1 /* 2 * Copyright 2011, Marvell Semiconductor Inc. 3 * Lei Wen <leiwen@marvell.com> 4 * 5 * SPDX-License-Identifier: GPL-2.0+ 6 * 7 * Back ported to the 8xx platform (from the 8260 platform) by 8 * Murray.Jensen@cmst.csiro.au, 27-Jan-01. 9 */ 10 11 #include <common.h> 12 #include <command.h> 13 #include <config.h> 14 #include <net.h> 15 #include <malloc.h> 16 #include <asm/byteorder.h> 17 #include <linux/errno.h> 18 #include <asm/io.h> 19 #include <asm/unaligned.h> 20 #include <linux/types.h> 21 #include <linux/usb/ch9.h> 22 #include <linux/usb/gadget.h> 23 #include <usb/ci_udc.h> 24 #include "../host/ehci.h" 25 #include "ci_udc.h" 26 27 /* 28 * Check if the system has too long cachelines. If the cachelines are 29 * longer then 128b, the driver will not be able flush/invalidate data 30 * cache over separate QH entries. We use 128b because one QH entry is 31 * 64b long and there are always two QH list entries for each endpoint. 32 */ 33 #if ARCH_DMA_MINALIGN > 128 34 #error This driver can not work on systems with caches longer than 128b 35 #endif 36 37 /* 38 * Every QTD must be individually aligned, since we can program any 39 * QTD's address into HW. Cache flushing requires ARCH_DMA_MINALIGN, 40 * and the USB HW requires 32-byte alignment. Align to both: 41 */ 42 #define ILIST_ALIGN roundup(ARCH_DMA_MINALIGN, 32) 43 /* Each QTD is this size */ 44 #define ILIST_ENT_RAW_SZ sizeof(struct ept_queue_item) 45 /* 46 * Align the size of the QTD too, so we can add this value to each 47 * QTD's address to get another aligned address. 48 */ 49 #define ILIST_ENT_SZ roundup(ILIST_ENT_RAW_SZ, ILIST_ALIGN) 50 /* For each endpoint, we need 2 QTDs, one for each of IN and OUT */ 51 #define ILIST_SZ (NUM_ENDPOINTS * 2 * ILIST_ENT_SZ) 52 53 #define EP_MAX_LENGTH_TRANSFER 0x4000 54 55 #ifndef DEBUG 56 #define DBG(x...) do {} while (0) 57 #else 58 #define DBG(x...) printf(x) 59 static const char *reqname(unsigned r) 60 { 61 switch (r) { 62 case USB_REQ_GET_STATUS: return "GET_STATUS"; 63 case USB_REQ_CLEAR_FEATURE: return "CLEAR_FEATURE"; 64 case USB_REQ_SET_FEATURE: return "SET_FEATURE"; 65 case USB_REQ_SET_ADDRESS: return "SET_ADDRESS"; 66 case USB_REQ_GET_DESCRIPTOR: return "GET_DESCRIPTOR"; 67 case USB_REQ_SET_DESCRIPTOR: return "SET_DESCRIPTOR"; 68 case USB_REQ_GET_CONFIGURATION: return "GET_CONFIGURATION"; 69 case USB_REQ_SET_CONFIGURATION: return "SET_CONFIGURATION"; 70 case USB_REQ_GET_INTERFACE: return "GET_INTERFACE"; 71 case USB_REQ_SET_INTERFACE: return "SET_INTERFACE"; 72 default: return "*UNKNOWN*"; 73 } 74 } 75 #endif 76 77 static struct usb_endpoint_descriptor ep0_desc = { 78 .bLength = sizeof(struct usb_endpoint_descriptor), 79 .bDescriptorType = USB_DT_ENDPOINT, 80 .bEndpointAddress = USB_DIR_IN, 81 .bmAttributes = USB_ENDPOINT_XFER_CONTROL, 82 }; 83 84 static int ci_pullup(struct usb_gadget *gadget, int is_on); 85 static int ci_ep_enable(struct usb_ep *ep, 86 const struct usb_endpoint_descriptor *desc); 87 static int ci_ep_disable(struct usb_ep *ep); 88 static int ci_ep_queue(struct usb_ep *ep, 89 struct usb_request *req, gfp_t gfp_flags); 90 static int ci_ep_dequeue(struct usb_ep *ep, struct usb_request *req); 91 static struct usb_request * 92 ci_ep_alloc_request(struct usb_ep *ep, unsigned int gfp_flags); 93 static void ci_ep_free_request(struct usb_ep *ep, struct usb_request *_req); 94 95 static struct usb_gadget_ops ci_udc_ops = { 96 .pullup = ci_pullup, 97 }; 98 99 static struct usb_ep_ops ci_ep_ops = { 100 .enable = ci_ep_enable, 101 .disable = ci_ep_disable, 102 .queue = ci_ep_queue, 103 .dequeue = ci_ep_dequeue, 104 .alloc_request = ci_ep_alloc_request, 105 .free_request = ci_ep_free_request, 106 }; 107 108 /* Init values for USB endpoints. */ 109 static const struct usb_ep ci_ep_init[5] = { 110 [0] = { /* EP 0 */ 111 .maxpacket = 