xref: /openbmc/u-boot/drivers/usb/gadget/ci_udc.c (revision 3e3b2b47)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright 2011, Marvell Semiconductor Inc.
4  * Lei Wen <leiwen@marvell.com>
5  *
6  * Back ported to the 8xx platform (from the 8260 platform) by
7  * Murray.Jensen@cmst.csiro.au, 27-Jan-01.
8  */
9 
10 #include <common.h>
11 #include <command.h>
12 #include <config.h>
13 #include <net.h>
14 #include <malloc.h>
15 #include <asm/byteorder.h>
16 #include <linux/errno.h>
17 #include <asm/io.h>
18 #include <asm/unaligned.h>
19 #include <linux/types.h>
20 #include <linux/usb/ch9.h>
21 #include <linux/usb/gadget.h>
22 #include <usb/ci_udc.h>
23 #include "../host/ehci.h"
24 #include "ci_udc.h"
25 
26 /*
27  * Check if the system has too long cachelines. If the cachelines are
28  * longer then 128b, the driver will not be able flush/invalidate data
29  * cache over separate QH entries. We use 128b because one QH entry is
30  * 64b long and there are always two QH list entries for each endpoint.
31  */
32 #if ARCH_DMA_MINALIGN > 128
33 #error This driver can not work on systems with caches longer than 128b
34 #endif
35 
36 /*
37  * Every QTD must be individually aligned, since we can program any
38  * QTD's address into HW. Cache flushing requires ARCH_DMA_MINALIGN,
39  * and the USB HW requires 32-byte alignment. Align to both:
40  */
41 #define ILIST_ALIGN		roundup(ARCH_DMA_MINALIGN, 32)
42 /* Each QTD is this size */
43 #define ILIST_ENT_RAW_SZ	sizeof(struct ept_queue_item)
44 /*
45  * Align the size of the QTD too, so we can add this value to each
46  * QTD's address to get another aligned address.
47  */
48 #define ILIST_ENT_SZ		roundup(ILIST_ENT_RAW_SZ, ILIST_ALIGN)
49 /* For each endpoint, we need 2 QTDs, one for each of IN and OUT */
50 #define ILIST_SZ		(NUM_ENDPOINTS * 2 * ILIST_ENT_SZ)
51 
52 #define EP_MAX_LENGTH_TRANSFER	0x4000
53 
54 #ifndef DEBUG
55 #define DBG(x...) do {} while (0)
56 #else
57 #define DBG(x...) printf(x)
58 static const char *reqname(unsigned r)
59 {
60 	switch (r) {
61 	case USB_REQ_GET_STATUS: return "GET_STATUS";
62 	case USB_REQ_CLEAR_FEATURE: return "CLEAR_FEATURE";
63 	case USB_REQ_SET_FEATURE: return "SET_FEATURE";
64 	case USB_REQ_SET_ADDRESS: return "SET_ADDRESS";
65 	case USB_REQ_GET_DESCRIPTOR: return "GET_DESCRIPTOR";
66 	case USB_REQ_SET_DESCRIPTOR: return "SET_DESCRIPTOR";
67 	case USB_REQ_GET_CONFIGURATION: return "GET_CONFIGURATION";
68 	case USB_REQ_SET_CONFIGURATION: return "SET_CONFIGURATION";
69 	case USB_REQ_GET_INTERFACE: return "GET_INTERFACE";
70 	case USB_REQ_SET_INTERFACE: return "SET_INTERFACE";
71 	default: return "*UNKNOWN*";
72 	}
73 }
74 #endif
75 
76 static struct usb_endpoint_descriptor ep0_desc = {
77 	.bLength = sizeof(struct usb_endpoint_descriptor),
78 	.bDescriptorType = USB_DT_ENDPOINT,
79 	.bEndpointAddress = USB_DIR_IN,
80 	.bmAttributes =	USB_ENDPOINT_XFER_CONTROL,
81 };
82 
83 static int ci_pullup(struct usb_gadget *gadget, int is_on);
84 static int ci_ep_enable(struct usb_ep *ep,
85 		const struct usb_endpoint_descriptor *desc);
86 static int ci_ep_disable(struct usb_ep *ep);
87 static int ci_ep_queue(struct usb_ep *ep,
88 		struct usb_request *req, gfp_t gfp_flags);
89 static int ci_ep_dequeue(struct usb_ep *ep, struct usb_request *req);
90 static struct usb_request *
91 ci_ep_alloc_request(struct usb_ep *ep, unsigned int gfp_flags);
92 static void ci_ep_free_request(struct usb_ep *ep, struct usb_request *_req);
93 
94 static struct usb_gadget_ops ci_udc_ops = {
95 	.pullup = ci_pullup,
96 };
97 
98 static struct usb_ep_ops ci_ep_ops = {
99 	.enable         = ci_ep_enable,
100 	.disable        = ci_ep_disable,
101 	.queue          = ci_ep_queue,
102 	.dequeue	= ci_ep_dequeue,
103 	.alloc_request  = ci_ep_alloc_request,
104 	.free_request   = ci_ep_free_request,
105 };
106 
107 /* Init values for USB endpoints. */
108 static const struct usb_ep ci_ep_init[5] = {
109 	[0] = {	/* EP 0 */
110 		.maxpacket	= 64,
111 		.name		= "ep0",
112 		.ops		= &ci_ep_ops,
113 	},
114 	[1] = {
115 		.maxpacket	= 512,
116 		.name		= "ep1in-bulk",
117 		.ops		= &ci_ep_ops,
118 	},
119 	[2] = {
120 		.maxpacket	= 512,
121 		.name		= "ep2out-bulk",
122 		.ops		= &ci_ep_ops,
123 	},
124 	[3] = {
125 		.maxpacket	= 512,
126 		.name		= "ep3in-int",
127 		.ops		= &ci_ep_ops,
128 	},
129 	[4] = {
130 		.maxpacket	= 512,
131 		.name		= "ep-",
132 		.ops		= &ci_ep_ops,
133 	},
134 };
135 
136 static struct ci_drv controller = {
137 	.gadget	= {
138 		.name	= "ci_udc",
139 		.ops	= &ci_udc_ops,
140 		.is_dualspeed = 1,
141 	},
142 };
143 
144 /**
145  * ci_get_qh() - return queue head for endpoint
146  * @ep_num:	Endpoint number
147  * @dir_in:	Direction of the endpoint (IN = 1, OUT = 0)
148  *
149  * This function returns the QH associated with particular endpoint
150  * and it's direction.
