xref: /openbmc/u-boot/drivers/usb/gadget/ci_udc.c (revision 2399e401)
1 /*
2  * Copyright 2011, Marvell Semiconductor Inc.
3  * Lei Wen <leiwen@marvell.com>
4  *
5  * SPDX-License-Identifier:	GPL-2.0+
6  *
7  * Back ported to the 8xx platform (from the 8260 platform) by
8  * Murray.Jensen@cmst.csiro.au, 27-Jan-01.
9  */
10 
11 #include <common.h>
12 #include <command.h>
13 #include <config.h>
14 #include <net.h>
15 #include <malloc.h>
16 #include <asm/byteorder.h>
17 #include <linux/errno.h>
18 #include <asm/io.h>
19 #include <asm/unaligned.h>
20 #include <linux/types.h>
21 #include <linux/usb/ch9.h>
22 #include <linux/usb/gadget.h>
23 #include <usb/ci_udc.h>
24 #include "../host/ehci.h"
25 #include "ci_udc.h"
26 
27 /*
28  * Check if the system has too long cachelines. If the cachelines are
29  * longer then 128b, the driver will not be able flush/invalidate data
30  * cache over separate QH entries. We use 128b because one QH entry is
31  * 64b long and there are always two QH list entries for each endpoint.
32  */
33 #if ARCH_DMA_MINALIGN > 128
34 #error This driver can not work on systems with caches longer than 128b
35 #endif
36 
37 /*
38  * Every QTD must be individually aligned, since we can program any
39  * QTD's address into HW. Cache flushing requires ARCH_DMA_MINALIGN,
40  * and the USB HW requires 32-byte alignment. Align to both:
41  */
42 #define ILIST_ALIGN		roundup(ARCH_DMA_MINALIGN, 32)
43 /* Each QTD is this size */
44 #define ILIST_ENT_RAW_SZ	sizeof(struct ept_queue_item)
45 /*
46  * Align the size of the QTD too, so we can add this value to each
47  * QTD's address to get another aligned address.
48  */
49 #define ILIST_ENT_SZ		roundup(ILIST_ENT_RAW_SZ, ILIST_ALIGN)
50 /* For each endpoint, we need 2 QTDs, one for each of IN and OUT */
51 #define ILIST_SZ		(NUM_ENDPOINTS * 2 * ILIST_ENT_SZ)
52 
53 #define EP_MAX_LENGTH_TRANSFER	0x4000
54 
55 #ifndef DEBUG
56 #define DBG(x...) do {} while (0)
57 #else
58 #define DBG(x...) printf(x)
59 static const char *reqname(unsigned r)
60 {
61 	switch (r) {
62 	case USB_REQ_GET_STATUS: return "GET_STATUS";
63 	case USB_REQ_CLEAR_FEATURE: return "CLEAR_FEATURE";
64 	case USB_REQ_SET_FEATURE: return "SET_FEATURE";
65 	case USB_REQ_SET_ADDRESS: return "SET_ADDRESS";
66 	case USB_REQ_GET_DESCRIPTOR: return "GET_DESCRIPTOR";
67 	case USB_REQ_SET_DESCRIPTOR: return "SET_DESCRIPTOR";
68 	case USB_REQ_GET_CONFIGURATION: return "GET_CONFIGURATION";
69 	case USB_REQ_SET_CONFIGURATION: return "SET_CONFIGURATION";
70 	case USB_REQ_GET_INTERFACE: return "GET_INTERFACE";
71 	case USB_REQ_SET_INTERFACE: return "SET_INTERFACE";
72 	default: return "*UNKNOWN*";
73 	}
74 }
75 #endif
76 
77 static struct usb_endpoint_descriptor ep0_desc = {
78 	.bLength = sizeof(struct usb_endpoint_descriptor),
79 	.bDescriptorType = USB_DT_ENDPOINT,
80 	.bEndpointAddress = USB_DIR_IN,
81 	.bmAttributes =	USB_ENDPOINT_XFER_CONTROL,
82 };
83 
84 static int ci_pullup(struct usb_gadget *gadget, int is_on);
85 static int ci_ep_enable(struct usb_ep *ep,
86 		const struct usb_endpoint_descriptor *desc);
87 static int ci_ep_disable(struct usb_ep *ep);
88 static int ci_ep_queue(struct usb_ep *ep,
89 		struct usb_request *req, gfp_t gfp_flags);
90 static int ci_ep_dequeue(struct usb_ep *ep, struct usb_request *req);
91 static struct usb_request *
92 ci_ep_alloc_request(struct usb_ep *ep, unsigned int gfp_flags);
93 static void ci_ep_free_request(struct usb_ep *ep, struct usb_request *_req);
94 
95 static struct usb_gadget_ops ci_udc_ops = {
96 	.pullup = ci_pullup,
97 };
98 
99 static struct usb_ep_ops ci_ep_ops = {
100 	.enable         = ci_ep_enable,
101 	.disable        = ci_ep_disable,
102 	.queue          = ci_ep_queue,
103 	.dequeue	= ci_ep_dequeue,
104 	.alloc_request  = ci_ep_alloc_request,
105 	.free_request   = ci_ep_free_request,
106 };
107 
108 /* Init values for USB endpoints. */
109 static const struct usb_ep ci_ep_init[5] = {
110 	[0] = {	/* EP 0 */
111 		.maxpacket	= 64,
112 		.name		= "ep0",
113 		.ops		= &ci_ep_ops,
114 	},
115 	[1] = {
116 		.maxpacket	= 512,
117 		.name		= "ep1in-bulk",
118 		.ops		= &ci_ep_ops,
119 	},
120 	[2] = {
121 		.maxpacket	= 512,
122 		.name		= "ep2out-bulk",
123 		.ops		= &ci_ep_ops,
124 	},
125 	[3] = {
126 		.maxpacket	= 512,
127 		.name		= "ep3in-int",
128 		.ops		= &ci_ep_ops,
129 	},
130 	[4] = {
131 		.maxpacket	= 512,
132 		.name		= "ep-",
133 		.ops		= &ci_ep_ops,
134 	},
135 };
136 
137 static struct ci_drv controller = {
138 	.gadget	= {
139 		.name	= "ci_udc",
140 		.ops	= &ci_udc_ops,
141 		.is_dualspeed = 1,
142 	},
143 };
144 
145 /**
146  * ci_get_qh() - return queue head for endpoint
147  * @ep_num:	Endpoint number
148  * @dir_in:	Direction of the endpoint (IN = 1, OUT = 0)
149  *
150  * This function returns the QH associated with particular endpoint
151  * and it's direction.
