1 /*
2  * (C) Copyright 2014 Freescale Semiconductor, Inc.
3  * Author: Nitin Garg <nitin.garg@freescale.com>
4  *             Ye Li <Ye.Li@freescale.com>
5  *
6  * SPDX-License-Identifier:	GPL-2.0+
7  */
8 
9 #include <config.h>
10 #include <common.h>
11 #include <div64.h>
12 #include <fuse.h>
13 #include <asm/io.h>
14 #include <asm/arch/clock.h>
15 #include <dm.h>
16 #include <errno.h>
17 #include <malloc.h>
18 #include <thermal.h>
19 #include <imx_thermal.h>
20 
21 #define TEMPERATURE_MIN		-40
22 #define TEMPERATURE_HOT		80
23 #define TEMPERATURE_MAX		125
24 #define FACTOR0			10000000
25 #define FACTOR1			15976
26 #define FACTOR2			4297157
27 #define MEASURE_FREQ		327
28 
29 #define TEMPSENSE0_TEMP_CNT_SHIFT	8
30 #define TEMPSENSE0_TEMP_CNT_MASK	(0xfff << TEMPSENSE0_TEMP_CNT_SHIFT)
31 #define TEMPSENSE0_FINISHED		(1 << 2)
32 #define TEMPSENSE0_MEASURE_TEMP		(1 << 1)
33 #define TEMPSENSE0_POWER_DOWN		(1 << 0)
34 #define MISC0_REFTOP_SELBIASOFF		(1 << 3)
35 #define TEMPSENSE1_MEASURE_FREQ		0xffff
36 
37 static int read_cpu_temperature(struct udevice *dev)
38 {
39 	int temperature;
40 	unsigned int reg, n_meas;
41 	const struct imx_thermal_plat *pdata = dev_get_platdata(dev);
42 	struct anatop_regs *anatop = (struct anatop_regs *)pdata->regs;
43 	unsigned int *priv = dev_get_priv(dev);
44 	u32 fuse = *priv;
45 	int t1, n1;
46 	u32 c1, c2;
47 	u64 temp64;
48 
49 	/*
50 	 * Sensor data layout:
51 	 *   [31:20] - sensor value @ 25C
52 	 * We use universal formula now and only need sensor value @ 25C
53 	 * slope = 0.4297157 - (0.0015976 * 25C fuse)
54 	 */
55 	n1 = fuse >> 20;
56 	t1 = 25; /* t1 always 25C */
57 
58 	/*
59 	 * Derived from linear interpolation:
60 	 * slope = 0.4297157 - (0.0015976 * 25C fuse)
61 	 * slope = (FACTOR2 - FACTOR1 * n1) / FACTOR0
62 	 * (Nmeas - n1) / (Tmeas - t1) = slope
63 	 * We want to reduce this down to the minimum computation necessary
64 	 * for each temperature read.  Also, we want Tmeas in millicelsius
65 	 * and we don't want to lose precision from integer division. So...
