1 /* 2 * (C) Copyright 2014 Freescale Semiconductor, Inc. 3 * Author: Nitin Garg <nitin.garg@freescale.com> 4 * Ye Li <Ye.Li@freescale.com> 5 * 6 * SPDX-License-Identifier: GPL-2.0+ 7 */ 8 9 #include <config.h> 10 #include <common.h> 11 #include <div64.h> 12 #include <fuse.h> 13 #include <asm/io.h> 14 #include <asm/arch/clock.h> 15 #include <asm/arch/sys_proto.h> 16 #include <dm.h> 17 #include <errno.h> 18 #include <malloc.h> 19 #include <thermal.h> 20 #include <imx_thermal.h> 21 22 /* board will busyloop until this many degrees C below CPU max temperature */ 23 #define TEMPERATURE_HOT_DELTA 5 /* CPU maxT - 5C */ 24 #define FACTOR0 10000000 25 #define FACTOR1 15976 26 #define FACTOR2 4297157 27 #define MEASURE_FREQ 327 28 #define TEMPERATURE_MIN -40 29 #define TEMPERATURE_HOT 85 30 #define TEMPERATURE_MAX 125 31 32 #define TEMPSENSE0_TEMP_CNT_SHIFT 8 33 #define TEMPSENSE0_TEMP_CNT_MASK (0xfff << TEMPSENSE0_TEMP_CNT_SHIFT) 34 #define TEMPSENSE0_FINISHED (1 << 2) 35 #define TEMPSENSE0_MEASURE_TEMP (1 << 1) 36 #define TEMPSENSE0_POWER_DOWN (1 << 0) 37 #define MISC0_REFTOP_SELBIASOFF (1 << 3) 38 #define TEMPSENSE1_MEASURE_FREQ 0xffff 39 40 struct thermal_data { 41 unsigned int fuse; 42 int critical; 43 int minc; 44 int maxc; 45 }; 46 47 #if defined(CONFIG_MX6) 48 static int read_cpu_temperature(struct udevice *dev) 49 { 50 int temperature; 51 unsigned int reg, n_meas; 52 const struct imx_thermal_plat *pdata = dev_get_platdata(dev); 53 struct anatop_regs *anatop = (struct anatop_regs *)pdata->regs; 54 struct thermal_data *priv = dev_get_priv(dev); 55 u32 fuse = priv->fuse; 56 int t1, n1; 57 u32 c1, c2; 58 u64 temp64; 59 60 /* 61 * Sensor data layout: 62 * [31:20] - sensor value @ 25C 63 * We use universal formula now and only need sensor value @ 25C 64 * slope = 0.4297157 - (0.0015976 * 25C fuse) 65 */ 66 n1 = fuse >> 20; 67 t1 = 25; /* t1 always 25C */ 68 69 /* 70 * Derived from linear interpolation: 71 * slope = 0.4297157 - (0.0015976 * 25C fuse) 72 * slope = (FACTOR2 - FACTOR1 * n1) / FACTOR0 73 * (Nmeas - n1) / (Tmeas - t1) = slope 74 * We want to reduce this down to the minimum computation necessary 75 * for each temperature read. Also, we want Tmeas in millicelsius 76 * and we don't want to lose precision from integer division. So... 77 * Tmeas = (Nmeas - n1) / slope + t1 78 * milli_Tmeas = 1000 * (Nmeas - n1) / slope + 1000 * t1 79 * milli_Tmeas = -1000 * (n1 - Nmeas) / slope + 1000 * t1 80 * Let constant c1 = (-1000 / slope) 81 * milli_Tmeas = (n1 - Nmeas) * c1 + 1000 * t1 82 * Let constant c2 = n1 *c1 + 1000 * t1 83 * milli_Tmeas = c2 - Nmeas * c1 84 */ 85 temp64 = FACTOR0; 86 temp64 *= 1000; 87 do_div(temp64, FACTOR1 * n1 - FACTOR2); 88 c1 = temp64; 89 c2 = n1 * c1 + 1000 * t1; 90 91 /* 92 * now we only use single measure, every time we read 93 * the temperature, we will power on/down anadig thermal 94 * module 95 */ 96 writel(TEMPSENSE0_POWER_DOWN, &anatop->tempsense0_clr); 97 writel(MISC0_REFTOP_SELBIASOFF, &anatop->ana_misc0_set); 98 99 /* setup measure freq */ 100 reg = readl(&anatop->tempsense1); 101 reg &= ~TEMPSENSE1_MEASURE_FREQ; 102 reg |= MEASURE_FREQ; 103 writel(reg, &anatop->tempsense1); 104 105 /* start the measurement process */ 106 writel(TEMPSENSE0_MEASURE_TEMP, &anatop->tempsense0_clr); 107 writel(TEMPSENSE0_FINISHED, &anatop->tempsense0_clr); 108 writel(TEMPSENSE0_MEASURE_TEMP, &anatop->tempsense0_set); 109 110 /* make sure that the latest temp is valid */ 111 while ((readl(&anatop->tempsense0) & 112 TEMPSENSE0_FINISHED) == 0) 113 udelay(10000); 114 115 /* read temperature count */ 116 reg = readl(&anatop->tempsense0); 117 n_meas = (reg & TEMPSENSE0_TEMP_CNT_MASK) 118 >> TEMPSENSE0_TEMP_CNT_SHIFT; 119 writel(TEMPSENSE0_FINISHED, &anatop->tempsense0_clr); 120 121 /* milli_Tmeas = c2 - Nmeas * c1 */ 122 temperature = (long)(c2 - n_meas * c1)/1000; 123 124 /* power down anatop thermal sensor */ 125 writel(TEMPSENSE0_POWER_DOWN, &anatop->tempsense0_set); 126 writel(MISC0_REFTOP_SELBIASOFF, &anatop->ana_misc0_clr); 127 128 return temperature; 129 } 130 #elif defined(CONFIG_MX7) 131 static int read_cpu_temperature(struct udevice *dev) 132 { 133 unsigned int reg, tmp, start; 134 unsigned int raw_25c, te1; 135 int temperature; 136 unsigned int *priv = dev_get_priv(dev); 137 u32 fuse = *priv; 138 struct mxc_ccm_anatop_reg *ccm_anatop = (struct mxc_ccm_anatop_reg *) 139 ANATOP_BASE_ADDR; 140 /* 141 * fuse data layout: 142 * [31:21] sensor value @ 25C 143 * [20:18] hot temperature value 144 * [17:9] sensor value of room 145 * [8:0] sensor value of hot 146 */ 147 148 raw_25c = fuse >> 21; 149 if (raw_25c == 0) 150 raw_25c = 25; 151 152 te1 = (fuse >> 9) & 0x1ff; 153 154 /* 155 * now we only use single measure, every time we read 156 * the temperature, we will power on/down anadig thermal 157 * module 158 */ 159 writel(TEMPMON_HW_ANADIG_TEMPSENSE1_POWER_DOWN_MASK, &ccm_anatop->tempsense1_clr); 160 writel(PMU_REF_REFTOP_SELFBIASOFF_MASK, &ccm_anatop->ref_set); 161 162 /* write measure freq */ 163 reg = readl(&ccm_anatop->tempsense1); 164 reg &= ~TEMPMON_HW_ANADIG_TEMPSENSE1_MEASURE_FREQ_MASK; 165 reg |= TEMPMON_HW_ANADIG_TEMPSENSE1_MEASURE_FREQ(MEASURE_FREQ); 166 writel(reg, &ccm_anatop->tempsense1); 167 168 writel(TEMPMON_HW_ANADIG_TEMPSENSE1_MEASURE_TEMP_MASK, &ccm_anatop->tempsense1_clr); 169 writel(TEMPMON_HW_ANADIG_TEMPSENSE1_FINISHED_MASK, &ccm_anatop->tempsense1_clr); 170 