152  */
153 static struct ept_queue_head *ci_get_qh(int ep_num, int dir_in)
154 {
155 	return &controller.epts[(ep_num * 2) + dir_in];
156 }
157 
158 /**
159  * ci_get_qtd() - return queue item for endpoint
160  * @ep_num:	Endpoint number
161  * @dir_in:	Direction of the endpoint (IN = 1, OUT = 0)
162  *
163  * This function returns the QH associated with particular endpoint
164  * and it's direction.
165  */
166 static struct ept_queue_item *ci_get_qtd(int ep_num, int dir_in)
167 {
168 	int index = (ep_num * 2) + dir_in;
169 	uint8_t *imem = controller.items_mem + (index * ILIST_ENT_SZ);
170 	return (struct ept_queue_item *)imem;
171 }
172 
173 /**
174  * ci_flush_qh - flush cache over queue head
175  * @ep_num:	Endpoint number
176  *
177  * This function flushes cache over QH for particular endpoint.
178  */
179 static void ci_flush_qh(int ep_num)
180 {
181 	struct ept_queue_head *head = ci_get_qh(ep_num, 0);
182 	const unsigned long start = (unsigned long)head;
183 	const unsigned long end = start + 2 * sizeof(*head);
184 
185 	flush_dcache_range(start, end);
186 }
187 
188 /**
189  * ci_invalidate_qh - invalidate cache over queue head
190  * @ep_num:	Endpoint number
191  *
192  * This function invalidates cache over QH for particular endpoint.
193  */
194 static void ci_invalidate_qh(int ep_num)
195 {
196 	struct ept_queue_head *head = ci_get_qh(ep_num, 0);
197 	unsigned long start = (unsigned long)head;
198 	unsigned long end = start + 2 * sizeof(*head);
199 
200 	invalidate_dcache_range(start, end);
201 }
202 
203 /**
204  * ci_flush_qtd - flush cache over queue item
205  * @ep_num:	Endpoint number
206  *
207  * This function flushes cache over qTD pair for particular endpoint.
208  */
209 static void ci_flush_qtd(int ep_num)
210 {
211 	struct ept_queue_item *item = ci_get_qtd(ep_num, 0);
212 	const unsigned long start = (unsigned long)item;
213 	const unsigned long end = start + 2 * ILIST_ENT_SZ;
214 
215 	flush_dcache_range(start, end);
216 }
217 
218 /**
219  * ci_flush_td - flush cache over queue item
220  * @td:	td pointer
221  *
222  * This function flushes cache for particular transfer descriptor.
223  */
224 static void ci_flush_td(struct ept_queue_item *td)
225 {
226 	const unsigned long start = (unsigned long)td;
227 	const unsigned long end = (unsigned long)td + ILIST_ENT_SZ;
228 	flush_dcache_range(start, end);
229 }
230 
231 /**
232  * ci_invalidate_qtd - invalidate cache over queue item
233  * @ep_num:	Endpoint number
234  *
235  * This function invalidates cache over qTD pair for particular endpoint.
236  */
237 static void ci_invalidate_qtd(int ep_num)
238 {
239 	struct ept_queue_item *item = ci_get_qtd(ep_num, 0);
240 	const unsigned long start = (unsigned long)item;
241 	const unsigned long end = start + 2 * ILIST_ENT_SZ;
242 
243 	invalidate_dcache_range(start, end);
244 }
245 
246 /**
247  * ci_invalidate_td - invalidate cache over queue item
248  * @td:	td pointer
249  *
250  * This function invalidates cache for particular transfer descriptor.
