == 0)
665 		return;
666 
667 	if (n & STS_URI) {
668 		DBG("-- reset --\n");
669 		stop_activity();
670 	}
671 	if (n & STS_SLI)
672 		DBG("-- suspend --\n");
673 
674 	if (n & STS_PCI) {
675 		int max = 64;
676 		int speed = USB_SPEED_FULL;
677 
678 #ifdef CONFIG_CI_UDC_HAS_HOSTPC
679 		bit = (readl(&udc->hostpc1_devlc) >> 25) & 3;
680 #else
681 		bit = (readl(&udc->portsc) >> 26) & 3;
682 #endif
683 		DBG("-- portchange %x %s\n", bit, (bit == 2) ? "High" : "Full");
684 		if (bit == 2) {
685 			speed = USB_SPEED_HIGH;
686 			max = 512;
687 		}
688 		controller.gadget.speed = speed;
689 		for (i = 1; i < NUM_ENDPOINTS; i++) {
690 			if (controller.ep[i].ep.maxpacket > max)
691 				controller.ep[i].ep.maxpacket = max;
692 		}
693 	}
694 
695 	if (n & STS_UEI)
696 		printf("<UEI %x>\n", readl(&udc->epcomp));
697 
698 	if ((n & STS_UI) || (n & STS_UEI)) {
699 #ifdef CONFIG_CI_UDC_HAS_HOSTPC
700 		n = readl(&udc->epsetupstat);
701 #else
702 		n = readl(&udc->epstat);
703 #endif
704 		if (n & EPT_RX(0))
705 			handle_setup();
706 
707 		n = readl(&udc->epcomp);
708 		if (n != 0)
709 			writel(n, &udc->epcomp);
710 
711 		for (i = 0; i < NUM_ENDPOINTS && n; i++) {
712 			if (controller.ep[i].desc) {
713 				num = controller.ep[i].desc->bEndpointAddress
714 					& USB_ENDPOINT_NUMBER_MASK;
715 				in = (controller.ep[i].desc->bEndpointAddress
716 						& USB_DIR_IN) != 0;
717 				bit = (in) ? EPT_TX(num) : EPT_RX(num);
718 				if (n & bit)
719 					handle_ep_complete(&controller.ep[i]);
720 			}
721 		}
722 	}
723 }
724 
725 int usb_gadget_handle_interrupts(void)
726 {
727 	u32 value;
728 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
729 
730 	value = readl(&udc->usbsts);
731 	if (value)
732 		udc_irq();
733 
734 	return value;
735 }
736 
737 void udc_disconnect(void)
738 {
739 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
740 	/* disable pullup */
741 	stop_activity();
742 	writel(USBCMD_FS2, &udc->usbcmd);
743 	udelay(800);
744 	if (controller.driver)
745 		controller.driver->disconnect(&controller.gadget);
746 }
747 
748 static int ci_pullup(struct usb_gadget *gadget, int is_on)
749 {
750 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
751 	if (is_on) {
752 		/* RESET */
753 		writel(USBCMD_ITC(MICRO_8FRAME) | USBCMD_RST, &udc->usbcmd);
754 		udelay(200);
755 
756 		writel((unsigned)controller.epts, &udc->epinitaddr);
757 
758 		/* select DEVICE mode */
759 		writel(USBMODE_DEVICE, &udc->usbmode);
760 
761 		writel(0xffffffff, &udc->epflush);
762 
763 		/* Turn on the USB connection by enabling the pullup resistor */
764 		writel(USBCMD_ITC(MICRO_8FRAME) | USBCMD_RUN, &udc->usbcmd);
765 	} else {
766 		udc_disconnect();
767 	}
768 
769 	return 0;
770 }
771 
772 static int ci_udc_probe(void)
773 {
774 	struct ept_queue_head *head;
775 	uint8_t *imem;
776 	int i;
777 
778 	const int num = 2 * NUM_ENDPOINTS;
779 
780 	const int eplist_min_align = 4096;
781 	const int eplist_align = roundup(eplist_min_align, ARCH_DMA_MINALIGN);
782 	const int eplist_raw_sz = num * sizeof(struct ept_queue_head);
783 	const int eplist_sz = roundup(eplist_raw_sz, ARCH_DMA_MINALIGN);
784 
785 	const int ilist_align = roundup(ARCH_DMA_MINALIGN, 32);
786 	const int ilist_ent_raw_sz = 2 * sizeof(struct ept_queue_item);
787 	const int ilist_ent_sz = roundup(ilist_ent_raw_sz, ARCH_DMA_MINALIGN);
788 	const int ilist_sz = NUM_ENDPOINTS * ilist_ent_sz;
789 
790 	/* The QH list must be aligned to 4096 bytes. */
791 	controller.epts = memalign(eplist_align, eplist_sz);
792 	if (!controller.epts)
793 		return -ENOMEM;
794 	memset(controller.epts, 0, eplist_sz);
795 
796 	/*
797 	 * Each qTD item must be 32-byte aligned, each qTD touple must be
798 	 * cacheline aligned. There are two qTD items for each endpoint and
799 	 * only one of them is used for the endpoint at time, so we can group
800 	 * them together.