writel(TEMPMON_HW_ANADIG_TEMPSENSE1_MEASURE_TEMP_MASK, &ccm_anatop->tempsense1_set); 171 172 start = get_timer(0); 173 /* Wait max 100ms */ 174 do { 175 /* 176 * Since we can not rely on finish bit, use 1ms delay to get 177 * temperature. From RM, 17us is enough to get data, but 178 * to gurantee to get the data, delay 100ms here. 179 */ 180 reg = readl(&ccm_anatop->tempsense1); 181 tmp = (reg & TEMPMON_HW_ANADIG_TEMPSENSE1_TEMP_VALUE_MASK) 182 >> TEMPMON_HW_ANADIG_TEMPSENSE1_TEMP_VALUE_SHIFT; 183 } while (get_timer(0) < (start + 100)); 184 185 writel(TEMPMON_HW_ANADIG_TEMPSENSE1_FINISHED_MASK, &ccm_anatop->tempsense1_clr); 186 187 /* power down anatop thermal sensor */ 188 writel(TEMPMON_HW_ANADIG_TEMPSENSE1_POWER_DOWN_MASK, &ccm_anatop->tempsense1_set); 189 writel(PMU_REF_REFTOP_SELFBIASOFF_MASK, &ccm_anatop->ref_clr); 190 191 /* Single point */ 192 temperature = tmp - (te1 - raw_25c); 193 194 return temperature; 195 } 196 #endif 197 198 int imx_thermal_get_temp(struct udevice *dev, int *temp) 199 { 200 struct thermal_data *priv = dev_get_priv(dev); 201 int cpu_tmp = 0; 202 203 cpu_tmp = read_cpu_temperature(dev); 204 205 while (cpu_tmp >= priv->critical) { 206 printf("CPU Temperature (%dC) too close to max (%dC)", 207 cpu_tmp, priv->maxc); 208 puts(" waiting...\n"); 209 udelay(5000000); 210 cpu_tmp = read_cpu_temperature(dev); 211 } 212 213 *temp = cpu_tmp; 214 215 return 0; 216 } 217 218 static const struct dm_thermal_ops imx_thermal_ops = { 219 .get_temp = imx_thermal_get_temp, 220 }; 221 222 static int imx_thermal_probe(struct udevice *dev) 223 { 224 unsigned int fuse = ~0; 225 226 const struct imx_thermal_plat *pdata = dev_get_platdata(dev); 227 struct thermal_data *priv = dev_get_priv(dev); 228 229 /* Read Temperature calibration data fuse */ 230 fuse_read(pdata->fuse_bank, pdata->fuse_word, &fuse); 231 232 if (is_soc_type(MXC_SOC_MX6)) { 233 /* Check for valid fuse */ 234 if (fuse == 0 || fuse == ~0) { 235 debug("CPU: Thermal invalid data, fuse: 0x%x\n", 236 fuse); 237 return -EPERM; 238 } 239 } else if (is_soc_type(MXC_SOC_MX7)) { 240 /* No Calibration data in FUSE? */ 241 if ((fuse & 0x3ffff) == 0) 242 return -EPERM; 243 /* We do not support 105C TE2 */ 244 if (((fuse & 0x1c0000) >> 18) == 0x6) 245 return -EPERM; 246 } 247 248 /* set critical cooling temp */ 249 get_cpu_temp_grade(&priv->minc, &priv->maxc); 250 priv->critical = priv->maxc - TEMPERATURE_HOT_DELTA; 251 priv->fuse = fuse; 252 253 enable_thermal_clk(); 254 255 return 0; 256 } 257 258 U_BOOT_DRIVER(imx_thermal) = { 259 .name = "imx_thermal", 260 .id = UCLASS_THERMAL, 261 .ops = &imx_thermal_ops, 262 .probe = imx_thermal_probe, 263 .priv_auto_alloc_size = sizeof(struct thermal_data), 264 .flags = DM_FLAG_PRE_RELOC, 265 }; 266