xref: /openbmc/u-boot/drivers/timer/tsc_timer.c (revision 252d41f1ae59974c8a9120c994c0688fb9cec2b7)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (c) 2012 The Chromium OS Authors.
4  *
5  * TSC calibration codes are adapted from Linux kernel
6  * arch/x86/kernel/tsc_msr.c and arch/x86/kernel/tsc.c
7  */
8 
9 #include <common.h>
10 #include <dm.h>
11 #include <malloc.h>
12 #include <timer.h>
13 #include <asm/cpu.h>
14 #include <asm/io.h>
15 #include <asm/i8254.h>
16 #include <asm/ibmpc.h>
17 #include <asm/msr.h>
18 #include <asm/u-boot-x86.h>
19 
20 #define MAX_NUM_FREQS	9
21 
22 DECLARE_GLOBAL_DATA_PTR;
23 
24 static unsigned long cpu_mhz_from_cpuid(void)
25 {
26 	if (gd->arch.x86_vendor != X86_VENDOR_INTEL)
27 		return 0;
28 
29 	if (cpuid_eax(0) < 0x16)
30 		return 0;
31 
32 	return cpuid_eax(0x16);
33 }
34 
35 /*
36  * According to Intel 64 and IA-32 System Programming Guide,
37  * if MSR_PERF_STAT[31] is set, the maximum resolved bus ratio can be
38  * read in MSR_PLATFORM_ID[12:8], otherwise in MSR_PERF_STAT[44:40].
39  * Unfortunately some Intel Atom SoCs aren't quite compliant to this,
40  * so we need manually differentiate SoC families. This is what the
41  * field msr_plat does.
42  */
43 struct freq_desc {
44 	u8 x86_family;	/* CPU family */
45 	u8 x86_model;	/* model */
46 	/* 2: use 100MHz, 1: use MSR_PLATFORM_INFO, 0: MSR_IA32_PERF_STATUS */
47 	u8 msr_plat;
48 	u32 freqs[MAX_NUM_FREQS];
49 };
50 
51 static struct freq_desc freq_desc_tables[] = {
52 	/* PNW */
53 	{ 6, 0x27, 0, { 0, 0, 0, 0, 0, 99840, 0, 83200, 0 } },
54 	/* CLV+ */
55 	{ 6, 0x35, 0, { 0, 133200, 0, 0, 0, 99840, 0, 83200, 0 } },
56 	/* TNG - Intel Atom processor Z3400 series */
57 	{ 6, 0x4a, 1, { 0, 100000, 133300, 0, 0, 0, 0, 0, 0 } },
58 	/* VLV2 - Intel Atom processor E3000, Z3600, Z3700 series */
59 	{ 6, 0x37, 1, { 83300, 100000, 133300, 116700, 80000, 0, 0, 0, 0 } },
60 	/* ANN - Intel Atom processor Z3500 series */
61 	{ 6, 0x5a, 1, { 83300, 100000, 133300, 100000, 0, 0, 0, 0, 0 } },
62 	/* AMT - Intel Atom processor X7-Z8000 and X5-Z8000 series */
63 	{ 6, 0x4c, 1, { 83300, 100000, 133300, 116700,
64 			80000, 93300, 90000, 88900, 87500 } },
65 	/* Ivybridge */
66 	{ 6, 0x3a, 2, { 0, 0, 0, 0, 0, 0, 0, 0, 0 } },
67 };
68 
69 static int match_cpu(u8 family, u8 model)
70 {
71 	int i;
72 
73 	for (i = 0; i < ARRAY_SIZE(freq_desc_tables); i++) {
74 		if ((family == freq_desc_tables[i].x86_family) &&
75 		    (model == freq_desc_tables[i].x86_model))
76 			return i;
77 	}
78 
79 	return -1;
80 }
81 
82 /* Map CPU reference clock freq ID(0-7) to CPU reference clock freq(KHz) */
83 #define id_to_freq(cpu_index, freq_id) \
84 	(freq_desc_tables[cpu_index].freqs[freq_id])
85 
86 /*
87  * TSC on Intel Atom SoCs capable of determining TSC frequency by MSR is
88  * reliable and the frequency is known (provided by HW).
89  *
90  * On these platforms PIT/HPET is generally not available so calibration won't
91  * work at all and there is no other clocksource to act as a watchdog for the
92  * TSC, so we have no other choice than to trust it.
93  *
94  * Returns the TSC frequency in MHz or 0 if HW does not provide it.
