xref: /openbmc/u-boot/drivers/timer/tsc_timer.c (revision baefb63a)
1 /*
2  * Copyright (c) 2012 The Chromium OS Authors.
3  *
4  * TSC calibration codes are adapted from Linux kernel
5  * arch/x86/kernel/tsc_msr.c and arch/x86/kernel/tsc.c
6  *
7  * SPDX-License-Identifier:	GPL-2.0+
8  */
9 
10 #include <common.h>
11 #include <dm.h>
12 #include <malloc.h>
13 #include <timer.h>
14 #include <asm/cpu.h>
15 #include <asm/io.h>
16 #include <asm/i8254.h>
17 #include <asm/ibmpc.h>
18 #include <asm/msr.h>
19 #include <asm/u-boot-x86.h>
20 
21 #define MAX_NUM_FREQS	9
22 
23 DECLARE_GLOBAL_DATA_PTR;
24 
25 /*
26  * According to Intel 64 and IA-32 System Programming Guide,
27  * if MSR_PERF_STAT[31] is set, the maximum resolved bus ratio can be
28  * read in MSR_PLATFORM_ID[12:8], otherwise in MSR_PERF_STAT[44:40].
29  * Unfortunately some Intel Atom SoCs aren't quite compliant to this,
30  * so we need manually differentiate SoC families. This is what the
31  * field msr_plat does.
32  */
33 struct freq_desc {
34 	u8 x86_family;	/* CPU family */
35 	u8 x86_model;	/* model */
36 	/* 2: use 100MHz, 1: use MSR_PLATFORM_INFO, 0: MSR_IA32_PERF_STATUS */
37 	u8 msr_plat;
38 	u32 freqs[MAX_NUM_FREQS];
39 };
40 
41 static struct freq_desc freq_desc_tables[] = {
42 	/* PNW */
43 	{ 6, 0x27, 0, { 0, 0, 0, 0, 0, 99840, 0, 83200, 0 } },
44 	/* CLV+ */
45 	{ 6, 0x35, 0, { 0, 133200, 0, 0, 0, 99840, 0, 83200, 0 } },
46 	/* TNG - Intel Atom processor Z3400 series */
47 	{ 6, 0x4a, 1, { 0, 100000, 133300, 0, 0, 0, 0, 0, 0 } },
48 	/* VLV2 - Intel Atom processor E3000, Z3600, Z3700 series */
49 	{ 6, 0x37, 1, { 83300, 100000, 133300, 116700, 80000, 0, 0, 0, 0 } },
50 	/* ANN - Intel Atom processor Z3500 series */
51 	{ 6, 0x5a, 1, { 83300, 100000, 133300, 100000, 0, 0, 0, 0, 0 } },
52 	/* AMT - Intel Atom processor X7-Z8000 and X5-Z8000 series */
53 	{ 6, 0x4c, 1, { 83300, 100000, 133300, 116700,
54 			80000, 93300, 90000, 88900, 87500 } },
55 	/* Ivybridge */
56 	{ 6, 0x3a, 2, { 0, 0, 0, 0, 0, 0, 0, 0, 0 } },
57 };
58 
59 static int match_cpu(u8 family, u8 model)
60 {
61 	int i;
62 
63 	for (i = 0; i < ARRAY_SIZE(freq_desc_tables); i++) {
64 		if ((family == freq_desc_tables[i].x86_family) &&
65 		    (model == freq_desc_tables[i].x86_model))
66 			return i;
67 	}
68 
69 	return -1;
70 }
71 
72 /* Map CPU reference clock freq ID(0-7) to CPU reference clock freq(KHz) */
73 #define id_to_freq(cpu_index, freq_id) \
74 	(freq_desc_tables[cpu_index].freqs[freq_id])
75 
76 /*
77  * TSC on Intel Atom SoCs capable of determining TSC frequency by MSR is
78  * reliable and the frequency is known (provided by HW).
79  *
80  * On these platforms PIT/HPET is generally not available so calibration won't
81  * work at all and there is no other clocksource to act as a watchdog for the
82  * TSC, so we have no other choice than to trust it.
83  *
84  * Returns the TSC frequency in MHz or 0 if HW does not provide it.
