xref: /openbmc/u-boot/drivers/timer/tsc_timer.c (revision ee7bb5be)
1 /*
2  * Copyright (c) 2012 The Chromium OS Authors.
3  *
4  * TSC calibration codes are adapted from Linux kernel
5  * arch/x86/kernel/tsc_msr.c and arch/x86/kernel/tsc.c
6  *
7  * SPDX-License-Identifier:	GPL-2.0+
8  */
9 
10 #include <common.h>
11 #include <dm.h>
12 #include <malloc.h>
13 #include <timer.h>
14 #include <asm/io.h>
15 #include <asm/i8254.h>
16 #include <asm/ibmpc.h>
17 #include <asm/msr.h>
18 #include <asm/u-boot-x86.h>
19 
20 /* CPU reference clock frequency: in KHz */
21 #define FREQ_83		83200
22 #define FREQ_100	99840
23 #define FREQ_133	133200
24 #define FREQ_166	166400
25 
26 #define MAX_NUM_FREQS	8
27 
28 DECLARE_GLOBAL_DATA_PTR;
29 
30 /*
31  * According to Intel 64 and IA-32 System Programming Guide,
32  * if MSR_PERF_STAT[31] is set, the maximum resolved bus ratio can be
33  * read in MSR_PLATFORM_ID[12:8], otherwise in MSR_PERF_STAT[44:40].
34  * Unfortunately some Intel Atom SoCs aren't quite compliant to this,
35  * so we need manually differentiate SoC families. This is what the
36  * field msr_plat does.
37  */
38 struct freq_desc {
39 	u8 x86_family;	/* CPU family */
40 	u8 x86_model;	/* model */
41 	/* 2: use 100MHz, 1: use MSR_PLATFORM_INFO, 0: MSR_IA32_PERF_STATUS */
42 	u8 msr_plat;
43 	u32 freqs[MAX_NUM_FREQS];
44 };
45 
46 static struct freq_desc freq_desc_tables[] = {
47 	/* PNW */
48 	{ 6, 0x27, 0, { 0, 0, 0, 0, 0, FREQ_100, 0, FREQ_83 } },
49 	/* CLV+ */
50 	{ 6, 0x35, 0, { 0, FREQ_133, 0, 0, 0, FREQ_100, 0, FREQ_83 } },
51 	/* TNG */
52 	{ 6, 0x4a, 1, { 0, FREQ_100, FREQ_133, 0, 0, 0, 0, 0 } },
53 	/* VLV2 */
54 	{ 6, 0x37, 1, { FREQ_83, FREQ_100, FREQ_133, FREQ_166, 0, 0, 0, 0 } },
55 	/* Ivybridge */
56 	{ 6, 0x3a, 2, { 0, 0, 0, 0, 0, 0, 0, 0 } },
57 	/* ANN */
58 	{ 6, 0x5a, 1, { FREQ_83, FREQ_100, FREQ_133, FREQ_100, 0, 0, 0, 0 } },
59 };
60 
61 static int match_cpu(u8 family, u8 model)
62 {
63 	int i;
64 
65 	for (i = 0; i < ARRAY_SIZE(freq_desc_tables); i++) {
66 		if ((family == freq_desc_tables[i].x86_family) &&
67 		    (model == freq_desc_tables[i].x86_model))
68 			return i;
69 	}
70 
71 	return -1;
72 }
73 
74 /* Map CPU reference clock freq ID(0-7) to CPU reference clock freq(KHz) */
75 #define id_to_freq(cpu_index, freq_id) \
76 	(freq_desc_tables[cpu_index].freqs[freq_id])
77 
78 /*
79  * Do MSR calibration only for known/supported CPUs.
80  *
81  * Returns the calibration value or 0 if MSR calibration failed.