251  */
252 static void ci_invalidate_td(struct ept_queue_item *td)
253 {
254 	const unsigned long start = (unsigned long)td;
255 	const unsigned long end = start + ILIST_ENT_SZ;
256 	invalidate_dcache_range(start, end);
257 }
258 
259 static struct usb_request *
260 ci_ep_alloc_request(struct usb_ep *ep, unsigned int gfp_flags)
261 {
262 	struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
263 	int num = -1;
264 	struct ci_req *ci_req;
265 
266 	if (ci_ep->desc)
267 		num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
268 
269 	if (num == 0 && controller.ep0_req)
270 		return &controller.ep0_req->req;
271 
272 	ci_req = calloc(1, sizeof(*ci_req));
273 	if (!ci_req)
274 		return NULL;
275 
276 	INIT_LIST_HEAD(&ci_req->queue);
277 
278 	if (num == 0)
279 		controller.ep0_req = ci_req;
280 
281 	return &ci_req->req;
282 }
283 
284 static void ci_ep_free_request(struct usb_ep *ep, struct usb_request *req)
285 {
286 	struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
287 	struct ci_req *ci_req = container_of(req, struct ci_req, req);
288 	int num = -1;
289 
290 	if (ci_ep->desc)
291 		num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
292 
293 	if (num == 0) {
294 		if (!controller.ep0_req)
295 			return;
296 		controller.ep0_req = 0;
297 	}
298 
299 	if (ci_req->b_buf)
300 		free(ci_req->b_buf);
301 	free(ci_req);
302 }
303 
304 static void ep_enable(int num, int in, int maxpacket)
305 {
306 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
307 	unsigned n;
308 
309 	n = readl(&udc->epctrl[num]);
310 	if (in)
311 		n |= (CTRL_TXE | CTRL_TXR | CTRL_TXT_BULK);
312 	else
313 		n |= (CTRL_RXE | CTRL_RXR | CTRL_RXT_BULK);
314 
315 	if (num != 0) {
316 		struct ept_queue_head *head = ci_get_qh(num, in);
317 
318 		head->config = CONFIG_MAX_PKT(maxpacket) | CONFIG_ZLT;
319 		ci_flush_qh(num);
320 	}
321 	writel(n, &udc->epctrl[num]);
322 }
323 
324 static int ci_ep_enable(struct usb_ep *ep,
325 		const struct usb_endpoint_descriptor *desc)
326 {
327 	struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
328 	int num, in;
329 	num = desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
330 	in = (desc->bEndpointAddress & USB_DIR_IN) != 0;
331 	ci_ep->desc = desc;
332 
333 	if (num) {
334 		int max = get_unaligned_le16(&desc->wMaxPacketSize);
335 
336 		if ((max > 64) && (controller.gadget.speed == USB_SPEED_FULL))
337 			max = 64;
338 		if (ep->maxpacket != max) {
339 			DBG("%s: from %d to %d\n", __func__,
340 			    ep->maxpacket, max);
341 			ep->maxpacket = max;
342 		}
343 	}
344 	ep_enable(num, in, ep->maxpacket);
345 	DBG("%s: num=%d maxpacket=%d\n", __func__, num, ep->maxpacket);
346 	return 0;
347 }
348 
349 static int ci_ep_disable(struct usb_ep *ep)
350 {
351 	struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
352 
353 	ci_ep->desc = NULL;
354 	return 0;
355 }
356 
357 static int ci_bounce(struct ci_req *ci_req, int in)
358 {
359 	struct usb_request *req = &ci_req->req;
360 	unsigned long addr = (unsigned long)req->buf;
361 	unsigned long hwaddr;
362 	uint32_t aligned_used_len;
363 
364 	/* Input buffer address is not aligned. */
365 	if (addr & (ARCH_DMA_MINALIGN - 1))
366 		goto align;
367 
368 	/* Input buffer length is not aligned. */
369 	if (req->length & (ARCH_DMA_MINALIGN - 1))
370 		goto align;
371 
372 	/* The buffer is well aligned, only flush cache. */
373 	ci_req->hw_len = req->length;
374 	ci_req->hw_buf = req->buf;
375 	goto flush;
376 
377 align:
378 	if (ci_req->b_buf && req->length > ci_req->b_len) {
379 		free(ci_req->b_buf);
380 		ci_req->b_buf = 0;
381 	}
382 	if (!ci_req->b_buf) {
383 		ci_req->b_len = roundup(req->length, ARCH_DMA_MINALIGN);
384 		ci_req->b_buf = memalign(ARCH_DMA_MINALIGN, ci_req->b_len);
385 		if (!ci_req->b_buf)
386 			return -ENOMEM;