64, 112 .name = "ep0", 113 .ops = &ci_ep_ops, 114 }, 115 [1] = { 116 .maxpacket = 512, 117 .name = "ep1in-bulk", 118 .ops = &ci_ep_ops, 119 }, 120 [2] = { 121 .maxpacket = 512, 122 .name = "ep2out-bulk", 123 .ops = &ci_ep_ops, 124 }, 125 [3] = { 126 .maxpacket = 512, 127 .name = "ep3in-int", 128 .ops = &ci_ep_ops, 129 }, 130 [4] = { 131 .maxpacket = 512, 132 .name = "ep-", 133 .ops = &ci_ep_ops, 134 }, 135 }; 136 137 static struct ci_drv controller = { 138 .gadget = { 139 .name = "ci_udc", 140 .ops = &ci_udc_ops, 141 .is_dualspeed = 1, 142 }, 143 }; 144 145 /** 146 * ci_get_qh() - return queue head for endpoint 147 * @ep_num: Endpoint number 148 * @dir_in: Direction of the endpoint (IN = 1, OUT = 0) 149 * 150 * This function returns the QH associated with particular endpoint 151 * and it's direction. 152 */ 153 static struct ept_queue_head *ci_get_qh(int ep_num, int dir_in) 154 { 155 return &controller.epts[(ep_num * 2) + dir_in]; 156 } 157 158 /** 159 * ci_get_qtd() - return queue item for endpoint 160 * @ep_num: Endpoint number 161 * @dir_in: Direction of the endpoint (IN = 1, OUT = 0) 162 * 163 * This function returns the QH associated with particular endpoint 164 * and it's direction. 165 */ 166 static struct ept_queue_item *ci_get_qtd(int ep_num, int dir_in) 167 { 168 int index = (ep_num * 2) + dir_in; 169 uint8_t *imem = controller.items_mem + (index * ILIST_ENT_SZ); 170 return (struct ept_queue_item *)imem; 171 } 172 173 /** 174 * ci_flush_qh - flush cache over queue head 175 * @ep_num: Endpoint number 176 * 177 * This function flushes cache over QH for particular endpoint. 178 */ 179 static void ci_flush_qh(int ep_num) 180 { 181 struct ept_queue_head *head = ci_get_qh(ep_num, 0); 182 const unsigned long start = (unsigned long)head; 183 const unsigned long end = start + 2 * sizeof(*head); 184 185 flush_dcache_range(start, end); 186 } 187 188 /** 189 * ci_invalidate_qh - invalidate cache over queue head 190 * @ep_num: Endpoint number 191 * 192 * This function invalidates cache over QH for particular endpoint. 193 */ 194 static void ci_invalidate_qh(int ep_num) 195 { 196 struct ept_queue_head *head = ci_get_qh(ep_num, 0); 197 unsigned long start = (unsigned long)head; 198 unsigned long end = start + 2 * sizeof(*head); 199 200 invalidate_dcache_range(start, end); 201 } 202 203 /** 204 * ci_flush_qtd - flush cache over queue item 205 * @ep_num: Endpoint number 206 * 207 * This function flushes cache over qTD pair for particular endpoint. 208 */ 209 static void ci_flush_qtd(int ep_num) 210 { 211 struct ept_queue_item *item = ci_get_qtd(ep_num, 0); 212 const unsigned long start = (unsigned long)item; 213 const unsigned long end = start + 2 * ILIST_ENT_SZ; 214 215 flush_dcache_range(start, end); 216 } 217 218 /** 219 * ci_flush_td - flush cache over queue item 220 * @td: td pointer 221 * 222 * This function flushes cache for particular transfer descriptor. 223 */ 224 static void ci_flush_td(struct ept_queue_item *td) 225 { 226 const unsigned long start = (unsigned long)td; 227 const unsigned long end = (unsigned long)td + ILIST_ENT_SZ; 228 flush_dcache_range(start, end); 229 } 230 231 /** 232 * ci_invalidate_qtd - invalidate cache over queue item 233 * @ep_num: Endpoint number 234 * 235 * This function invalidates cache over qTD pair for particular endpoint. 236 */ 237 static void ci_invalidate_qtd(int ep_num) 238 { 239 struct ept_queue_item *item = ci_get_qtd(ep_num, 0); 240 const unsigned long start = (unsigned long)item; 241 const unsigned long end = start + 2 * ILIST_ENT_SZ; 242 243 invalidate_dcache_range(start, end); 244 } 245 246 /** 247 * ci_invalidate_td - invalidate cache over queue item 248 * @td: td pointer 249 * 250 * This function invalidates cache for particular transfer descriptor. 