151  */
152 static struct ept_queue_head *ci_get_qh(int ep_num, int dir_in)
153 {
154 	return &controller.epts[(ep_num * 2) + dir_in];
155 }
156 
157 /**
158  * ci_get_qtd() - return queue item for endpoint
159  * @ep_num:	Endpoint number
160  * @dir_in:	Direction of the endpoint (IN = 1, OUT = 0)
161  *
162  * This function returns the QH associated with particular endpoint
163  * and it's direction.
164  */
165 static struct ept_queue_item *ci_get_qtd(int ep_num, int dir_in)
166 {
167 	int index = (ep_num * 2) + dir_in;
168 	uint8_t *imem = controller.items_mem + (index * ILIST_ENT_SZ);
169 	return (struct ept_queue_item *)imem;
170 }
171 
172 /**
173  * ci_flush_qh - flush cache over queue head
174  * @ep_num:	Endpoint number
175  *
176  * This function flushes cache over QH for particular endpoint.
177  */
178 static void ci_flush_qh(int ep_num)
179 {
180 	struct ept_queue_head *head = ci_get_qh(ep_num, 0);
181 	const unsigned long start = (unsigned long)head;
182 	const unsigned long end = start + 2 * sizeof(*head);
183 
184 	flush_dcache_range(start, end);
185 }
186 
187 /**
188  * ci_invalidate_qh - invalidate cache over queue head
189  * @ep_num:	Endpoint number
190  *
191  * This function invalidates cache over QH for particular endpoint.
192  */
193 static void ci_invalidate_qh(int ep_num)
194 {
195 	struct ept_queue_head *head = ci_get_qh(ep_num, 0);
196 	unsigned long start = (unsigned long)head;
197 	unsigned long end = start + 2 * sizeof(*head);
198 
199 	invalidate_dcache_range(start, end);
200 }
201 
202 /**
203  * ci_flush_qtd - flush cache over queue item
204  * @ep_num:	Endpoint number
205  *
206  * This function flushes cache over qTD pair for particular endpoint.
207  */
208 static void ci_flush_qtd(int ep_num)
209 {
210 	struct ept_queue_item *item = ci_get_qtd(ep_num, 0);
211 	const unsigned long start = (unsigned long)item;
212 	const unsigned long end = start + 2 * ILIST_ENT_SZ;
213 
214 	flush_dcache_range(start, end);
215 }
216 
217 /**
218  * ci_flush_td - flush cache over queue item
219  * @td:	td pointer
220  *
221  * This function flushes cache for particular transfer descriptor.
222  */
223 static void ci_flush_td(struct ept_queue_item *td)
224 {
225 	const unsigned long start = (unsigned long)td;
226 	const unsigned long end = (unsigned long)td + ILIST_ENT_SZ;
227 	flush_dcache_range(start, end);
228 }
229 
230 /**
231  * ci_invalidate_qtd - invalidate cache over queue item
232  * @ep_num:	Endpoint number
233  *
234  * This function invalidates cache over qTD pair for particular endpoint.
235  */
236 static void ci_invalidate_qtd(int ep_num)
237 {
238 	struct ept_queue_item *item = ci_get_qtd(ep_num, 0);
239 	const unsigned long start = (unsigned long)item;
240 	const unsigned long end = start + 2 * ILIST_ENT_SZ;
241 
242 	invalidate_dcache_range(start, end);
243 }
244 
245 /**
246  * ci_invalidate_td - invalidate cache over queue item
247  * @td:	td pointer
248  *
249  * This function invalidates cache for particular transfer descriptor.