387 	}
388 	ci_req->hw_len = ci_req->b_len;
389 	ci_req->hw_buf = ci_req->b_buf;
390 
391 	if (in)
392 		memcpy(ci_req->hw_buf, req->buf, req->length);
393 
394 flush:
395 	hwaddr = (unsigned long)ci_req->hw_buf;
396 	aligned_used_len = roundup(req->length, ARCH_DMA_MINALIGN);
397 	flush_dcache_range(hwaddr, hwaddr + aligned_used_len);
398 
399 	return 0;
400 }
401 
402 static void ci_debounce(struct ci_req *ci_req, int in)
403 {
404 	struct usb_request *req = &ci_req->req;
405 	unsigned long addr = (unsigned long)req->buf;
406 	unsigned long hwaddr = (unsigned long)ci_req->hw_buf;
407 	uint32_t aligned_used_len;
408 
409 	if (in)
410 		return;
411 
412 	aligned_used_len = roundup(req->actual, ARCH_DMA_MINALIGN);
413 	invalidate_dcache_range(hwaddr, hwaddr + aligned_used_len);
414 
415 	if (addr == hwaddr)
416 		return; /* not a bounce */
417 
418 	memcpy(req->buf, ci_req->hw_buf, req->actual);
419 }
420 
421 static void ci_ep_submit_next_request(struct ci_ep *ci_ep)
422 {
423 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
424 	struct ept_queue_item *item;
425 	struct ept_queue_head *head;
426 	int bit, num, len, in;
427 	struct ci_req *ci_req;
428 	u8 *buf;
429 	uint32_t len_left, len_this_dtd;
430 	struct ept_queue_item *dtd, *qtd;
431 
432 	ci_ep->req_primed = true;
433 
434 	num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
435 	in = (ci_ep->desc->bEndpointAddress & USB_DIR_IN) != 0;
436 	item = ci_get_qtd(num, in);
437 	head = ci_get_qh(num, in);
438 
439 	ci_req = list_first_entry(&ci_ep->queue, struct ci_req, queue);
440 	len = ci_req->req.length;
441 
442 	head->next = (unsigned long)item;
443 	head->info = 0;
444 
445 	ci_req->dtd_count = 0;
446 	buf = ci_req->hw_buf;
447 	len_left = len;
448 	dtd = item;
449 
450 	do {
451 		len_this_dtd = min(len_left, (unsigned)EP_MAX_LENGTH_TRANSFER);
452 
453 		dtd->info = INFO_BYTES(len_this_dtd) | INFO_ACTIVE;
454 		dtd->page0 = (unsigned long)buf;
455 		dtd->page1 = ((unsigned long)buf & 0xfffff000) + 0x1000;
456 		dtd->page2 = ((unsigned long)buf & 0xfffff000) + 0x2000;
457 		dtd->page3 = ((unsigned long)buf & 0xfffff000) + 0x3000;
458 		dtd->page4 = ((unsigned long)buf & 0xfffff000) + 0x4000;
459 
460 		len_left -= len_this_dtd;
461 		buf += len_this_dtd;
462 
463 		if (len_left) {
464 			qtd = (struct ept_queue_item *)
465 			       memalign(ILIST_ALIGN, ILIST_ENT_SZ);
466 			dtd->next = (unsigned long)qtd;
467 			dtd = qtd;
468 			memset(dtd, 0, ILIST_ENT_SZ);
469 		}
470 
471 		ci_req->dtd_count++;
472 	} while (len_left);
473 
474 	item = dtd;
475 	/*
476 	 * When sending the data for an IN transaction, the attached host
477 	 * knows that all data for the IN is sent when one of the following
478 	 * occurs:
479 	 * a) A zero-length packet is transmitted.
480 	 * b) A packet with length that isn't an exact multiple of the ep's
481 	 *    maxpacket is transmitted.
482 	 * c) Enough data is sent to exactly fill the host's maximum expected
483 	 *    IN transaction size.
484 	 *
485 	 * One of these conditions MUST apply at the end of an IN transaction,
486 	 * or the transaction will not be considered complete by the host. If
487 	 * none of (a)..(c) already applies, then we must force (a) to apply
488 	 * by explicitly sending an extra zero-length packet.
489 	 */
490 	/*  IN    !a     !b                              !c */
491 	if (in && len && !(len % ci_ep->ep.maxpacket) && ci_req->req.zero) {
492 		/*
493 		 * Each endpoint has 2 items allocated, even though typically
494 		 * only 1 is used at a time since either an IN or an OUT but
495 		 * not both is queued. For an IN transaction, item currently
496 		 * points at the second of these items, so we know that we
497 		 * can use the other to transmit the extra zero-length packet.