251 */ 252 static void ci_invalidate_td(struct ept_queue_item *td) 253 { 254 const unsigned long start = (unsigned long)td; 255 const unsigned long end = start + ILIST_ENT_SZ; 256 invalidate_dcache_range(start, end); 257 } 258 259 static struct usb_request * 260 ci_ep_alloc_request(struct usb_ep *ep, unsigned int gfp_flags) 261 { 262 struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep); 263 int num = -1; 264 struct ci_req *ci_req; 265 266 if (ci_ep->desc) 267 num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; 268 269 if (num == 0 && controller.ep0_req) 270 return &controller.ep0_req->req; 271 272 ci_req = calloc(1, sizeof(*ci_req)); 273 if (!ci_req) 274 return NULL; 275 276 INIT_LIST_HEAD(&ci_req->queue); 277 278 if (num == 0) 279 controller.ep0_req = ci_req; 280 281 return &ci_req->req; 282 } 283 284 static void ci_ep_free_request(struct usb_ep *ep, struct usb_request *req) 285 { 286 struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep); 287 struct ci_req *ci_req = container_of(req, struct ci_req, req); 288 int num = -1; 289 290 if (ci_ep->desc) 291 num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; 292 293 if (num == 0) { 294 if (!controller.ep0_req) 295 return; 296 controller.ep0_req = 0; 297 } 298 299 if (ci_req->b_buf) 300 free(ci_req->b_buf); 301 free(ci_req); 302 } 303 304 static void ep_enable(int num, int in, int maxpacket) 305 { 306 struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor; 307 unsigned n; 308 309 n = readl(&udc->epctrl[num]); 310 if (in) 311 n |= (CTRL_TXE | CTRL_TXR | CTRL_TXT_BULK); 312 else 313 n |= (CTRL_RXE | CTRL_RXR | CTRL_RXT_BULK); 314 315 if (num != 0) { 316 struct ept_queue_head *head = ci_get_qh(num, in); 317 318 head->config = CONFIG_MAX_PKT(maxpacket) | CONFIG_ZLT; 319 ci_flush_qh(num); 320 } 321 writel(n, &udc->epctrl[num]); 322 } 323 324 static int ci_ep_enable(struct usb_ep *ep, 325 const struct usb_endpoint_descriptor *desc) 326 { 327 struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep); 328 int num, in; 329 num = desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; 330 in = (desc->bEndpointAddress & USB_DIR_IN) != 0; 331 ci_ep->desc = desc; 332 333 if (num) { 334 int max = get_unaligned_le16(&desc->wMaxPacketSize); 335 336 if ((max > 64) && (controller.gadget.speed == USB_SPEED_FULL)) 337 max = 64; 338 if (ep->maxpacket != max) { 339 DBG("%s: from %d to %d\n", __func__, 340 ep->maxpacket, max); 341 ep->maxpacket = max; 342 } 343 } 344 ep_enable(num, in, ep->maxpacket); 345 DBG("%s: num=%d maxpacket=%d\n", __func__, num, ep->maxpacket); 346 return 0; 347 } 348 349 static int ci_ep_disable(struct usb_ep *ep) 350 { 351 struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep); 352 353 ci_ep->desc = NULL; 354 return 0; 355 } 356 357 static int ci_bounce(struct ci_req *ci_req, int in) 358 { 359 struct usb_request *req = &ci_req->req; 360 unsigned long addr = (unsigned long)req->buf; 361 unsigned long hwaddr; 362 uint32_t aligned_used_len; 363 364 /* Input buffer address is not aligned. */ 365 if (addr & (ARCH_DMA_MINALIGN - 1)) 366 goto align; 367 368 /* Input buffer length is not aligned. */ 369 if (req->length & (ARCH_DMA_MINALIGN - 1)) 370 goto align; 371 372 /* The buffer is well aligned, only flush cache. */ 373 ci_req->hw_len = req->length; 374 ci_req->hw_buf = req->buf; 375 goto flush; 376 377 align: 378 if (ci_req->b_buf && req->length > ci_req->b_len) { 379 free(ci_req->b_buf); 380 ci_req->b_buf = 0; 381 } 382 if (!ci_req->b_buf) { 383 ci_req->b_len = roundup(req->length, ARCH_DMA_MINALIGN); 384 ci_req->b_buf = memalign(ARCH_DMA_MINALIGN, ci_req->b_len); 385 if (!ci_req->b_buf) 386 return -ENOMEM; 387 } 388 ci_req->hw_len = ci_req->b_len; 389 ci_req->hw_buf = ci_req->b_buf; 390 391 if (in) 392 memcpy(ci_req->hw_buf, req->buf, req->length); 393 394 flush: 395 hwaddr = (unsigned