250  */
251 static void ci_invalidate_td(struct ept_queue_item *td)
252 {
253 	const unsigned long start = (unsigned long)td;
254 	const unsigned long end = start + ILIST_ENT_SZ;
255 	invalidate_dcache_range(start, end);
256 }
257 
258 static struct usb_request *
259 ci_ep_alloc_request(struct usb_ep *ep, unsigned int gfp_flags)
260 {
261 	struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
262 	int num = -1;
263 	struct ci_req *ci_req;
264 
265 	if (ci_ep->desc)
266 		num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
267 
268 	if (num == 0 && controller.ep0_req)
269 		return &controller.ep0_req->req;
270 
271 	ci_req = calloc(1, sizeof(*ci_req));
272 	if (!ci_req)
273 		return NULL;
274 
275 	INIT_LIST_HEAD(&ci_req->queue);
276 
277 	if (num == 0)
278 		controller.ep0_req = ci_req;
279 
280 	return &ci_req->req;
281 }
282 
283 static void ci_ep_free_request(struct usb_ep *ep, struct usb_request *req)
284 {
285 	struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
286 	struct ci_req *ci_req = container_of(req, struct ci_req, req);
287 	int num = -1;
288 
289 	if (ci_ep->desc)
290 		num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
291 
292 	if (num == 0) {
293 		if (!controller.ep0_req)
294 			return;
295 		controller.ep0_req = 0;
296 	}
297 
298 	if (ci_req->b_buf)
299 		free(ci_req->b_buf);
300 	free(ci_req);
301 }
302 
303 static void ep_enable(int num, int in, int maxpacket)
304 {
305 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
306 	unsigned n;
307 
308 	n = readl(&udc->epctrl[num]);
309 	if (in)
310 		n |= (CTRL_TXE | CTRL_TXR | CTRL_TXT_BULK);
311 	else
312 		n |= (CTRL_RXE | CTRL_RXR | CTRL_RXT_BULK);
313 
314 	if (num != 0) {
315 		struct ept_queue_head *head = ci_get_qh(num, in);
316 
317 		head->config = CONFIG_MAX_PKT(maxpacket) | CONFIG_ZLT;
318 		ci_flush_qh(num);
319 	}
320 	writel(n, &udc->epctrl[num]);
321 }
322 
323 static int ci_ep_enable(struct usb_ep *ep,
324 		const struct usb_endpoint_descriptor *desc)
325 {
326 	struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
327 	int num, in;
328 	num = desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
329 	in = (desc->bEndpointAddress & USB_DIR_IN) != 0;
330 	ci_ep->desc = desc;
331 
332 	if (num) {
333 		int max = get_unaligned_le16(&desc->wMaxPacketSize);
334 
335 		if ((max > 64) && (controller.gadget.speed == USB_SPEED_FULL))
336 			max = 64;
337 		if (ep->maxpacket != max) {
338 			DBG("%s: from %d to %d\n", __func__,
339 			    ep->maxpacket, max);
340 			ep->maxpacket = max;
341 		}
342 	}
343 	ep_enable(num, in, ep->maxpacket);
344 	DBG("%s: num=%d maxpacket=%d\n", __func__, num, ep->maxpacket);
345 	return 0;
346 }
347 
348 static int ci_ep_disable(struct usb_ep *ep)
349 {
350 	struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
351 
352 	ci_ep->desc = NULL;
353 	return 0;
354 }
355 
356 static int ci_bounce(struct ci_req *ci_req, int in)
357 {
358 	struct usb_request *req = &ci_req->req;
359 	unsigned long addr = (unsigned long)req->buf;
360 	unsigned long hwaddr;
361 	uint32_t aligned_used_len;
362 
363 	/* Input buffer address is not aligned. */
364 	if (addr & (ARCH_DMA_MINALIGN - 1))
365 		goto align;
366 
367 	/* Input buffer length is not aligned. */
368 	if (req->length & (ARCH_DMA_MINALIGN - 1))
369 		goto align;
370 
371 	/* The buffer is well aligned, only flush cache. */
372 	ci_req->hw_len = req->length;
373 	ci_req->hw_buf = req->buf;
374 	goto flush;
375 
376 align:
377 	if (ci_req->b_buf && req->length > ci_req->b_len) {
378 		free(ci_req->b_buf);
379 		ci_req->b_buf = 0;
380 	}
381 	if (!ci_req->b_buf) {
382 		ci_req->b_len = roundup(req->length, ARCH_DMA_MINALIGN);
383 		ci_req->b_buf = memalign(ARCH_DMA_MINALIGN, ci_req->b_len);
384 		if (!ci_req->b_buf)
385 			return -ENOMEM;