801 	 */
802 	controller.items_mem = memalign(ilist_align, ilist_sz);
803 	if (!controller.items_mem) {
804 		free(controller.epts);
805 		return -ENOMEM;
806 	}
807 	memset(controller.items_mem, 0, ilist_sz);
808 
809 	for (i = 0; i < 2 * NUM_ENDPOINTS; i++) {
810 		/*
811 		 * Configure QH for each endpoint. The structure of the QH list
812 		 * is such that each two subsequent fields, N and N+1 where N is
813 		 * even, in the QH list represent QH for one endpoint. The Nth
814 		 * entry represents OUT configuration and the N+1th entry does
815 		 * represent IN configuration of the endpoint.
816 		 */
817 		head = controller.epts + i;
818 		if (i < 2)
819 			head->config = CONFIG_MAX_PKT(EP0_MAX_PACKET_SIZE)
820 				| CONFIG_ZLT | CONFIG_IOS;
821 		else
822 			head->config = CONFIG_MAX_PKT(EP_MAX_PACKET_SIZE)
823 				| CONFIG_ZLT;
824 		head->next = TERMINATE;
825 		head->info = 0;
826 
827 		imem = controller.items_mem + ((i >> 1) * ilist_ent_sz);
828 		if (i & 1)
829 			imem += sizeof(struct ept_queue_item);
830 
831 		controller.items[i] = (struct ept_queue_item *)imem;
832 
833 		if (i & 1) {
834 			ci_flush_qh(i - 1);
835 			ci_flush_qtd(i - 1);
836 		}
837 	}
838 
839 	INIT_LIST_HEAD(&controller.gadget.ep_list);
840 
841 	/* Init EP 0 */
842 	memcpy(&controller.ep[0].ep, &ci_ep_init[0], sizeof(*ci_ep_init));
843 	controller.ep[0].desc = &ep0_desc;
844 	INIT_LIST_HEAD(&controller.ep[0].queue);
845 	controller.ep[0].req_primed = false;
846 	controller.gadget.ep0 = &controller.ep[0].ep;
847 	INIT_LIST_HEAD(&controller.gadget.ep0->ep_list);
848 
849 	/* Init EP 1..n */
850 	for (i = 1; i < NUM_ENDPOINTS; i++) {
851 		memcpy(&controller.ep[i].ep, &ci_ep_init[1],
852 		       sizeof(*ci_ep_init));
853 		INIT_LIST_HEAD(&controller.ep[i].queue);
854 		controller.ep[i].req_primed = false;
855 		list_add_tail(&controller.ep[i].ep.ep_list,
856 			      &controller.gadget.ep_list);
857 	}
858 
859 	ci_ep_alloc_request(&controller.ep[0].ep, 0);
860 	if (!controller.ep0_req) {
861 		free(controller.items_mem);
862 		free(controller.epts);
863 		return -ENOMEM;
864 	}
865 
866 	return 0;
867 }
868 
869 int usb_gadget_register_driver(struct usb_gadget_driver *driver)
870 {
871 	int ret;
872 
873 	if (!driver)
874 		return -EINVAL;
875 	if (!driver->bind || !driver->setup || !driver->disconnect)
876 		return -EINVAL;
877 	if (driver->speed != USB_SPEED_FULL && driver->speed != USB_SPEED_HIGH)
878 		return -EINVAL;
879 
880 	ret = usb_lowlevel_init(0, USB_INIT_DEVICE, (void **)&controller.ctrl);
881 	if (ret)
882 		return ret;
883 
884 	ret = ci_udc_probe();
885 #if defined(CONFIG_USB_EHCI_MX6) || defined(CONFIG_USB_EHCI_MXS)
886 	/*
887 	 * FIXME: usb_lowlevel_init()->ehci_hcd_init() should be doing all
888 	 * HW-specific initialization, e.g. ULPI-vs-UTMI PHY selection
889 	 */
890 	if (!ret) {
891 		struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
892 
893 		/* select ULPI phy */
894 		writel(PTS(PTS_ENABLE) | PFSC, &udc->portsc);
895 	}
896 #endif
897 
898 	ret = driver->bind(&controller.gadget);
899 	if (ret) {
900 		DBG("driver->bind() returned %d\n", ret);
901 		return ret;
902 	}
903 	controller.driver = driver;
904 
905 	return 0;
906 }
907 
908 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
909 {
910 	udc_disconnect();
911 
912 	ci_ep_free_request(&controller.ep[0].ep, &controller.ep0_req->req);
913 	free(controller.items_mem);
914 	free(controller.epts);
915 
916 	return 0;
917 }
918