long)ci_req->hw_buf; 396 aligned_used_len = roundup(req->length, ARCH_DMA_MINALIGN); 397 flush_dcache_range(hwaddr, hwaddr + aligned_used_len); 398 399 return 0; 400 } 401 402 static void ci_debounce(struct ci_req *ci_req, int in) 403 { 404 struct usb_request *req = &ci_req->req; 405 unsigned long addr = (unsigned long)req->buf; 406 unsigned long hwaddr = (unsigned long)ci_req->hw_buf; 407 uint32_t aligned_used_len; 408 409 if (in) 410 return; 411 412 aligned_used_len = roundup(req->actual, ARCH_DMA_MINALIGN); 413 invalidate_dcache_range(hwaddr, hwaddr + aligned_used_len); 414 415 if (addr == hwaddr) 416 return; /* not a bounce */ 417 418 memcpy(req->buf, ci_req->hw_buf, req->actual); 419 } 420 421 static void ci_ep_submit_next_request(struct ci_ep *ci_ep) 422 { 423 struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor; 424 struct ept_queue_item *item; 425 struct ept_queue_head *head; 426 int bit, num, len, in; 427 struct ci_req *ci_req; 428 u8 *buf; 429 uint32_t len_left, len_this_dtd; 430 struct ept_queue_item *dtd, *qtd; 431 432 ci_ep->req_primed = true; 433 434 num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; 435 in = (ci_ep->desc->bEndpointAddress & USB_DIR_IN) != 0; 436 item = ci_get_qtd(num, in); 437 head = ci_get_qh(num, in); 438 439 ci_req = list_first_entry(&ci_ep->queue, struct ci_req, queue); 440 len = ci_req->req.length; 441 442 head->next = (unsigned long)item; 443 head->info = 0; 444 445 ci_req->dtd_count = 0; 446 buf = ci_req->hw_buf; 447 len_left = len; 448 dtd = item; 449 450 do { 451 len_this_dtd = min(len_left, (unsigned)EP_MAX_LENGTH_TRANSFER); 452 453 dtd->info = INFO_BYTES(len_this_dtd) | INFO_ACTIVE; 454 dtd->page0 = (unsigned long)buf; 455 dtd->page1 = ((unsigned long)buf & 0xfffff000) + 0x1000; 456 dtd->page2 = ((unsigned long)buf & 0xfffff000) + 0x2000; 457 dtd->page3 = ((unsigned long)buf & 0xfffff000) + 0x3000; 458 dtd->page4 = ((unsigned long)buf & 0xfffff000) + 0x4000; 459 460 len_left -= len_this_dtd; 461 buf += len_this_dtd; 462 463 if (len_left) { 464 qtd = (struct ept_queue_item *) 465 memalign(ILIST_ALIGN, ILIST_ENT_SZ); 466 dtd->next = (unsigned long)qtd; 467 dtd = qtd; 468 memset(dtd, 0, ILIST_ENT_SZ); 469 } 470 471 ci_req->dtd_count++; 472 } while (len_left); 473 474 item = dtd; 475 /* 476 * When sending the data for an IN transaction, the attached host 477 * knows that all data for the IN is sent when one of the following 478 * occurs: 479 * a) A zero-length packet is transmitted. 480 * b) A packet with length that isn't an exact multiple of the ep's 481 * maxpacket is transmitted. 482 * c) Enough data is sent to exactly fill the host's maximum expected 483 * IN transaction size. 484 * 485 * One of these conditions MUST apply at the end of an IN transaction, 486 * or the transaction will not be considered complete by the host. If 487 * none of (a)..(c) already applies, then we must force (a) to apply 488 * by explicitly sending an extra zero-length packet. 489 */ 490 /* IN !a !b !c */ 491 if (in && len && !(len % ci_ep->ep.maxpacket) && ci_req->req.zero) { 492 /* 493 * Each endpoint has 2 items allocated, even though typically 494 * only 1 is used at a time since either an IN or an OUT but 495 * not both is queued. For an IN transaction, item currently 496 * points at the second of these items, so we know that we 497 * can use the other to transmit the extra zero-length packet. 