386 	}
387 	ci_req->hw_len = ci_req->b_len;
388 	ci_req->hw_buf = ci_req->b_buf;
389 
390 	if (in)
391 		memcpy(ci_req->hw_buf, req->buf, req->length);
392 
393 flush:
394 	hwaddr = (unsigned long)ci_req->hw_buf;
395 	aligned_used_len = roundup(req->length, ARCH_DMA_MINALIGN);
396 	flush_dcache_range(hwaddr, hwaddr + aligned_used_len);
397 
398 	return 0;
399 }
400 
401 static void ci_debounce(struct ci_req *ci_req, int in)
402 {
403 	struct usb_request *req = &ci_req->req;
404 	unsigned long addr = (unsigned long)req->buf;
405 	unsigned long hwaddr = (unsigned long)ci_req->hw_buf;
406 	uint32_t aligned_used_len;
407 
408 	if (in)
409 		return;
410 
411 	aligned_used_len = roundup(req->actual, ARCH_DMA_MINALIGN);
412 	invalidate_dcache_range(hwaddr, hwaddr + aligned_used_len);
413 
414 	if (addr == hwaddr)
415 		return; /* not a bounce */
416 
417 	memcpy(req->buf, ci_req->hw_buf, req->actual);
418 }
419 
420 static void ci_ep_submit_next_request(struct ci_ep *ci_ep)
421 {
422 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
423 	struct ept_queue_item *item;
424 	struct ept_queue_head *head;
425 	int bit, num, len, in;
426 	struct ci_req *ci_req;
427 	u8 *buf;
428 	uint32_t len_left, len_this_dtd;
429 	struct ept_queue_item *dtd, *qtd;
430 
431 	ci_ep->req_primed = true;
432 
433 	num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
434 	in = (ci_ep->desc->bEndpointAddress & USB_DIR_IN) != 0;
435 	item = ci_get_qtd(num, in);
436 	head = ci_get_qh(num, in);
437 
438 	ci_req = list_first_entry(&ci_ep->queue, struct ci_req, queue);
439 	len = ci_req->req.length;
440 
441 	head->next = (unsigned long)item;
442 	head->info = 0;
443 
444 	ci_req->dtd_count = 0;
445 	buf = ci_req->hw_buf;
446 	len_left = len;
447 	dtd = item;
448 
449 	do {
450 		len_this_dtd = min(len_left, (unsigned)EP_MAX_LENGTH_TRANSFER);
451 
452 		dtd->info = INFO_BYTES(len_this_dtd) | INFO_ACTIVE;
453 		dtd->page0 = (unsigned long)buf;
454 		dtd->page1 = ((unsigned long)buf & 0xfffff000) + 0x1000;
455 		dtd->page2 = ((unsigned long)buf & 0xfffff000) + 0x2000;
456 		dtd->page3 = ((unsigned long)buf & 0xfffff000) + 0x3000;
457 		dtd->page4 = ((unsigned long)buf & 0xfffff000) + 0x4000;
458 
459 		len_left -= len_this_dtd;
460 		buf += len_this_dtd;
461 
462 		if (len_left) {
463 			qtd = (struct ept_queue_item *)
464 			       memalign(ILIST_ALIGN, ILIST_ENT_SZ);
465 			dtd->next = (unsigned long)qtd;
466 			dtd = qtd;
467 			memset(dtd, 0, ILIST_ENT_SZ);
468 		}
469 
470 		ci_req->dtd_count++;
471 	} while (len_left);
472 
473 	item = dtd;
474 	/*
475 	 * When sending the data for an IN transaction, the attached host
476 	 * knows that all data for the IN is sent when one of the following
477 	 * occurs:
478 	 * a) A zero-length packet is transmitted.
479 	 * b) A packet with length that isn't an exact multiple of the ep's
480 	 *    maxpacket is transmitted.
481 	 * c) Enough data is sent to exactly fill the host's maximum expected
482 	 *    IN transaction size.
483 	 *
484 	 * One of these conditions MUST apply at the end of an IN transaction,
485 	 * or the transaction will not be considered complete by the host. If
486 	 * none of (a)..(c) already applies, then we must force (a) to apply
487 	 * by explicitly sending an extra zero-length packet.
488 	 */
489 	/*  IN    !a     !b                              !c */
490 	if (in && len && !(len % ci_ep->ep.maxpacket) && ci_req->req.zero) {
491 		/*
492 		 * Each endpoint has 2 items allocated, even though typically
493 		 * only 1 is used at a time since either an IN or an OUT but
494 		 * not both is queued. For an IN transaction, item currently
495 		 * points at the second of these items, so we know that we
496 		 * can use the other to transmit the extra zero-length packet.