95  */
96 static unsigned long __maybe_unused cpu_mhz_from_msr(void)
97 {
98 	u32 lo, hi, ratio, freq_id, freq;
99 	unsigned long res;
100 	int cpu_index;
101 
102 	if (gd->arch.x86_vendor != X86_VENDOR_INTEL)
103 		return 0;
104 
105 	cpu_index = match_cpu(gd->arch.x86, gd->arch.x86_model);
106 	if (cpu_index < 0)
107 		return 0;
108 
109 	if (freq_desc_tables[cpu_index].msr_plat) {
110 		rdmsr(MSR_PLATFORM_INFO, lo, hi);
111 		ratio = (lo >> 8) & 0xff;
112 	} else {
113 		rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
114 		ratio = (hi >> 8) & 0x1f;
115 	}
116 	debug("Maximum core-clock to bus-clock ratio: 0x%x\n", ratio);
117 
118 	if (freq_desc_tables[cpu_index].msr_plat == 2) {
119 		/* TODO: Figure out how best to deal with this */
120 		freq = 100000;
121 		debug("Using frequency: %u KHz\n", freq);
122 	} else {
123 		/* Get FSB FREQ ID */
124 		rdmsr(MSR_FSB_FREQ, lo, hi);
125 		freq_id = lo & 0x7;
126 		freq = id_to_freq(cpu_index, freq_id);
127 		debug("Resolved frequency ID: %u, frequency: %u KHz\n",
128 		      freq_id, freq);
129 	}
130 
131 	/* TSC frequency = maximum resolved freq * maximum resolved bus ratio */
132 	res = freq * ratio / 1000;
133 	debug("TSC runs at %lu MHz\n", res);
134 
135 	return res;
136 }
137 
138 /*
139  * This reads the current MSB of the PIT counter, and
140  * checks if we are running on sufficiently fast and
141  * non-virtualized hardware.
142  *
143  * Our expectations are:
144  *
145  *  - the PIT is running at roughly 1.19MHz
146  *
147  *  - each IO is going to take about 1us on real hardware,
148  *    but we allow it to be much faster (by a factor of 10) or
149  *    _slightly_ slower (ie we allow up to a 2us read+counter
150  *    update - anything else implies a unacceptably slow CPU
151  *    or PIT for the fast calibration to work.
152  *
153  *  - with 256 PIT ticks to read the value, we have 214us to
154  *    see the same MSB (and overhead like doing a single TSC
155  *    read per MSB value etc).
156  *
157  *  - We're doing 2 reads per loop (LSB, MSB), and we expect
158  *    them each to take about a microsecond on real hardware.
159  *    So we expect a count value of around 100. But we'll be
160  *    generous, and accept anything over 50.
161  *
162  *  - if the PIT is stuck, and we see *many* more reads, we
163  *    return early (and the next caller of pit_expect_msb()
164  *    then consider it a failure when they don't see the
165  *    next expected value).
166  *
167  * These expectations mean that we know that we have seen the
168  * transition from one expected value to another with a fairly
169  * high accuracy, and we didn't miss any events. We can thus
170  * use the TSC value at the transitions to calculate a pretty
171  * good value for the TSC frequencty.
172  */
173 static inline int pit_verify_msb(unsigned char val)
174 {
175 	/* Ignore LSB */
176 	inb(0x42);
177 	return inb(0x42) == val;
178 }
179 
180 static inline int pit_expect_msb(unsigned char val, u64 *tscp,
181 				 unsigned long *deltap)
182 {
183 	int count;
184 	u64 tsc = 0, prev_tsc = 0;
185 
186 	for (count = 0; count < 50000; count++) {
187 		if (!pit_verify_msb(val))
188 			break;
189 		prev_tsc = tsc;
190 		tsc = rdtsc();
191 	}
192 	*deltap = rdtsc() - prev_tsc;
193 	*tscp = tsc;
194 
195 	/*
196 	 * We require _some_ success, but the quality control
197 	 * will be based on the error terms on the TSC values.
198 	 */
199 	return count > 5;
200 }
201 
202 /*
203  * How many MSB values do we want to see? We aim for
204  * a maximum error rate of 500ppm (in practice the
205  * real error is much smaller), but refuse to spend
206  * more than 50ms on it.
207  */
208 #define MAX_QUICK_PIT_MS 50
209 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
210 
211 static unsigned long __maybe_unused quick_pit_calibrate(void)
212 {
213 	int i;
214 	u64 tsc, delta;
215 	unsigned long d1, d2;
216 
217 	/* Set the Gate high, disable speaker */
218 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
219 
220 	/*
221 	 * Counter 2, mode 0 (one-shot), binary count
222 	 *
223 	 * NOTE! Mode 2 decrements by two (and then the
224 	 * output is flipped each time, giving the same
225 	 * final output frequency as a decrement-by-one),
226 	 * so mode 0 is much better when looking at the
227 	 * individual counts.
228 	 */
229 	outb(0xb0, 0x43);
230 
231 	/* Start at 0xffff */
232 	outb(0xff, 0x42);
233 	outb(0xff, 0x42);
234 
235 	/*
236 	 * The PIT starts counting at the next edge, so we
237 	 * need to delay for a microsecond. The easiest way
238 	 * to do that is to just read back the 16-bit counter
239 	 * once from the PIT.
240 	 */
241 	pit_verify_msb(0);
242 
243 	if (pit_expect_msb(0xff, &tsc, &d1)) {
244 		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
245 			if (!pit_expect_msb(0xff-i, &delta, &d2))
246 				break;
247 
248 			/*
249 			 * Iterate until the error is less than 500 ppm
250 			 */
251 			delta -= tsc;
252 			if (d1+d2 >= delta >> 11)
253 				continue;
254 
255 			/*
256 			 * Check the PIT one more time to verify that
257 			 * all TSC reads were stable wrt the PIT.