498 		 */
499 		struct ept_queue_item *other_item = ci_get_qtd(num, 0);
500 		item->next = (unsigned long)other_item;
501 		item = other_item;
502 		item->info = INFO_ACTIVE;
503 	}
504 
505 	item->next = TERMINATE;
506 	item->info |= INFO_IOC;
507 
508 	ci_flush_qtd(num);
509 
510 	item = (struct ept_queue_item *)(unsigned long)head->next;
511 	while (item->next != TERMINATE) {
512 		ci_flush_td((struct ept_queue_item *)(unsigned long)item->next);
513 		item = (struct ept_queue_item *)(unsigned long)item->next;
514 	}
515 
516 	DBG("ept%d %s queue len %x, req %p, buffer %p\n",
517 	    num, in ? "in" : "out", len, ci_req, ci_req->hw_buf);
518 	ci_flush_qh(num);
519 
520 	if (in)
521 		bit = EPT_TX(num);
522 	else
523 		bit = EPT_RX(num);
524 
525 	writel(bit, &udc->epprime);
526 }
527 
528 static int ci_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
529 {
530 	struct ci_ep *ci_ep = container_of(_ep, struct ci_ep, ep);
531 	struct ci_req *ci_req;
532 
533 	list_for_each_entry(ci_req, &ci_ep->queue, queue) {
534 		if (&ci_req->req == _req)
535 			break;
536 	}
537 
538 	if (&ci_req->req != _req)
539 		return -EINVAL;
540 
541 	list_del_init(&ci_req->queue);
542 
543 	if (ci_req->req.status == -EINPROGRESS) {
544 		ci_req->req.status = -ECONNRESET;
545 		if (ci_req->req.complete)
546 			ci_req->req.complete(_ep, _req);
547 	}
548 
549 	return 0;
550 }
551 
552 static int ci_ep_queue(struct usb_ep *ep,
553 		struct usb_request *req, gfp_t gfp_flags)
554 {
555 	struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
556 	struct ci_req *ci_req = container_of(req, struct ci_req, req);
557 	int in, ret;
558 	int __maybe_unused num;
559 
560 	num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
561 	in = (ci_ep->desc->bEndpointAddress & USB_DIR_IN) != 0;
562 
563 	if (!num && ci_ep->req_primed) {
564 		/*
565 		 * The flipping of ep0 between IN and OUT relies on
566 		 * ci_ep_queue consuming the current IN/OUT setting
567 		 * immediately. If this is deferred to a later point when the
568 		 * req is pulled out of ci_req->queue, then the IN/OUT setting
569 		 * may have been changed since the req was queued, and state
570 		 * will get out of sync. This condition doesn't occur today,
571 		 * but could if bugs were introduced later, and this error
572 		 * check will save a lot of debugging time.
573 		 */
574 		printf("%s: ep0 transaction already in progress\n", __func__);
575 		return -EPROTO;
576 	}
577 
578 	ret = ci_bounce(ci_req, in);
579 	if (ret)
580 		return ret;
581 
582 	DBG("ept%d %s pre-queue req %p, buffer %p\n",
583 	    num, in ? "in" : "out", ci_req, ci_req->hw_buf);
584 	list_add_tail(&ci_req->queue, &ci_ep->queue);
585 
586 	if (!ci_ep->req_primed)
587 		ci_ep_submit_next_request(ci_ep);
588 
589 	return 0;
590 }
591 
592 static void flip_ep0_direction(void)
593 {
594 	if (ep0_desc.bEndpointAddress == USB_DIR_IN) {
595 		DBG("%s: Flipping ep0 to OUT\n", __func__);
596 		ep0_desc.bEndpointAddress = 0;
597 	} else {
598 		DBG("%s: Flipping ep0 to IN\n", __func__);
599 		ep0_desc.bEndpointAddress = USB_DIR_IN;
600 	}
601 }
602 
603 static void handle_ep_complete(struct ci_ep *ci_ep)
604 {
605 	struct ept_queue_item *item, *next_td;
606 	int num, in, len, j;
607 	struct ci_req *ci_req;
608 
609 	num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
610 	in = (ci_ep->desc->bEndpointAddress & USB_DIR_IN) != 0;
611 	item = ci_get_qtd(num, in);
612 	ci_invalidate_qtd(num);
613 	ci_req = list_first_entry(&ci_ep->queue, struct ci_req, queue);
614 
615 	next_td = item;
616 	len = 0;
617 	for (j = 0; j < ci_req->dtd_count; j++) {
618 		ci_invalidate_td(next_td);
619 		item = next_td;
620 		len += (item->info >> 16) & 0x7fff;
621 		if (item->info & 0xff)
622 			printf("EP%d/%s FAIL info=%x pg0=%x\n",
623 			       num, in ? "in" : "out", item->info, item->page0);
624 		if (j != ci_req->dtd_count - 1)
625 			next_td = (struct ept_queue_item *)(unsigned long)
626 				item->next;
627 		if (j != 0)
628 			free(item);
629 	}
630 
631 	list_del_init(&ci_req->queue);
632 	ci_ep->req_primed = false;
633 
634 	if (!list_empty(&ci_ep->queue))
635 		ci_ep_submit_next_request(ci_ep);
636 
637 	ci_req->req.actual = ci_req->req.length - len;
638 	ci_debounce(ci_req, in);
639 
640 	DBG("ept%d %s req %p, complete %x\n",
641 	    num, in ? "in" : "out", ci_req, len);
642 	if (num != 0 || controller.ep0_data_phase)
643 		ci_req->req.complete(&ci_ep->ep, &ci_req->req);
644 	if (num == 0 && controller.ep0_data_phase) {
645 		/*
646 		 * Data Stage is complete, so flip ep0 dir for Status Stage,
647 		 * which always transfers a packet in the opposite direction.