497 		 */
498 		struct ept_queue_item *other_item = ci_get_qtd(num, 0);
499 		item->next = (unsigned long)other_item;
500 		item = other_item;
501 		item->info = INFO_ACTIVE;
502 	}
503 
504 	item->next = TERMINATE;
505 	item->info |= INFO_IOC;
506 
507 	ci_flush_qtd(num);
508 
509 	item = (struct ept_queue_item *)(unsigned long)head->next;
510 	while (item->next != TERMINATE) {
511 		ci_flush_td((struct ept_queue_item *)(unsigned long)item->next);
512 		item = (struct ept_queue_item *)(unsigned long)item->next;
513 	}
514 
515 	DBG("ept%d %s queue len %x, req %p, buffer %p\n",
516 	    num, in ? "in" : "out", len, ci_req, ci_req->hw_buf);
517 	ci_flush_qh(num);
518 
519 	if (in)
520 		bit = EPT_TX(num);
521 	else
522 		bit = EPT_RX(num);
523 
524 	writel(bit, &udc->epprime);
525 }
526 
527 static int ci_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
528 {
529 	struct ci_ep *ci_ep = container_of(_ep, struct ci_ep, ep);
530 	struct ci_req *ci_req;
531 
532 	list_for_each_entry(ci_req, &ci_ep->queue, queue) {
533 		if (&ci_req->req == _req)
534 			break;
535 	}
536 
537 	if (&ci_req->req != _req)
538 		return -EINVAL;
539 
540 	list_del_init(&ci_req->queue);
541 
542 	if (ci_req->req.status == -EINPROGRESS) {
543 		ci_req->req.status = -ECONNRESET;
544 		if (ci_req->req.complete)
545 			ci_req->req.complete(_ep, _req);
546 	}
547 
548 	return 0;
549 }
550 
551 static int ci_ep_queue(struct usb_ep *ep,
552 		struct usb_request *req, gfp_t gfp_flags)
553 {
554 	struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
555 	struct ci_req *ci_req = container_of(req, struct ci_req, req);
556 	int in, ret;
557 	int __maybe_unused num;
558 
559 	num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
560 	in = (ci_ep->desc->bEndpointAddress & USB_DIR_IN) != 0;
561 
562 	if (!num && ci_ep->req_primed) {
563 		/*
564 		 * The flipping of ep0 between IN and OUT relies on
565 		 * ci_ep_queue consuming the current IN/OUT setting
566 		 * immediately. If this is deferred to a later point when the
567 		 * req is pulled out of ci_req->queue, then the IN/OUT setting
568 		 * may have been changed since the req was queued, and state
569 		 * will get out of sync. This condition doesn't occur today,
570 		 * but could if bugs were introduced later, and this error
571 		 * check will save a lot of debugging time.
572 		 */
573 		printf("%s: ep0 transaction already in progress\n", __func__);
574 		return -EPROTO;
575 	}
576 
577 	ret = ci_bounce(ci_req, in);
578 	if (ret)
579 		return ret;
580 
581 	DBG("ept%d %s pre-queue req %p, buffer %p\n",
582 	    num, in ? "in" : "out", ci_req, ci_req->hw_buf);
583 	list_add_tail(&ci_req->queue, &ci_ep->queue);
584 
585 	if (!ci_ep->req_primed)
586 		ci_ep_submit_next_request(ci_ep);
587 
588 	return 0;
589 }
590 
591 static void flip_ep0_direction(void)
592 {
593 	if (ep0_desc.bEndpointAddress == USB_DIR_IN) {
594 		DBG("%s: Flipping ep0 to OUT\n", __func__);
595 		ep0_desc.bEndpointAddress = 0;
596 	} else {
597 		DBG("%s: Flipping ep0 to IN\n", __func__);
598 		ep0_desc.bEndpointAddress = USB_DIR_IN;
599 	}
600 }
601 
602 static void handle_ep_complete(struct ci_ep *ci_ep)
603 {
604 	struct ept_queue_item *item, *next_td;
605 	int num, in, len, j;
606 	struct ci_req *ci_req;
607 
608 	num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
609 	in = (ci_ep->desc->bEndpointAddress & USB_DIR_IN) != 0;
610 	item = ci_get_qtd(num, in);
611 	ci_invalidate_qtd(num);
612 	ci_req = list_first_entry(&ci_ep->queue, struct ci_req, queue);
613 
614 	next_td = item;
615 	len = 0;
616 	for (j = 0; j < ci_req->dtd_count; j++) {
617 		ci_invalidate_td(next_td);
618 		item = next_td;
619 		len += (item->info >> 16) & 0x7fff;
620 		if (item->info & 0xff)
621 			printf("EP%d/%s FAIL info=%x pg0=%x\n",
622 			       num, in ? "in" : "out", item->info, item->page0);
623 		if (j != ci_req->dtd_count - 1)
624 			next_td = (struct ept_queue_item *)(unsigned long)
625 				item->next;
626 		if (j != 0)
627 			free(item);
628 	}
629 
630 	list_del_init(&ci_req->queue);
631 	ci_ep->req_primed = false;
632 
633 	if (!list_empty(&ci_ep->queue))
634 		ci_ep_submit_next_request(ci_ep);
635 
636 	ci_req->req.actual = ci_req->req.length - len;
637 	ci_debounce(ci_req, in);
638 
639 	DBG("ept%d %s req %p, complete %x\n",
640 	    num, in ? "in" : "out", ci_req, len);
641 	if (num != 0 || controller.ep0_data_phase)
642 		ci_req->req.complete(&ci_ep->ep, &ci_req->req);
643 	if (num == 0 && controller.ep0_data_phase) {
644 		/*
645 		 * Data Stage is complete, so flip ep0 dir for Status Stage,
646 		 * which always transfers a packet in the opposite direction.