498 */ 499 struct ept_queue_item *other_item = ci_get_qtd(num, 0); 500 item->next = (unsigned long)other_item; 501 item = other_item; 502 item->info = INFO_ACTIVE; 503 } 504 505 item->next = TERMINATE; 506 item->info |= INFO_IOC; 507 508 ci_flush_qtd(num); 509 510 item = (struct ept_queue_item *)(unsigned long)head->next; 511 while (item->next != TERMINATE) { 512 ci_flush_td((struct ept_queue_item *)(unsigned long)item->next); 513 item = (struct ept_queue_item *)(unsigned long)item->next; 514 } 515 516 DBG("ept%d %s queue len %x, req %p, buffer %p\n", 517 num, in ? "in" : "out", len, ci_req, ci_req->hw_buf); 518 ci_flush_qh(num); 519 520 if (in) 521 bit = EPT_TX(num); 522 else 523 bit = EPT_RX(num); 524 525 writel(bit, &udc->epprime); 526 } 527 528 static int ci_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req) 529 { 530 struct ci_ep *ci_ep = container_of(_ep, struct ci_ep, ep); 531 struct ci_req *ci_req; 532 533 list_for_each_entry(ci_req, &ci_ep->queue, queue) { 534 if (&ci_req->req == _req) 535 break; 536 } 537 538 if (&ci_req->req != _req) 539 return -EINVAL; 540 541 list_del_init(&ci_req->queue); 542 543 if (ci_req->req.status == -EINPROGRESS) { 544 ci_req->req.status = -ECONNRESET; 545 if (ci_req->req.complete) 546 ci_req->req.complete(_ep, _req); 547 } 548 549 return 0; 550 } 551 552 static int ci_ep_queue(struct usb_ep *ep, 553 struct usb_request *req, gfp_t gfp_flags) 554 { 555 struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep); 556 struct ci_req *ci_req = container_of(req, struct ci_req, req); 557 int in, ret; 558 int __maybe_unused num; 559 560 num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; 561 in = (ci_ep->desc->bEndpointAddress & USB_DIR_IN) != 0; 562 563 if (!num && ci_ep->req_primed) { 564 /* 565 * The flipping of ep0 between IN and OUT relies on 566 * ci_ep_queue consuming the current IN/OUT setting 567 * immediately. If this is deferred to a later point when the 568 * req is pulled out of ci_req->queue, then the IN/OUT setting 569 * may have been changed since the req was queued, and state 570 * will get out of sync. This condition doesn't occur today, 571 * but could if bugs were introduced later, and this error 572 * check will save a lot of debugging time. 573 */ 574 printf("%s: ep0 transaction already in progress\n", __func__); 575 return -EPROTO; 576 } 577 578 ret = ci_bounce(ci_req, in); 579 if (ret) 580 return ret; 581 582 DBG("ept%d %s pre-queue req %p, buffer %p\n", 583 num, in ? "in" : "out", ci_req, ci_req->hw_buf); 584 list_add_tail(&ci_req->queue, &ci_ep->queue); 585 586 if (!ci_ep->req_primed) 587 ci_ep_submit_next_request(ci_ep); 588 589 return 0; 590 } 591 592 static void flip_ep0_direction(void) 593 { 594 if (ep0_desc.bEndpointAddress == USB_DIR_IN) { 595 DBG("%s: Flipping ep0 to OUT\n", __func__); 596 ep0_desc.bEndpointAddress = 0; 597 } else { 598 DBG("%s: Flipping ep0 to IN\n", __func__); 599 ep0_desc.bEndpointAddress = USB_DIR_IN; 600 } 601 } 602 603 static void handle_ep_complete(struct ci_ep *ci_ep) 604 { 605 struct ept_queue_item *item, *next_td; 606 int num, in, len, j; 607 struct ci_req *ci_req; 608 609 num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; 610 in = (ci_ep->desc->bEndpointAddress & USB_DIR_IN) != 0; 611 item = ci_get_qtd(num, in); 612 ci_invalidate_qtd(num); 613 ci_req = list_first_entry(&ci_ep->queue, struct ci_req, queue); 614 615 next_td = item; 616 len = 0; 617 for (j = 0; j < ci_req->dtd_count; j++) { 618 ci_invalidate_td(next_td); 619 item = next_td; 620 len += (item->info >> 16) & 0x7fff; 621 if (item->info & 0xff) 622 printf("EP%d/%s FAIL info=%x pg0=%x\n", 623 num, in ? "in" : "out", item->info, item->page0); 624 if (j != ci_req->dtd_count - 1) 625 next_td = (struct ept_queue_item *)(unsigned long) 626 item->next; 627 if (j != 0) 628 free(item); 629 } 630 631 list_del_init(&ci_req->queue); 632 ci_ep->req_primed = false; 633 634 if (!list_empty(&ci_ep->queue)) 635 ci_ep_submit_next_request(ci_ep); 636 637 ci_req->req.actual = ci_req->req.length - len; 638 ci_debounce(ci_req, in); 639 640 DBG("ept%d %s req %p, complete %x\n", 641 num, in ? "in" : "out", ci_req, len); 642 if (num != 0 || controller.ep0_data_phase) 643 ci_req->req.complete(&ci_ep->ep, &ci_req->req); 644 if (num == 0 && controller.ep0_data_phase) { 645 /* 646 * Data Stage is complete, so flip ep0 dir for Status Stage, 647 * which always transfers a packet in the opposite direction. 