648 		 */
649 		DBG("%s: flip ep0 dir for Status Stage\n", __func__);
650 		flip_ep0_direction();
651 		controller.ep0_data_phase = false;
652 		ci_req->req.length = 0;
653 		usb_ep_queue(&ci_ep->ep, &ci_req->req, 0);
654 	}
655 }
656 
657 #define SETUP(type, request) (((type) << 8) | (request))
658 
659 static void handle_setup(void)
660 {
661 	struct ci_ep *ci_ep = &controller.ep[0];
662 	struct ci_req *ci_req;
663 	struct usb_request *req;
664 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
665 	struct ept_queue_head *head;
666 	struct usb_ctrlrequest r;
667 	int status = 0;
668 	int num, in, _num, _in, i;
669 	char *buf;
670 
671 	ci_req = controller.ep0_req;
672 	req = &ci_req->req;
673 	head = ci_get_qh(0, 0);	/* EP0 OUT */
674 
675 	ci_invalidate_qh(0);
676 	memcpy(&r, head->setup_data, sizeof(struct usb_ctrlrequest));
677 #ifdef CONFIG_CI_UDC_HAS_HOSTPC
678 	writel(EPT_RX(0), &udc->epsetupstat);
679 #else
680 	writel(EPT_RX(0), &udc->epstat);
681 #endif
682 	DBG("handle setup %s, %x, %x index %x value %x length %x\n",
683 	    reqname(r.bRequest), r.bRequestType, r.bRequest, r.wIndex,
684 	    r.wValue, r.wLength);
685 
686 	/* Set EP0 dir for Data Stage based on Setup Stage data */
687 	if (r.bRequestType & USB_DIR_IN) {
688 		DBG("%s: Set ep0 to IN for Data Stage\n", __func__);
689 		ep0_desc.bEndpointAddress = USB_DIR_IN;
690 	} else {
691 		DBG("%s: Set ep0 to OUT for Data Stage\n", __func__);
692 		ep0_desc.bEndpointAddress = 0;
693 	}
694 	if (r.wLength) {
695 		controller.ep0_data_phase = true;
696 	} else {
697 		/* 0 length -> no Data Stage. Flip dir for Status Stage */
698 		DBG("%s: 0 length: flip ep0 dir for Status Stage\n", __func__);
699 		flip_ep0_direction();
700 		controller.ep0_data_phase = false;
701 	}
702 
703 	list_del_init(&ci_req->queue);
704 	ci_ep->req_primed = false;
705 
706 	switch (SETUP(r.bRequestType, r.bRequest)) {
707 	case SETUP(USB_RECIP_ENDPOINT, USB_REQ_CLEAR_FEATURE):
708 		_num = r.wIndex & 15;
709 		_in = !!(r.wIndex & 0x80);
710 
711 		if ((r.wValue == 0) && (r.wLength == 0)) {
712 			req->length = 0;
713 			for (i = 0; i < NUM_ENDPOINTS; i++) {
714 				struct ci_ep *ep = &controller.ep[i];
715 
716 				if (!ep->desc)
717 					continue;
718 				num = ep->desc->bEndpointAddress
719 						& USB_ENDPOINT_NUMBER_MASK;
720 				in = (ep->desc->bEndpointAddress
721 						& USB_DIR_IN) != 0;
722 				if ((num == _num) && (in == _in)) {
723 					ep_enable(num, in, ep->ep.maxpacket);
724 					usb_ep_queue(controller.gadget.ep0,
725 							req, 0);
726 					break;
727 				}
728 			}
729 		}
730 		return;
731 
732 	case SETUP(USB_RECIP_DEVICE, USB_REQ_SET_ADDRESS):
733 		/*
734 		 * write address delayed (will take effect
735 		 * after the next IN txn)
736 		 */
737 		writel((r.wValue << 25) | (1 << 24), &udc->devaddr);
738 		req->length = 0;
739 		usb_ep_queue(controller.gadget.ep0, req, 0);
740 		return;
741 
742 	case SETUP(USB_DIR_IN | USB_RECIP_DEVICE, USB_REQ_GET_STATUS):
743 		req->length = 2;
744 		buf = (char *)req->buf;
745 		buf[0] = 1 << USB_DEVICE_SELF_POWERED;
746 		buf[1] = 0;
747 		usb_ep_queue(controller.gadget.ep0, req, 0);
748 		return;
749 	}
750 	/* pass request up to the gadget driver */
751 	if (controller.driver)
752 		status = controller.driver->setup(&controller.gadget, &r);
753 	else
754 		status = -ENODEV;
755 
756 	if (!status)
757 		return;
758 	DBG("STALL reqname %s type %x value %x, index %x\n",
759 	    reqname(r.bRequest), r.bRequestType, r.wValue, r.wIndex);
760 	writel((1<<16) | (1 << 0), &udc->epctrl[0]);
761 }
762 
763 static void stop_activity(void)
764 {
765 	int i, num, in;
766 	struct ept_queue_head *head;
767 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
768 	writel(readl(&udc->epcomp), &udc->epcomp);
769 #ifdef CONFIG_CI_UDC_HAS_HOSTPC
770 	writel(readl(&udc->epsetupstat), &udc->epsetupstat);
771 #endif
772 	writel(readl(&udc->epstat), &udc->epstat);
773 	writel(0xffffffff, &udc->epflush);
774 
775 	/* error out any pending reqs */
776 	for (i = 0; i < NUM_ENDPOINTS; i++) {
777 		if (i != 0)
778 			writel(0, &udc->epctrl[i]);
779 		if (controller.ep[i].desc) {
780 			num = controller.ep[i].desc->bEndpointAddress
781 				& USB_ENDPOINT_NUMBER_MASK;
782 			in = (controller.ep[i].desc->bEndpointAddress
783 				& USB_DIR_IN) != 0;
784 			head = ci_get_qh(num, in);
785 			head->info = INFO_ACTIVE;