647 		 */
648 		DBG("%s: flip ep0 dir for Status Stage\n", __func__);
649 		flip_ep0_direction();
650 		controller.ep0_data_phase = false;
651 		ci_req->req.length = 0;
652 		usb_ep_queue(&ci_ep->ep, &ci_req->req, 0);
653 	}
654 }
655 
656 #define SETUP(type, request) (((type) << 8) | (request))
657 
658 static void handle_setup(void)
659 {
660 	struct ci_ep *ci_ep = &controller.ep[0];
661 	struct ci_req *ci_req;
662 	struct usb_request *req;
663 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
664 	struct ept_queue_head *head;
665 	struct usb_ctrlrequest r;
666 	int status = 0;
667 	int num, in, _num, _in, i;
668 	char *buf;
669 
670 	ci_req = controller.ep0_req;
671 	req = &ci_req->req;
672 	head = ci_get_qh(0, 0);	/* EP0 OUT */
673 
674 	ci_invalidate_qh(0);
675 	memcpy(&r, head->setup_data, sizeof(struct usb_ctrlrequest));
676 #ifdef CONFIG_CI_UDC_HAS_HOSTPC
677 	writel(EPT_RX(0), &udc->epsetupstat);
678 #else
679 	writel(EPT_RX(0), &udc->epstat);
680 #endif
681 	DBG("handle setup %s, %x, %x index %x value %x length %x\n",
682 	    reqname(r.bRequest), r.bRequestType, r.bRequest, r.wIndex,
683 	    r.wValue, r.wLength);
684 
685 	/* Set EP0 dir for Data Stage based on Setup Stage data */
686 	if (r.bRequestType & USB_DIR_IN) {
687 		DBG("%s: Set ep0 to IN for Data Stage\n", __func__);
688 		ep0_desc.bEndpointAddress = USB_DIR_IN;
689 	} else {
690 		DBG("%s: Set ep0 to OUT for Data Stage\n", __func__);
691 		ep0_desc.bEndpointAddress = 0;
692 	}
693 	if (r.wLength) {
694 		controller.ep0_data_phase = true;
695 	} else {
696 		/* 0 length -> no Data Stage. Flip dir for Status Stage */
697 		DBG("%s: 0 length: flip ep0 dir for Status Stage\n", __func__);
698 		flip_ep0_direction();
699 		controller.ep0_data_phase = false;
700 	}
701 
702 	list_del_init(&ci_req->queue);
703 	ci_ep->req_primed = false;
704 
705 	switch (SETUP(r.bRequestType, r.bRequest)) {
706 	case SETUP(USB_RECIP_ENDPOINT, USB_REQ_CLEAR_FEATURE):
707 		_num = r.wIndex & 15;
708 		_in = !!(r.wIndex & 0x80);
709 
710 		if ((r.wValue == 0) && (r.wLength == 0)) {
711 			req->length = 0;
712 			for (i = 0; i < NUM_ENDPOINTS; i++) {
713 				struct ci_ep *ep = &controller.ep[i];
714 
715 				if (!ep->desc)
716 					continue;
717 				num = ep->desc->bEndpointAddress
718 						& USB_ENDPOINT_NUMBER_MASK;
719 				in = (ep->desc->bEndpointAddress
720 						& USB_DIR_IN) != 0;
721 				if ((num == _num) && (in == _in)) {
722 					ep_enable(num, in, ep->ep.maxpacket);
723 					usb_ep_queue(controller.gadget.ep0,
724 							req, 0);
725 					break;
726 				}
727 			}
728 		}
729 		return;
730 
731 	case SETUP(USB_RECIP_DEVICE, USB_REQ_SET_ADDRESS):
732 		/*
733 		 * write address delayed (will take effect
734 		 * after the next IN txn)
735 		 */
736 		writel((r.wValue << 25) | (1 << 24), &udc->devaddr);
737 		req->length = 0;
738 		usb_ep_queue(controller.gadget.ep0, req, 0);
739 		return;
740 
741 	case SETUP(USB_DIR_IN | USB_RECIP_DEVICE, USB_REQ_GET_STATUS):
742 		req->length = 2;
743 		buf = (char *)req->buf;
744 		buf[0] = 1 << USB_DEVICE_SELF_POWERED;
745 		buf[1] = 0;
746 		usb_ep_queue(controller.gadget.ep0, req, 0);
747 		return;
748 	}
749 	/* pass request up to the gadget driver */
750 	if (controller.driver)
751 		status = controller.driver->setup(&controller.gadget, &r);
752 	else
753 		status = -ENODEV;
754 
755 	if (!status)
756 		return;
757 	DBG("STALL reqname %s type %x value %x, index %x\n",
758 	    reqname(r.bRequest), r.bRequestType, r.wValue, r.wIndex);
759 	writel((1<<16) | (1 << 0), &udc->epctrl[0]);
760 }
761 
762 static void stop_activity(void)
763 {
764 	int i, num, in;
765 	struct ept_queue_head *head;
766 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
767 	writel(readl(&udc->epcomp), &udc->epcomp);
768 #ifdef CONFIG_CI_UDC_HAS_HOSTPC
769 	writel(readl(&udc->epsetupstat), &udc->epsetupstat);
770 #endif
771 	writel(readl(&udc->epstat), &udc->epstat);
772 	writel(0xffffffff, &udc->epflush);
773 
774 	/* error out any pending reqs */
775 	for (i = 0; i < NUM_ENDPOINTS; i++) {
776 		if (i != 0)
777 			writel(0, &udc->epctrl[i]);
778 		if (controller.ep[i].desc) {
779 			num = controller.ep[i].desc->bEndpointAddress
780 				& USB_ENDPOINT_NUMBER_MASK;
781 			in = (controller.ep[i].desc->bEndpointAddress
782 				& USB_DIR_IN) != 0;
783 			head = ci_get_qh(num, in);
784 			head->info = INFO_ACTIVE;