66 	 * Tmeas = (Nmeas - n1) / slope + t1
67 	 * milli_Tmeas = 1000 * (Nmeas - n1) / slope + 1000 * t1
68 	 * milli_Tmeas = -1000 * (n1 - Nmeas) / slope + 1000 * t1
69 	 * Let constant c1 = (-1000 / slope)
70 	 * milli_Tmeas = (n1 - Nmeas) * c1 + 1000 * t1
71 	 * Let constant c2 = n1 *c1 + 1000 * t1
72 	 * milli_Tmeas = c2 - Nmeas * c1
73 	 */
74 	temp64 = FACTOR0;
75 	temp64 *= 1000;
76 	do_div(temp64, FACTOR1 * n1 - FACTOR2);
77 	c1 = temp64;
78 	c2 = n1 * c1 + 1000 * t1;
79 
80 	/*
81 	 * now we only use single measure, every time we read
82 	 * the temperature, we will power on/down anadig thermal
83 	 * module
84 	 */
85 	writel(TEMPSENSE0_POWER_DOWN, &anatop->tempsense0_clr);
86 	writel(MISC0_REFTOP_SELBIASOFF, &anatop->ana_misc0_set);
87 
88 	/* setup measure freq */
89 	reg = readl(&anatop->tempsense1);
90 	reg &= ~TEMPSENSE1_MEASURE_FREQ;
91 	reg |= MEASURE_FREQ;
92 	writel(reg, &anatop->tempsense1);
93 
94 	/* start the measurement process */
95 	writel(TEMPSENSE0_MEASURE_TEMP, &anatop->tempsense0_clr);
96 	writel(TEMPSENSE0_FINISHED, &anatop->tempsense0_clr);
97 	writel(TEMPSENSE0_MEASURE_TEMP, &anatop->tempsense0_set);
98 
99 	/* make sure that the latest temp is valid */
100 	while ((readl(&anatop->tempsense0) &
101 		TEMPSENSE0_FINISHED) == 0)
102 		udelay(10000);
103 
104 	/* read temperature count */
105 	reg = readl(&anatop->tempsense0);
106 	n_meas = (reg & TEMPSENSE0_TEMP_CNT_MASK)
107 		>> TEMPSENSE0_TEMP_CNT_SHIFT;
108 	writel(TEMPSENSE0_FINISHED, &anatop->tempsense0_clr);
109 
110 	/* milli_Tmeas = c2 - Nmeas * c1 */
111 	temperature = (c2 - n_meas * c1)/1000;
112 
113 	/* power down anatop thermal sensor */
114 	writel(TEMPSENSE0_POWER_DOWN, &anatop->tempsense0_set);
115 	writel(MISC0_REFTOP_SELBIASOFF, &anatop->ana_misc0_clr);
116 
117 	return temperature;
118 }
119 
120 int imx_thermal_get_temp(struct udevice *dev, int *temp)
121 {
122 	int cpu_tmp = 0;
123 
124 	cpu_tmp = read_cpu_temperature(dev);
125 	while (cpu_tmp > TEMPERATURE_MIN && cpu_tmp < TEMPERATURE_MAX) {
126 		if (cpu_tmp >= TEMPERATURE_HOT) {
127 			printf("CPU Temperature is %d C, too hot to boot, waiting...\n",
128 			       cpu_tmp);
129 			udelay(5000000);
130 			cpu_tmp = read_cpu_temperature(dev);
131 		} else {
132 			break;
133 		}
134 	}
135 
136 	*temp = cpu_tmp;
137 
138 	return 0;
139 }
140 
141 static const struct dm_thermal_ops imx_thermal_ops = {
142 	.get_temp	= imx_thermal_get_temp,
143 };
144 
145 static int imx_thermal_probe(struct udevice *dev)
146 {
147 	unsigned int fuse = ~0;
148 
149 	const struct imx_thermal_plat *pdata = dev_get_platdata(dev);
150 	unsigned int *priv = dev_get_priv(dev);
151 
152 	/* Read Temperature calibration data fuse */
153 	fuse_read(pdata->fuse_bank, pdata->fuse_word, &fuse);
154 
155 	/* Check for valid fuse */
156 	if (fuse == 0 || fuse == ~0) {
157 		printf("CPU:   Thermal invalid data, fuse: 0x%x\n", fuse);
158 		return -EPERM;
159 	}
160 
161 	*priv = fuse;
162 
163 	enable_thermal_clk();
164 
165 	return 0;
166 }
167 
168 U_BOOT_DRIVER(imx_thermal) = {
169 	.name	= "imx_thermal",
170 	.id	= UCLASS_THERMAL,
171 	.ops	= &imx_thermal_ops,
172 	.probe	= imx_thermal_probe,
173 	.priv_auto_alloc_size = sizeof(unsigned int),
174 	.flags  = DM_FLAG_PRE_RELOC,
175 };
176