82  */
83 static unsigned long __maybe_unused try_msr_calibrate_tsc(void)
84 {
85 	u32 lo, hi, ratio, freq_id, freq;
86 	unsigned long res;
87 	int cpu_index;
88 
89 	cpu_index = match_cpu(gd->arch.x86, gd->arch.x86_model);
90 	if (cpu_index < 0)
91 		return 0;
92 
93 	if (freq_desc_tables[cpu_index].msr_plat) {
94 		rdmsr(MSR_PLATFORM_INFO, lo, hi);
95 		ratio = (lo >> 8) & 0x1f;
96 	} else {
97 		rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
98 		ratio = (hi >> 8) & 0x1f;
99 	}
100 	debug("Maximum core-clock to bus-clock ratio: 0x%x\n", ratio);
101 
102 	if (!ratio)
103 		goto fail;
104 
105 	if (freq_desc_tables[cpu_index].msr_plat == 2) {
106 		/* TODO: Figure out how best to deal with this */
107 		freq = FREQ_100;
108 		debug("Using frequency: %u KHz\n", freq);
109 	} else {
110 		/* Get FSB FREQ ID */
111 		rdmsr(MSR_FSB_FREQ, lo, hi);
112 		freq_id = lo & 0x7;
113 		freq = id_to_freq(cpu_index, freq_id);
114 		debug("Resolved frequency ID: %u, frequency: %u KHz\n",
115 		      freq_id, freq);
116 	}
117 	if (!freq)
118 		goto fail;
119 
120 	/* TSC frequency = maximum resolved freq * maximum resolved bus ratio */
121 	res = freq * ratio / 1000;
122 	debug("TSC runs at %lu MHz\n", res);
123 
124 	return res;
125 
126 fail:
127 	debug("Fast TSC calibration using MSR failed\n");
128 	return 0;
129 }
130 
131 /*
132  * This reads the current MSB of the PIT counter, and
133  * checks if we are running on sufficiently fast and
134  * non-virtualized hardware.
135  *
136  * Our expectations are:
137  *
138  *  - the PIT is running at roughly 1.19MHz
139  *
140  *  - each IO is going to take about 1us on real hardware,
141  *    but we allow it to be much faster (by a factor of 10) or
142  *    _slightly_ slower (ie we allow up to a 2us read+counter
143  *    update - anything else implies a unacceptably slow CPU
144  *    or PIT for the fast calibration to work.
145  *
146  *  - with 256 PIT ticks to read the value, we have 214us to
147  *    see the same MSB (and overhead like doing a single TSC
148  *    read per MSB value etc).
149  *
150  *  - We're doing 2 reads per loop (LSB, MSB), and we expect
151  *    them each to take about a microsecond on real hardware.
152  *    So we expect a count value of around 100. But we'll be
153  *    generous, and accept anything over 50.
154  *
155  *  - if the PIT is stuck, and we see *many* more reads, we
156  *    return early (and the next caller of pit_expect_msb()
157  *    then consider it a failure when they don't see the
158  *    next expected value).
159  *
160  * These expectations mean that we know that we have seen the
161  * transition from one expected value to another with a fairly
162  * high accuracy, and we didn't miss any events. We can thus
163  * use the TSC value at the transitions to calculate a pretty
164  * good value for the TSC frequencty.
165  */
166 static inline int pit_verify_msb(unsigned char val)
167 {
168 	/* Ignore LSB */
169 	inb(0x42);
170 	return inb(0x42) == val;
171 }
172 
173 static inline int pit_expect_msb(unsigned char val, u64 *tscp,
174 				 unsigned long *deltap)
175 {
176 	int count;
177 	u64 tsc = 0, prev_tsc = 0;
178 
179 	for (count = 0; count < 50000; count++) {
180 		if (!pit_verify_msb(val))
181 			break;
182 		prev_tsc = tsc;
183 		tsc = rdtsc();
184 	}
185 	*deltap = rdtsc() - prev_tsc;
186 	*tscp = tsc;
187 
188 	/*
189 	 * We require _some_ success, but the quality control
190 	 * will be based on the error terms on the TSC values.
191 	 */
192 	return count > 5;
193 }
194 
195 /*
196  * How many MSB values do we want to see? We aim for
197  * a maximum error rate of 500ppm (in practice the
198  * real error is much smaller), but refuse to spend
199  * more than 50ms on it.
200  */
201 #define MAX_QUICK_PIT_MS 50
202 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
203 
204 static unsigned long __maybe_unused quick_pit_calibrate(void)
205 {
206 	int i;
207 	u64 tsc, delta;
208 	unsigned long d1, d2;
209 
210 	/* Set the Gate high, disable speaker */
211 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
212 
213 	/*
214 	 * Counter 2, mode 0 (one-shot), binary count
215 	 *
216 	 * NOTE! Mode 2 decrements by two (and then the
217 	 * output is flipped each time, giving the same
218 	 * final output frequency as a decrement-by-one),
219 	 * so mode 0 is much better when looking at the
220 	 * individual counts.
221 	 */
222 	outb(0xb0, 0x43);
223 
224 	/* Start at 0xffff */
225 	outb(0xff, 0x42);
226 	outb(0xff, 0x42);
227 
228 	/*
229 	 * The PIT starts counting at the next edge, so we
230 	 * need to delay for a microsecond. The easiest way
231 	 * to do that is to just read back the 16-bit counter
232 	 * once from the PIT.