85  */
86 static unsigned long __maybe_unused cpu_mhz_from_msr(void)
87 {
88 	u32 lo, hi, ratio, freq_id, freq;
89 	unsigned long res;
90 	int cpu_index;
91 
92 	if (gd->arch.x86_vendor != X86_VENDOR_INTEL)
93 		return 0;
94 
95 	cpu_index = match_cpu(gd->arch.x86, gd->arch.x86_model);
96 	if (cpu_index < 0)
97 		return 0;
98 
99 	if (freq_desc_tables[cpu_index].msr_plat) {
100 		rdmsr(MSR_PLATFORM_INFO, lo, hi);
101 		ratio = (lo >> 8) & 0xff;
102 	} else {
103 		rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
104 		ratio = (hi >> 8) & 0x1f;
105 	}
106 	debug("Maximum core-clock to bus-clock ratio: 0x%x\n", ratio);
107 
108 	if (freq_desc_tables[cpu_index].msr_plat == 2) {
109 		/* TODO: Figure out how best to deal with this */
110 		freq = 100000;
111 		debug("Using frequency: %u KHz\n", freq);
112 	} else {
113 		/* Get FSB FREQ ID */
114 		rdmsr(MSR_FSB_FREQ, lo, hi);
115 		freq_id = lo & 0x7;
116 		freq = id_to_freq(cpu_index, freq_id);
117 		debug("Resolved frequency ID: %u, frequency: %u KHz\n",
118 		      freq_id, freq);
119 	}
120 
121 	/* TSC frequency = maximum resolved freq * maximum resolved bus ratio */
122 	res = freq * ratio / 1000;
123 	debug("TSC runs at %lu MHz\n", res);
124 
125 	return res;
126 }
127 
128 /*
129  * This reads the current MSB of the PIT counter, and
130  * checks if we are running on sufficiently fast and
131  * non-virtualized hardware.
132  *
133  * Our expectations are:
134  *
135  *  - the PIT is running at roughly 1.19MHz
136  *
137  *  - each IO is going to take about 1us on real hardware,
138  *    but we allow it to be much faster (by a factor of 10) or
139  *    _slightly_ slower (ie we allow up to a 2us read+counter
140  *    update - anything else implies a unacceptably slow CPU
141  *    or PIT for the fast calibration to work.
142  *
143  *  - with 256 PIT ticks to read the value, we have 214us to
144  *    see the same MSB (and overhead like doing a single TSC
145  *    read per MSB value etc).
146  *
147  *  - We're doing 2 reads per loop (LSB, MSB), and we expect
148  *    them each to take about a microsecond on real hardware.
149  *    So we expect a count value of around 100. But we'll be
150  *    generous, and accept anything over 50.
151  *
152  *  - if the PIT is stuck, and we see *many* more reads, we
153  *    return early (and the next caller of pit_expect_msb()
154  *    then consider it a failure when they don't see the
155  *    next expected value).
156  *
157  * These expectations mean that we know that we have seen the
158  * transition from one expected value to another with a fairly
159  * high accuracy, and we didn't miss any events. We can thus
160  * use the TSC value at the transitions to calculate a pretty
161  * good value for the TSC frequencty.
162  */
163 static inline int pit_verify_msb(unsigned char val)
164 {
165 	/* Ignore LSB */
166 	inb(0x42);
167 	return inb(0x42) == val;
168 }
169 
170 static inline int pit_expect_msb(unsigned char val, u64 *tscp,
171 				 unsigned long *deltap)
172 {
173 	int count;
174 	u64 tsc = 0, prev_tsc = 0;
175 
176 	for (count = 0; count < 50000; count++) {
177 		if (!pit_verify_msb(val))
178 			break;
179 		prev_tsc = tsc;
180 		tsc = rdtsc();
181 	}
182 	*deltap = rdtsc() - prev_tsc;
183 	*tscp = tsc;
184 
185 	/*
186 	 * We require _some_ success, but the quality control
187 	 * will be based on the error terms on the TSC values.
188 	 */
189 	return count > 5;
190 }
191 
192 /*
193  * How many MSB values do we want to see? We aim for
194  * a maximum error rate of 500ppm (in practice the
195  * real error is much smaller), but refuse to spend
196  * more than 50ms on it.
197  */
198 #define MAX_QUICK_PIT_MS 50
199 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
200 
201 static unsigned long __maybe_unused quick_pit_calibrate(void)
202 {
203 	int i;
204 	u64 tsc, delta;
205 	unsigned long d1, d2;
206 
207 	/* Set the Gate high, disable speaker */
208 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
209 
210 	/*
211 	 * Counter 2, mode 0 (one-shot), binary count
212 	 *
213 	 * NOTE! Mode 2 decrements by two (and then the
214 	 * output is flipped each time, giving the same
215 	 * final output frequency as a decrement-by-one),
216 	 * so mode 0 is much better when looking at the
217 	 * individual counts.
218 	 */
219 	outb(0xb0, 0x43);
220 
221 	/* Start at 0xffff */
222 	outb(0xff, 0x42);
223 	outb(0xff, 0x42);
224 
225 	/*
226 	 * The PIT starts counting at the next edge, so we
227 	 * need to delay for a microsecond. The easiest way
228 	 * to do that is to just read back the 16-bit counter
229 	 * once from the PIT.