648 */ 649 DBG("%s: flip ep0 dir for Status Stage\n", __func__); 650 flip_ep0_direction(); 651 controller.ep0_data_phase = false; 652 ci_req->req.length = 0; 653 usb_ep_queue(&ci_ep->ep, &ci_req->req, 0); 654 } 655 } 656 657 #define SETUP(type, request) (((type) << 8) | (request)) 658 659 static void handle_setup(void) 660 { 661 struct ci_ep *ci_ep = &controller.ep[0]; 662 struct ci_req *ci_req; 663 struct usb_request *req; 664 struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor; 665 struct ept_queue_head *head; 666 struct usb_ctrlrequest r; 667 int status = 0; 668 int num, in, _num, _in, i; 669 char *buf; 670 671 ci_req = controller.ep0_req; 672 req = &ci_req->req; 673 head = ci_get_qh(0, 0); /* EP0 OUT */ 674 675 ci_invalidate_qh(0); 676 memcpy(&r, head->setup_data, sizeof(struct usb_ctrlrequest)); 677 #ifdef CONFIG_CI_UDC_HAS_HOSTPC 678 writel(EPT_RX(0), &udc->epsetupstat); 679 #else 680 writel(EPT_RX(0), &udc->epstat); 681 #endif 682 DBG("handle setup %s, %x, %x index %x value %x length %x\n", 683 reqname(r.bRequest), r.bRequestType, r.bRequest, r.wIndex, 684 r.wValue, r.wLength); 685 686 /* Set EP0 dir for Data Stage based on Setup Stage data */ 687 if (r.bRequestType & USB_DIR_IN) { 688 DBG("%s: Set ep0 to IN for Data Stage\n", __func__); 689 ep0_desc.bEndpointAddress = USB_DIR_IN; 690 } else { 691 DBG("%s: Set ep0 to OUT for Data Stage\n", __func__); 692 ep0_desc.bEndpointAddress = 0; 693 } 694 if (r.wLength) { 695 controller.ep0_data_phase = true; 696 } else { 697 /* 0 length -> no Data Stage. Flip dir for Status Stage */ 698 DBG("%s: 0 length: flip ep0 dir for Status Stage\n", __func__); 699 flip_ep0_direction(); 700 controller.ep0_data_phase = false; 701 } 702 703 list_del_init(&ci_req->queue); 704 ci_ep->req_primed = false; 705 706 switch (SETUP(r.bRequestType, r.bRequest)) { 707 case SETUP(USB_RECIP_ENDPOINT, USB_REQ_CLEAR_FEATURE): 708 _num = r.wIndex & 15; 709 _in = !!(r.wIndex & 0x80); 710 711 if ((r.wValue == 0) && (r.wLength == 0)) { 712 req->length = 0; 713 for (i = 0; i < NUM_ENDPOINTS; i++) { 714 struct ci_ep *ep = &controller.ep[i]; 715 716 if (!ep->desc) 717 continue; 718 num = ep->desc->bEndpointAddress 719 & USB_ENDPOINT_NUMBER_MASK; 720 in = (ep->desc->bEndpointAddress 721 & USB_DIR_IN) != 0; 722 if ((num == _num) && (in == _in)) { 723 ep_enable(num, in, ep->ep.maxpacket); 724 usb_ep_queue(controller.gadget.ep0, 725 req, 0); 726 break; 727 } 728 } 729 } 730 return; 731 732 case SETUP(USB_RECIP_DEVICE, USB_REQ_SET_ADDRESS): 733 /* 734 * write address delayed (will take effect 735 * after the next IN txn) 736 */ 737 writel((r.wValue << 25) | (1 << 24), &udc->devaddr); 738 req->length = 0; 739 usb_ep_queue(controller.gadget.ep0, req, 0); 740 return; 741 742 case SETUP(USB_DIR_IN | USB_RECIP_DEVICE, USB_REQ_GET_STATUS): 743 req->length = 2; 744 buf = (char *)req->buf; 745 buf[0] = 1 << USB_DEVICE_SELF_POWERED; 746 buf[1] = 0; 747 usb_ep_queue(controller.gadget.ep0, req, 0); 748 return; 749 } 750 /* pass request up to the gadget driver */ 751 if (controller.driver) 752 status = controller.driver->setup(&controller.gadget, &r); 753 else 754 status = -ENODEV; 755 756 if (!status) 757 return; 758 DBG("STALL reqname %s type %x value %x, index %x\n", 759 reqname(r.bRequest), r.bRequestType, r.wValue, r.wIndex); 760 writel((1<<16) | (1 << 0), &udc->epctrl[0]); 761 } 762 763 static void stop_activity(void) 764 { 765 int i, num, in; 766 struct ept_queue_head *head; 767 struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor; 768 writel(readl(&udc->epcomp), &udc->epcomp); 769 #ifdef CONFIG_CI_UDC_HAS_HOSTPC 770 