785 			ci_flush_qh(num);
786 		}
787 	}
788 }
789 
790 void udc_irq(void)
791 {
792 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
793 	unsigned n = readl(&udc->usbsts);
794 	writel(n, &udc->usbsts);
795 	int bit, i, num, in;
796 
797 	n &= (STS_SLI | STS_URI | STS_PCI | STS_UI | STS_UEI);
798 	if (n == 0)
799 		return;
800 
801 	if (n & STS_URI) {
802 		DBG("-- reset --\n");
803 		stop_activity();
804 	}
805 	if (n & STS_SLI)
806 		DBG("-- suspend --\n");
807 
808 	if (n & STS_PCI) {
809 		int max = 64;
810 		int speed = USB_SPEED_FULL;
811 
812 #ifdef CONFIG_CI_UDC_HAS_HOSTPC
813 		bit = (readl(&udc->hostpc1_devlc) >> 25) & 3;
814 #else
815 		bit = (readl(&udc->portsc) >> 26) & 3;
816 #endif
817 		DBG("-- portchange %x %s\n", bit, (bit == 2) ? "High" : "Full");
818 		if (bit == 2) {
819 			speed = USB_SPEED_HIGH;
820 			max = 512;
821 		}
822 		controller.gadget.speed = speed;
823 		for (i = 1; i < NUM_ENDPOINTS; i++) {
824 			if (controller.ep[i].ep.maxpacket > max)
825 				controller.ep[i].ep.maxpacket = max;
826 		}
827 	}
828 
829 	if (n & STS_UEI)
830 		printf("<UEI %x>\n", readl(&udc->epcomp));
831 
832 	if ((n & STS_UI) || (n & STS_UEI)) {
833 #ifdef CONFIG_CI_UDC_HAS_HOSTPC
834 		n = readl(&udc->epsetupstat);
835 #else
836 		n = readl(&udc->epstat);
837 #endif
838 		if (n & EPT_RX(0))
839 			handle_setup();
840 
841 		n = readl(&udc->epcomp);
842 		if (n != 0)
843 			writel(n, &udc->epcomp);
844 
845 		for (i = 0; i < NUM_ENDPOINTS && n; i++) {
846 			if (controller.ep[i].desc) {
847 				num = controller.ep[i].desc->bEndpointAddress
848 					& USB_ENDPOINT_NUMBER_MASK;
849 				in = (controller.ep[i].desc->bEndpointAddress
850 						& USB_DIR_IN) != 0;
851 				bit = (in) ? EPT_TX(num) : EPT_RX(num);
852 				if (n & bit)
853 					handle_ep_complete(&controller.ep[i]);
854 			}
855 		}
856 	}
857 }
858 
859 int usb_gadget_handle_interrupts(int index)
860 {
861 	u32 value;
862 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
863 
864 	value = readl(&udc->usbsts);
865 	if (value)
866 		udc_irq();
867 
868 	return value;
869 }
870 
871 void udc_disconnect(void)
872 {
873 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
874 	/* disable pullup */
875 	stop_activity();
876 	writel(USBCMD_FS2, &udc->usbcmd);
877 	udelay(800);
878 	if (controller.driver)
879 		controller.driver->disconnect(&controller.gadget);
880 }
881 
882 static int ci_pullup(struct usb_gadget *gadget, int is_on)
883 {
884 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
885 	if (is_on) {
886 		/* RESET */
887 		writel(USBCMD_ITC(MICRO_8FRAME) | USBCMD_RST, &udc->usbcmd);
888 		udelay(200);
889 
890 		writel((unsigned long)controller.epts, &udc->epinitaddr);
891 
892 		/* select DEVICE mode */
893 		writel(USBMODE_DEVICE, &udc->usbmode);
894 
895 #if !defined(CONFIG_USB_GADGET_DUALSPEED)
896 		/* Port force Full-Speed Connect */
897 		setbits_le32(&udc->portsc, PFSC);
898 #endif
899 
900 		writel(0xffffffff, &udc->epflush);
901 
902 		/* Turn on the USB connection by enabling the pullup resistor */
903 		writel(USBCMD_ITC(MICRO_8FRAME) | USBCMD_RUN, &udc->usbcmd);
904 	} else {
905 		udc_disconnect();
906 	}
907 
908 	return 0;
909 }
910 
911 static int ci_udc_probe(void)
912 {
913 	struct ept_queue_head *head;
914 	int i;
915 
916 	const int num = 2 * NUM_ENDPOINTS;
917 
918 	const int eplist_min_align = 4096;
919 	const int eplist_align = roundup(eplist_min_align, ARCH_DMA_MINALIGN);
920 	const int eplist_raw_sz = num * sizeof(struct ept_queue_head);
921 	const int eplist_sz = roundup(eplist_raw_sz, ARCH_DMA_MINALIGN);
922 
923 	/* The QH list must be aligned to 4096 bytes. */
924 	controller.epts = memalign(eplist_align, eplist_sz);
925 	if (!controller.epts)
926 		return -ENOMEM;
927 	memset(controller.epts, 0, eplist_sz);
928 
929 	controller.items_mem = memalign(ILIST_ALIGN, ILIST_SZ);
930 	if (!controller.items_mem) {
931 		free(controller.epts);
932 		return -ENOMEM;
933 	}
934 	memset(controller.items_mem, 0, ILIST_SZ);
935 
936 	for (i = 0; i < 2 * NUM_ENDPOINTS; i++) {
937 		/*
938 		 * Configure QH for each endpoint. The structure of the QH list
939 		 * is such that each two subsequent fields, N and N+1 where N is
940 		 * even, in the QH list represent QH for one endpoint. The Nth
941 		 * entry represents OUT configuration and the N+1th entry does
942 		 * represent IN configuration of the endpoint.