786 			ci_flush_qh(num);
787 		}
788 	}
789 }
790 
791 void udc_irq(void)
792 {
793 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
794 	unsigned n = readl(&udc->usbsts);
795 	writel(n, &udc->usbsts);
796 	int bit, i, num, in;
797 
798 	n &= (STS_SLI | STS_URI | STS_PCI | STS_UI | STS_UEI);
799 	if (n == 0)
800 		return;
801 
802 	if (n & STS_URI) {
803 		DBG("-- reset --\n");
804 		stop_activity();
805 	}
806 	if (n & STS_SLI)
807 		DBG("-- suspend --\n");
808 
809 	if (n & STS_PCI) {
810 		int max = 64;
811 		int speed = USB_SPEED_FULL;
812 
813 #ifdef CONFIG_CI_UDC_HAS_HOSTPC
814 		bit = (readl(&udc->hostpc1_devlc) >> 25) & 3;
815 #else
816 		bit = (readl(&udc->portsc) >> 26) & 3;
817 #endif
818 		DBG("-- portchange %x %s\n", bit, (bit == 2) ? "High" : "Full");
819 		if (bit == 2) {
820 			speed = USB_SPEED_HIGH;
821 			max = 512;
822 		}
823 		controller.gadget.speed = speed;
824 		for (i = 1; i < NUM_ENDPOINTS; i++) {
825 			if (controller.ep[i].ep.maxpacket > max)
826 				controller.ep[i].ep.maxpacket = max;
827 		}
828 	}
829 
830 	if (n & STS_UEI)
831 		printf("<UEI %x>\n", readl(&udc->epcomp));
832 
833 	if ((n & STS_UI) || (n & STS_UEI)) {
834 #ifdef CONFIG_CI_UDC_HAS_HOSTPC
835 		n = readl(&udc->epsetupstat);
836 #else
837 		n = readl(&udc->epstat);
838 #endif
839 		if (n & EPT_RX(0))
840 			handle_setup();
841 
842 		n = readl(&udc->epcomp);
843 		if (n != 0)
844 			writel(n, &udc->epcomp);
845 
846 		for (i = 0; i < NUM_ENDPOINTS && n; i++) {
847 			if (controller.ep[i].desc) {
848 				num = controller.ep[i].desc->bEndpointAddress
849 					& USB_ENDPOINT_NUMBER_MASK;
850 				in = (controller.ep[i].desc->bEndpointAddress
851 						& USB_DIR_IN) != 0;
852 				bit = (in) ? EPT_TX(num) : EPT_RX(num);
853 				if (n & bit)
854 					handle_ep_complete(&controller.ep[i]);
855 			}
856 		}
857 	}
858 }
859 
860 int usb_gadget_handle_interrupts(int index)
861 {
862 	u32 value;
863 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
864 
865 	value = readl(&udc->usbsts);
866 	if (value)
867 		udc_irq();
868 
869 	return value;
870 }
871 
872 void udc_disconnect(void)
873 {
874 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
875 	/* disable pullup */
876 	stop_activity();
877 	writel(USBCMD_FS2, &udc->usbcmd);
878 	udelay(800);
879 	if (controller.driver)
880 		controller.driver->disconnect(&controller.gadget);
881 }
882 
883 static int ci_pullup(struct usb_gadget *gadget, int is_on)
884 {
885 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
886 	if (is_on) {
887 		/* RESET */
888 		writel(USBCMD_ITC(MICRO_8FRAME) | USBCMD_RST, &udc->usbcmd);
889 		udelay(200);
890 
891 		writel((unsigned long)controller.epts, &udc->epinitaddr);
892 
893 		/* select DEVICE mode */
894 		writel(USBMODE_DEVICE, &udc->usbmode);
895 
896 #if !defined(CONFIG_USB_GADGET_DUALSPEED)
897 		/* Port force Full-Speed Connect */
898 		setbits_le32(&udc->portsc, PFSC);
899 #endif
900 
901 		writel(0xffffffff, &udc->epflush);
902 
903 		/* Turn on the USB connection by enabling the pullup resistor */
904 		writel(USBCMD_ITC(MICRO_8FRAME) | USBCMD_RUN, &udc->usbcmd);
905 	} else {
906 		udc_disconnect();
907 	}
908 
909 	return 0;
910 }
911 
912 static int ci_udc_probe(void)
913 {
914 	struct ept_queue_head *head;
915 	int i;
916 
917 	const int num = 2 * NUM_ENDPOINTS;
918 
919 	const int eplist_min_align = 4096;
920 	const int eplist_align = roundup(eplist_min_align, ARCH_DMA_MINALIGN);
921 	const int eplist_raw_sz = num * sizeof(struct ept_queue_head);
922 	const int eplist_sz = roundup(eplist_raw_sz, ARCH_DMA_MINALIGN);
923 
924 	/* The QH list must be aligned to 4096 bytes. */
925 	controller.epts = memalign(eplist_align, eplist_sz);
926 	if (!controller.epts)
927 		return -ENOMEM;
928 	memset(controller.epts, 0, eplist_sz);
929 
930 	controller.items_mem = memalign(ILIST_ALIGN, ILIST_SZ);
931 	if (!controller.items_mem) {
932 		free(controller.epts);
933 		return -ENOMEM;
934 	}
935 	memset(controller.items_mem, 0, ILIST_SZ);
936 
937 	for (i = 0; i < 2 * NUM_ENDPOINTS; i++) {
938 		/*
939 		 * Configure QH for each endpoint. The structure of the QH list
940 		 * is such that each two subsequent fields, N and N+1 where N is
941 		 * even, in the QH list represent QH for one endpoint. The Nth
942 		 * entry represents OUT configuration and the N+1th entry does
943 		 * represent IN configuration of the endpoint.