writel(readl(&udc->epsetupstat), &udc->epsetupstat); 771 #endif 772 writel(readl(&udc->epstat), &udc->epstat); 773 writel(0xffffffff, &udc->epflush); 774 775 /* error out any pending reqs */ 776 for (i = 0; i < NUM_ENDPOINTS; i++) { 777 if (i != 0) 778 writel(0, &udc->epctrl[i]); 779 if (controller.ep[i].desc) { 780 num = controller.ep[i].desc->bEndpointAddress 781 & USB_ENDPOINT_NUMBER_MASK; 782 in = (controller.ep[i].desc->bEndpointAddress 783 & USB_DIR_IN) != 0; 784 head = ci_get_qh(num, in); 785 head->info = INFO_ACTIVE; 786 ci_flush_qh(num); 787 } 788 } 789 } 790 791 void udc_irq(void) 792 { 793 struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor; 794 unsigned n = readl(&udc->usbsts); 795 writel(n, &udc->usbsts); 796 int bit, i, num, in; 797 798 n &= (STS_SLI | STS_URI | STS_PCI | STS_UI | STS_UEI); 799 if (n == 0) 800 return; 801 802 if (n & STS_URI) { 803 DBG("-- reset --\n"); 804 stop_activity(); 805 } 806 if (n & STS_SLI) 807 DBG("-- suspend --\n"); 808 809 if (n & STS_PCI) { 810 int max = 64; 811 int speed = USB_SPEED_FULL; 812 813 #ifdef CONFIG_CI_UDC_HAS_HOSTPC 814 bit = (readl(&udc->hostpc1_devlc) >> 25) & 3; 815 #else 816 bit = (readl(&udc->portsc) >> 26) & 3; 817 #endif 818 DBG("-- portchange %x %s\n", bit, (bit == 2) ? "High" : "Full"); 819 if (bit == 2) { 820 speed = USB_SPEED_HIGH; 821 max = 512; 822 } 823 controller.gadget.speed = speed; 824 for (i = 1; i < NUM_ENDPOINTS; i++) { 825 if (controller.ep[i].ep.maxpacket > max) 826 controller.ep[i].ep.maxpacket = max; 827 } 828 } 829 830 if (n & STS_UEI) 831 printf("<UEI %x>\n", readl(&udc->epcomp)); 832 833 if ((n & STS_UI) || (n & STS_UEI)) { 834 #ifdef CONFIG_CI_UDC_HAS_HOSTPC 835 n = readl(&udc->epsetupstat); 836 #else 837 n = readl(&udc->epstat); 838 #endif 839 if (n & EPT_RX(0)) 840 handle_setup(); 841 842 n = readl(&udc->epcomp); 843 if (n != 0) 844 writel(n, &udc->epcomp); 845 846 for (i = 0; i < NUM_ENDPOINTS && n; i++) { 847 if (controller.ep[i].desc) { 848 num = controller.ep[i].desc->bEndpointAddress 849 & USB_ENDPOINT_NUMBER_MASK; 850 in = (controller.ep[i].desc->bEndpointAddress 851 & USB_DIR_IN) != 0; 852 bit = (in) ? EPT_TX(num) : EPT_RX(num); 853 if (n & bit) 854 handle_ep_complete(&controller.ep[i]); 855 } 856 } 857 } 858 } 859 860 int usb_gadget_handle_interrupts(int index) 861 { 862 u32 value; 863 struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor; 864 865 value = readl(&udc->usbsts); 866 if (value) 867 udc_irq(); 868 869 return value; 870 } 871 872 void udc_disconnect(void) 873 { 874 struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor; 875 /* disable pullup */ 876 stop_activity(); 877 writel(USBCMD_FS2, &udc->usbcmd); 878 udelay(800); 879 if (controller.driver) 880 controller.driver->disconnect(&controller.gadget); 881 } 882 883 static int ci_pullup(struct usb_gadget *gadget, int is_on) 884 { 885 struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor; 886 if (is_on) { 887 /* RESET */ 888 writel(USBCMD_ITC(MICRO_8FRAME) | USBCMD_RST, &udc->usbcmd); 889 udelay(200); 890 891 writel((unsigned long)controller.epts, &udc->epinitaddr); 892 893 /* select DEVICE mode */ 894 writel(USBMODE_DEVICE, &udc->usbmode); 895 896 #if !defined(CONFIG_USB_GADGET_DUALSPEED) 897 /* Port force Full-Speed Connect */ 898 setbits_le32(&udc->portsc, PFSC); 899 #endif 900 901 writel(0xffffffff, &udc->epflush); 902 903 /* Turn on the USB connection by enabling the pullup resistor */ 904 writel(USBCMD_ITC(MICRO_8FRAME) | USBCMD_RUN, &udc->usbcmd); 905 } else { 906 udc_disconnect(); 907 } 908 909 return 0; 910 } 911 912 static int ci_udc_probe(void) 913 { 914 struct ept_queue_head *head; 915 int i; 916 917 const int num = 2 * NUM_ENDPOINTS; 918 919 const int eplist_min_align = 4096; 920 const int eplist_align = roundup(eplist_min_align, ARCH_DMA_MINALIGN); 921 const int