943 		 */
944 		head = controller.epts + i;
945 		if (i < 2)
946 			head->config = CONFIG_MAX_PKT(EP0_MAX_PACKET_SIZE)
947 				| CONFIG_ZLT | CONFIG_IOS;
948 		else
949 			head->config = CONFIG_MAX_PKT(EP_MAX_PACKET_SIZE)
950 				| CONFIG_ZLT;
951 		head->next = TERMINATE;
952 		head->info = 0;
953 
954 		if (i & 1) {
955 			ci_flush_qh(i / 2);
956 			ci_flush_qtd(i / 2);
957 		}
958 	}
959 
960 	INIT_LIST_HEAD(&controller.gadget.ep_list);
961 
962 	/* Init EP 0 */
963 	memcpy(&controller.ep[0].ep, &ci_ep_init[0], sizeof(*ci_ep_init));
964 	controller.ep[0].desc = &ep0_desc;
965 	INIT_LIST_HEAD(&controller.ep[0].queue);
966 	controller.ep[0].req_primed = false;
967 	controller.gadget.ep0 = &controller.ep[0].ep;
968 	INIT_LIST_HEAD(&controller.gadget.ep0->ep_list);
969 
970 	/* Init EP 1..3 */
971 	for (i = 1; i < 4; i++) {
972 		memcpy(&controller.ep[i].ep, &ci_ep_init[i],
973 		       sizeof(*ci_ep_init));
974 		INIT_LIST_HEAD(&controller.ep[i].queue);
975 		controller.ep[i].req_primed = false;
976 		list_add_tail(&controller.ep[i].ep.ep_list,
977 			      &controller.gadget.ep_list);
978 	}
979 
980 	/* Init EP 4..n */
981 	for (i = 4; i < NUM_ENDPOINTS; i++) {
982 		memcpy(&controller.ep[i].ep, &ci_ep_init[4],
983 		       sizeof(*ci_ep_init));
984 		INIT_LIST_HEAD(&controller.ep[i].queue);
985 		controller.ep[i].req_primed = false;
986 		list_add_tail(&controller.ep[i].ep.ep_list,
987 			      &controller.gadget.ep_list);
988 	}
989 
990 	ci_ep_alloc_request(&controller.ep[0].ep, 0);
991 	if (!controller.ep0_req) {
992 		free(controller.items_mem);
993 		free(controller.epts);
994 		return -ENOMEM;
995 	}
996 
997 	return 0;
998 }
999 
1000 int usb_gadget_register_driver(struct usb_gadget_driver *driver)
1001 {
1002 	int ret;
1003 
1004 	if (!driver)
1005 		return -EINVAL;
1006 	if (!driver->bind || !driver->setup || !driver->disconnect)
1007 		return -EINVAL;
1008 	if (driver->speed != USB_SPEED_FULL && driver->speed != USB_SPEED_HIGH)
1009 		return -EINVAL;
1010 
1011 #ifdef CONFIG_DM_USB
1012 	ret = usb_setup_ehci_gadget(&controller.ctrl);
1013 #else
1014 	ret = usb_lowlevel_init(0, USB_INIT_DEVICE, (void **)&controller.ctrl);
1015 #endif
1016 	if (ret)
1017 		return ret;
1018 
1019 	ret = ci_udc_probe();
1020 	if (ret) {
1021 		DBG("udc probe failed, returned %d\n", ret);
1022 		return ret;
1023 	}
1024 
1025 	ret = driver->bind(&controller.gadget);
1026 	if (ret) {
1027 		DBG("driver->bind() returned %d\n", ret);
1028 		return ret;
1029 	}
1030 	controller.driver = driver;
1031 
1032 	return 0;
1033 }
1034 
1035 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
1036 {
1037 	udc_disconnect();
1038 
1039 	driver->unbind(&controller.gadget);
1040 	controller.driver = NULL;
1041 
1042 	ci_ep_free_request(&controller.ep[0].ep, &controller.ep0_req->req);
1043 	free(controller.items_mem);
1044 	free(controller.epts);
1045 
1046 	return 0;
1047 }
1048 
1049 bool dfu_usb_get_reset(void)
1050 {
1051 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
1052 
1053 	return !!(readl(&udc->usbsts) & STS_URI);
1054 }
1055