258 			 *
259 			 * This also guarantees serialization of the
260 			 * last cycle read ('d2') in pit_expect_msb.
261 			 */
262 			if (!pit_verify_msb(0xfe - i))
263 				break;
264 			goto success;
265 		}
266 	}
267 	debug("Fast TSC calibration failed\n");
268 	return 0;
269 
270 success:
271 	/*
272 	 * Ok, if we get here, then we've seen the
273 	 * MSB of the PIT decrement 'i' times, and the
274 	 * error has shrunk to less than 500 ppm.
275 	 *
276 	 * As a result, we can depend on there not being
277 	 * any odd delays anywhere, and the TSC reads are
278 	 * reliable (within the error).
279 	 *
280 	 * kHz = ticks / time-in-seconds / 1000;
281 	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
282 	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
283 	 */
284 	delta *= PIT_TICK_RATE;
285 	delta /= (i*256*1000);
286 	debug("Fast TSC calibration using PIT\n");
287 	return delta / 1000;
288 }
289 
290 /* Get the speed of the TSC timer in MHz */
291 unsigned notrace long get_tbclk_mhz(void)
292 {
293 	return get_tbclk() / 1000000;
294 }
295 
296 static ulong get_ms_timer(void)
297 {
298 	return (get_ticks() * 1000) / get_tbclk();
299 }
300 
301 ulong get_timer(ulong base)
302 {
303 	return get_ms_timer() - base;
304 }
305 
306 ulong notrace timer_get_us(void)
307 {
308 	return get_ticks() / get_tbclk_mhz();
309 }
310 
311 ulong timer_get_boot_us(void)
312 {
313 	return timer_get_us();
314 }
315 
316 void __udelay(unsigned long usec)
317 {
318 	u64 now = get_ticks();
319 	u64 stop;
320 
321 	stop = now + usec * get_tbclk_mhz();
322 
323 	while ((int64_t)(stop - get_ticks()) > 0)
324 #if defined(CONFIG_QEMU) && defined(CONFIG_SMP)
325 		/*
326 		 * Add a 'pause' instruction on qemu target,
327 		 * to give other VCPUs a chance to run.
328 		 */
329 		asm volatile("pause");
330 #else
331 		;
332 #endif
333 }
334 
335 static int tsc_timer_get_count(struct udevice *dev, u64 *count)
336 {
337 	u64 now_tick = rdtsc();
338 
339 	*count = now_tick - gd->arch.tsc_base;
340 
341 	return 0;
342 }
343 
344 static void tsc_timer_ensure_setup(void)
345 {
346 	if (gd->arch.tsc_base)
347 		return;
348 	gd->arch.tsc_base = rdtsc();
349 
350 	/*
351 	 * If there is no clock frequency specified in the device tree,
352 	 * calibrate it by ourselves.
353 	 */
354 	if (!gd->arch.clock_rate) {
355 		unsigned long fast_calibrate;
356 
357 		fast_calibrate = cpu_mhz_from_cpuid();
358 		if (fast_calibrate)
359 			goto done;
360 
361 		fast_calibrate = cpu_mhz_from_msr();
362 		if (fast_calibrate)
363 			goto done;
364 
365 		fast_calibrate = quick_pit_calibrate();
366 		if (fast_calibrate)
367 			goto done;
368 
369 		panic("TSC frequency is ZERO");
370 
371 done:
372 		gd->arch.clock_rate = fast_calibrate * 1000000;
373 	}
374 }
375 
376 static int tsc_timer_probe(struct udevice *dev)
377 {
378 	struct timer_dev_priv *uc_priv = dev_get_uclass_priv(dev);
379 
380 	tsc_timer_ensure_setup();
381 	uc_priv->clock_rate = gd->arch.clock_rate;
382 
383 	return 0;
384 }
385 
386 unsigned long notrace timer_early_get_rate(void)
387 {
388 	tsc_timer_ensure_setup();
389 
390 	return gd->arch.clock_rate;
391 }
392 
393 u64 notrace timer_early_get_count(void)
394 {
395 	return rdtsc() - gd->arch.tsc_base;
396 }
397 
398 static const struct timer_ops tsc_timer_ops = {
399 	.get_count = tsc_timer_get_count,
400 };
401 
402 static const struct udevice_id tsc_timer_ids[] = {
403 	{ .compatible = "x86,tsc-timer", },
404 	{ }
405 };
406 
407 U_BOOT_DRIVER(tsc_timer) = {
408 	.name	= "tsc_timer",
409 	.id	= UCLASS_TIMER,
410 	.of_match = tsc_timer_ids,
411 	.probe = tsc_timer_probe,
412 	.ops	= &tsc_timer_ops,
413 	.flags = DM_FLAG_PRE_RELOC,
414 };
415