eplist_raw_sz = num * sizeof(struct ept_queue_head); 922 const int eplist_sz = roundup(eplist_raw_sz, ARCH_DMA_MINALIGN); 923 924 /* The QH list must be aligned to 4096 bytes. */ 925 controller.epts = memalign(eplist_align, eplist_sz); 926 if (!controller.epts) 927 return -ENOMEM; 928 memset(controller.epts, 0, eplist_sz); 929 930 controller.items_mem = memalign(ILIST_ALIGN, ILIST_SZ); 931 if (!controller.items_mem) { 932 free(controller.epts); 933 return -ENOMEM; 934 } 935 memset(controller.items_mem, 0, ILIST_SZ); 936 937 for (i = 0; i < 2 * NUM_ENDPOINTS; i++) { 938 /* 939 * Configure QH for each endpoint. The structure of the QH list 940 * is such that each two subsequent fields, N and N+1 where N is 941 * even, in the QH list represent QH for one endpoint. The Nth 942 * entry represents OUT configuration and the N+1th entry does 943 * represent IN configuration of the endpoint. 944 */ 945 head = controller.epts + i; 946 if (i < 2) 947 head->config = CONFIG_MAX_PKT(EP0_MAX_PACKET_SIZE) 948 | CONFIG_ZLT | CONFIG_IOS; 949 else 950 head->config = CONFIG_MAX_PKT(EP_MAX_PACKET_SIZE) 951 | CONFIG_ZLT; 952 head->next = TERMINATE; 953 head->info = 0; 954 955 if (i & 1) { 956 ci_flush_qh(i / 2); 957 ci_flush_qtd(i / 2); 958 } 959 } 960 961 INIT_LIST_HEAD(&controller.gadget.ep_list); 962 963 /* Init EP 0 */ 964 memcpy(&controller.ep[0].ep, &ci_ep_init[0], sizeof(*ci_ep_init)); 965 controller.ep[0].desc = &ep0_desc; 966 INIT_LIST_HEAD(&controller.ep[0].queue); 967 controller.ep[0].req_primed = false; 968 controller.gadget.ep0 = &controller.ep[0].ep; 969 INIT_LIST_HEAD(&controller.gadget.ep0->ep_list); 970 971 /* Init EP 1..3 */ 972 for (i = 1; i < 4; i++) { 973 memcpy(&controller.ep[i].ep, &ci_ep_init[i], 974 sizeof(*ci_ep_init)); 975 INIT_LIST_HEAD(&controller.ep[i].queue); 976 controller.ep[i].req_primed = false; 977 list_add_tail(&controller.ep[i].ep.ep_list, 978 &controller.gadget.ep_list); 979 } 980 981 /* Init EP 4..n */ 982 for (i = 4; i < NUM_ENDPOINTS; i++) { 983 memcpy(&controller.ep[i].ep, &ci_ep_init[4], 984 sizeof(*ci_ep_init)); 985 INIT_LIST_HEAD(&controller.ep[i].queue); 986 controller.ep[i].req_primed = false; 987 list_add_tail(&controller.ep[i].ep.ep_list, 988 &controller.gadget.ep_list); 989 } 990 991 ci_ep_alloc_request(&controller.ep[0].ep, 0); 992 if (!controller.ep0_req) { 993 free(controller.items_mem); 994 free(controller.epts); 995 return -ENOMEM; 996 } 997 998 return 0; 999 } 1000 1001 int usb_gadget_register_driver(struct usb_gadget_driver *driver) 1002 { 1003 int ret; 1004 1005 if (!driver) 1006 return -EINVAL; 1007 if (!driver->bind || !driver->setup || !driver->disconnect) 1008 return -EINVAL; 1009 if (driver->speed != USB_SPEED_FULL && driver->speed != USB_SPEED_HIGH) 1010 return -EINVAL; 1011 1012 #ifdef CONFIG_DM_USB 1013 ret = usb_setup_ehci_gadget(&controller.ctrl); 1014 #else 1015 ret = usb_lowlevel_init(0, USB_INIT_DEVICE, (void **)&controller.ctrl); 1016 #endif 1017 if (ret) 1018 return ret; 1019 1020 ret = ci_udc_probe(); 1021 if (ret) { 1022 DBG("udc probe failed, returned %d\n", ret); 1023 return ret; 1024 } 1025 1026 ret = driver->bind(&controller.gadget); 1027 if (ret) { 1028 DBG("driver->bind() returned %d\n", ret); 1029 return ret; 1030 } 1031 controller.driver = driver; 1032 1033 return 0; 1034 } 1035 1036 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver) 1037 { 1038 udc_disconnect(); 1039 1040 driver->unbind(&controller.gadget); 1041 controller.driver = NULL; 1042 1043 ci_ep_free_request(&controller.ep[0].ep, &controller.ep0_req->req); 1044 free(controller.items_mem); 1045 free(controller.epts); 1046 1047 return 0; 1048 } 1049 1050 bool dfu_usb_get_reset(void) 1051 { 1052 struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor; 1053 1054 return !!(readl(&udc->usbsts) & STS_URI); 1055 } 1056