230 	 */
231 	pit_verify_msb(0);
232 
233 	if (pit_expect_msb(0xff, &tsc, &d1)) {
234 		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
235 			if (!pit_expect_msb(0xff-i, &delta, &d2))
236 				break;
237 
238 			/*
239 			 * Iterate until the error is less than 500 ppm
240 			 */
241 			delta -= tsc;
242 			if (d1+d2 >= delta >> 11)
243 				continue;
244 
245 			/*
246 			 * Check the PIT one more time to verify that
247 			 * all TSC reads were stable wrt the PIT.
248 			 *
249 			 * This also guarantees serialization of the
250 			 * last cycle read ('d2') in pit_expect_msb.
251 			 */
252 			if (!pit_verify_msb(0xfe - i))
253 				break;
254 			goto success;
255 		}
256 	}
257 	debug("Fast TSC calibration failed\n");
258 	return 0;
259 
260 success:
261 	/*
262 	 * Ok, if we get here, then we've seen the
263 	 * MSB of the PIT decrement 'i' times, and the
264 	 * error has shrunk to less than 500 ppm.
265 	 *
266 	 * As a result, we can depend on there not being
267 	 * any odd delays anywhere, and the TSC reads are
268 	 * reliable (within the error).
269 	 *
270 	 * kHz = ticks / time-in-seconds / 1000;
271 	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
272 	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
273 	 */
274 	delta *= PIT_TICK_RATE;
275 	delta /= (i*256*1000);
276 	debug("Fast TSC calibration using PIT\n");
277 	return delta / 1000;
278 }
279 
280 /* Get the speed of the TSC timer in MHz */
281 unsigned notrace long get_tbclk_mhz(void)
282 {
283 	return get_tbclk() / 1000000;
284 }
285 
286 static ulong get_ms_timer(void)
287 {
288 	return (get_ticks() * 1000) / get_tbclk();
289 }
290 
291 ulong get_timer(ulong base)
292 {
293 	return get_ms_timer() - base;
294 }
295 
296 ulong notrace timer_get_us(void)
297 {
298 	return get_ticks() / get_tbclk_mhz();
299 }
300 
301 ulong timer_get_boot_us(void)
302 {
303 	return timer_get_us();
304 }
305 
306 void __udelay(unsigned long usec)
307 {
308 	u64 now = get_ticks();
309 	u64 stop;
310 
311 	stop = now + usec * get_tbclk_mhz();
312 
313 	while ((int64_t)(stop - get_ticks()) > 0)
314 #if defined(CONFIG_QEMU) && defined(CONFIG_SMP)
315 		/*
316 		 * Add a 'pause' instruction on qemu target,
317 		 * to give other VCPUs a chance to run.
318 		 */
319 		asm volatile("pause");
320 #else
321 		;
322 #endif
323 }
324 
325 static int tsc_timer_get_count(struct udevice *dev, u64 *count)
326 {
327 	u64 now_tick = rdtsc();
328 
329 	*count = now_tick - gd->arch.tsc_base;
330 
331 	return 0;
332 }
333 
334 static void tsc_timer_ensure_setup(void)
335 {
336 	if (gd->arch.tsc_base)
337 		return;
338 	gd->arch.tsc_base = rdtsc();
339 
340 	/*
341 	 * If there is no clock frequency specified in the device tree,
342 	 * calibrate it by ourselves.
343 	 */
344 	if (!gd->arch.clock_rate) {
345 		unsigned long fast_calibrate;
346 
347 		fast_calibrate = cpu_mhz_from_msr();
348 		if (!fast_calibrate) {
349 			fast_calibrate = quick_pit_calibrate();
350 			if (!fast_calibrate)
351 				panic("TSC frequency is ZERO");
352 		}
353 
354 		gd->arch.clock_rate = fast_calibrate * 1000000;
355 	}
356 }
357 
358 static int tsc_timer_probe(struct udevice *dev)
359 {
360 	struct timer_dev_priv *uc_priv = dev_get_uclass_priv(dev);
361 
362 	tsc_timer_ensure_setup();
363 	uc_priv->clock_rate = gd->arch.clock_rate;
364 
365 	return 0;
366 }
367 
368 unsigned long notrace timer_early_get_rate(void)
369 {
370 	tsc_timer_ensure_setup();
371 
372 	return gd->arch.clock_rate;
373 }
374 
375 u64 notrace timer_early_get_count(void)
376 {
377 	return rdtsc() - gd->arch.tsc_base;
378 }
379 
380 static const struct timer_ops tsc_timer_ops = {
381 	.get_count = tsc_timer_get_count,
382 };
383 
384 static const struct udevice_id tsc_timer_ids[] = {
385 	{ .compatible = "x86,tsc-timer", },
386 	{ }
387 };
388 
389 U_BOOT_DRIVER(tsc_timer) = {
390 	.name	= "tsc_timer",
391 	.id	= UCLASS_TIMER,
392 	.of_match = tsc_timer_ids,
393 	.probe = tsc_timer_probe,
394 	.ops	= &tsc_timer_ops,
395 	.flags = DM_FLAG_PRE_RELOC,
396 };
397