233 	 */
234 	pit_verify_msb(0);
235 
236 	if (pit_expect_msb(0xff, &tsc, &d1)) {
237 		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
238 			if (!pit_expect_msb(0xff-i, &delta, &d2))
239 				break;
240 
241 			/*
242 			 * Iterate until the error is less than 500 ppm
243 			 */
244 			delta -= tsc;
245 			if (d1+d2 >= delta >> 11)
246 				continue;
247 
248 			/*
249 			 * Check the PIT one more time to verify that
250 			 * all TSC reads were stable wrt the PIT.
251 			 *
252 			 * This also guarantees serialization of the
253 			 * last cycle read ('d2') in pit_expect_msb.
254 			 */
255 			if (!pit_verify_msb(0xfe - i))
256 				break;
257 			goto success;
258 		}
259 	}
260 	debug("Fast TSC calibration failed\n");
261 	return 0;
262 
263 success:
264 	/*
265 	 * Ok, if we get here, then we've seen the
266 	 * MSB of the PIT decrement 'i' times, and the
267 	 * error has shrunk to less than 500 ppm.
268 	 *
269 	 * As a result, we can depend on there not being
270 	 * any odd delays anywhere, and the TSC reads are
271 	 * reliable (within the error).
272 	 *
273 	 * kHz = ticks / time-in-seconds / 1000;
274 	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
275 	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
276 	 */
277 	delta *= PIT_TICK_RATE;
278 	delta /= (i*256*1000);
279 	debug("Fast TSC calibration using PIT\n");
280 	return delta / 1000;
281 }
282 
283 /* Get the speed of the TSC timer in MHz */
284 unsigned notrace long get_tbclk_mhz(void)
285 {
286 	return get_tbclk() / 1000000;
287 }
288 
289 static ulong get_ms_timer(void)
290 {
291 	return (get_ticks() * 1000) / get_tbclk();
292 }
293 
294 ulong get_timer(ulong base)
295 {
296 	return get_ms_timer() - base;
297 }
298 
299 ulong notrace timer_get_us(void)
300 {
301 	return get_ticks() / get_tbclk_mhz();
302 }
303 
304 ulong timer_get_boot_us(void)
305 {
306 	return timer_get_us();
307 }
308 
309 void __udelay(unsigned long usec)
310 {
311 	u64 now = get_ticks();
312 	u64 stop;
313 
314 	stop = now + usec * get_tbclk_mhz();
315 
316 	while ((int64_t)(stop - get_ticks()) > 0)
317 #if defined(CONFIG_QEMU) && defined(CONFIG_SMP)
318 		/*
319 		 * Add a 'pause' instruction on qemu target,
320 		 * to give other VCPUs a chance to run.
321 		 */
322 		asm volatile("pause");
323 #else
324 		;
325 #endif
326 }
327 
328 static int tsc_timer_get_count(struct udevice *dev, u64 *count)
329 {
330 	u64 now_tick = rdtsc();
331 
332 	*count = now_tick - gd->arch.tsc_base;
333 
334 	return 0;
335 }
336 
337 static int tsc_timer_probe(struct udevice *dev)
338 {
339 	struct timer_dev_priv *uc_priv = dev_get_uclass_priv(dev);
340 
341 	gd->arch.tsc_base = rdtsc();
342 
343 	/*
344 	 * If there is no clock frequency specified in the device tree,
345 	 * calibrate it by ourselves.
346 	 */
347 	if (!uc_priv->clock_rate) {
348 		unsigned long fast_calibrate;
349 
350 		fast_calibrate = try_msr_calibrate_tsc();
351 		if (!fast_calibrate) {
352 			fast_calibrate = quick_pit_calibrate();
353 			if (!fast_calibrate)
354 				panic("TSC frequency is ZERO");
355 		}
356 
357 		uc_priv->clock_rate = fast_calibrate * 1000000;
358 	}
359 
360 	return 0;
361 }
362 
363 static const struct timer_ops tsc_timer_ops = {
364 	.get_count = tsc_timer_get_count,
365 };
366 
367 static const struct udevice_id tsc_timer_ids[] = {
368 	{ .compatible = "x86,tsc-timer", },
369 	{ }
370 };
371 
372 U_BOOT_DRIVER(tsc_timer) = {
373 	.name	= "tsc_timer",
374 	.id	= UCLASS_TIMER,
375 	.of_match = tsc_timer_ids,
376 	.probe = tsc_timer_probe,
377 	.ops	= &tsc_timer_ops,
378 	.flags = DM_FLAG_PRE_RELOC,
379 };
380