944 		 */
945 		head = controller.epts + i;
946 		if (i < 2)
947 			head->config = CONFIG_MAX_PKT(EP0_MAX_PACKET_SIZE)
948 				| CONFIG_ZLT | CONFIG_IOS;
949 		else
950 			head->config = CONFIG_MAX_PKT(EP_MAX_PACKET_SIZE)
951 				| CONFIG_ZLT;
952 		head->next = TERMINATE;
953 		head->info = 0;
954 
955 		if (i & 1) {
956 			ci_flush_qh(i / 2);
957 			ci_flush_qtd(i / 2);
958 		}
959 	}
960 
961 	INIT_LIST_HEAD(&controller.gadget.ep_list);
962 
963 	/* Init EP 0 */
964 	memcpy(&controller.ep[0].ep, &ci_ep_init[0], sizeof(*ci_ep_init));
965 	controller.ep[0].desc = &ep0_desc;
966 	INIT_LIST_HEAD(&controller.ep[0].queue);
967 	controller.ep[0].req_primed = false;
968 	controller.gadget.ep0 = &controller.ep[0].ep;
969 	INIT_LIST_HEAD(&controller.gadget.ep0->ep_list);
970 
971 	/* Init EP 1..3 */
972 	for (i = 1; i < 4; i++) {
973 		memcpy(&controller.ep[i].ep, &ci_ep_init[i],
974 		       sizeof(*ci_ep_init));
975 		INIT_LIST_HEAD(&controller.ep[i].queue);
976 		controller.ep[i].req_primed = false;
977 		list_add_tail(&controller.ep[i].ep.ep_list,
978 			      &controller.gadget.ep_list);
979 	}
980 
981 	/* Init EP 4..n */
982 	for (i = 4; i < NUM_ENDPOINTS; i++) {
983 		memcpy(&controller.ep[i].ep, &ci_ep_init[4],
984 		       sizeof(*ci_ep_init));
985 		INIT_LIST_HEAD(&controller.ep[i].queue);
986 		controller.ep[i].req_primed = false;
987 		list_add_tail(&controller.ep[i].ep.ep_list,
988 			      &controller.gadget.ep_list);
989 	}
990 
991 	ci_ep_alloc_request(&controller.ep[0].ep, 0);
992 	if (!controller.ep0_req) {
993 		free(controller.items_mem);
994 		free(controller.epts);
995 		return -ENOMEM;
996 	}
997 
998 	return 0;
999 }
1000 
1001 int usb_gadget_register_driver(struct usb_gadget_driver *driver)
1002 {
1003 	int ret;
1004 
1005 	if (!driver)
1006 		return -EINVAL;
1007 	if (!driver->bind || !driver->setup || !driver->disconnect)
1008 		return -EINVAL;
1009 	if (driver->speed != USB_SPEED_FULL && driver->speed != USB_SPEED_HIGH)
1010 		return -EINVAL;
1011 
1012 #ifdef CONFIG_DM_USB
1013 	ret = usb_setup_ehci_gadget(&controller.ctrl);
1014 #else
1015 	ret = usb_lowlevel_init(0, USB_INIT_DEVICE, (void **)&controller.ctrl);
1016 #endif
1017 	if (ret)
1018 		return ret;
1019 
1020 	ret = ci_udc_probe();
1021 	if (ret) {
1022 		DBG("udc probe failed, returned %d\n", ret);
1023 		return ret;
1024 	}
1025 
1026 	ret = driver->bind(&controller.gadget);
1027 	if (ret) {
1028 		DBG("driver->bind() returned %d\n", ret);
1029 		return ret;
1030 	}
1031 	controller.driver = driver;
1032 
1033 	return 0;
1034 }
1035 
1036 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
1037 {
1038 	udc_disconnect();
1039 
1040 	driver->unbind(&controller.gadget);
1041 	controller.driver = NULL;
1042 
1043 	ci_ep_free_request(&controller.ep[0].ep, &controller.ep0_req->req);
1044 	free(controller.items_mem);
1045 	free(controller.epts);
1046 
1047 	return 0;
1048 }
1049 
1050 bool dfu_usb_get_reset(void)
1051 {
1052 	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
1053 
1054 	return !!(readl(&udc->usbsts) & STS_URI);
1055 }
1056