xref: /openbmc/u-boot/drivers/spi/tegra210_qspi.c (revision e5ffa4bb)
1 /*
2  * NVIDIA Tegra210 QSPI controller driver
3  *
4  * (C) Copyright 2015 NVIDIA Corporation <www.nvidia.com>
5  *
6  * SPDX-License-Identifier:     GPL-2.0+
7  */
8 
9 #include <common.h>
10 #include <dm.h>
11 #include <asm/io.h>
12 #include <asm/arch/clock.h>
13 #include <asm/arch-tegra/clk_rst.h>
14 #include <spi.h>
15 #include <fdtdec.h>
16 #include "tegra_spi.h"
17 
18 DECLARE_GLOBAL_DATA_PTR;
19 
20 /* COMMAND1 */
21 #define QSPI_CMD1_GO			BIT(31)
22 #define QSPI_CMD1_M_S			BIT(30)
23 #define QSPI_CMD1_MODE_MASK		GENMASK(1,0)
24 #define QSPI_CMD1_MODE_SHIFT		28
25 #define QSPI_CMD1_CS_SEL_MASK		GENMASK(1,0)
26 #define QSPI_CMD1_CS_SEL_SHIFT		26
27 #define QSPI_CMD1_CS_POL_INACTIVE0	BIT(22)
28 #define QSPI_CMD1_CS_SW_HW		BIT(21)
29 #define QSPI_CMD1_CS_SW_VAL		BIT(20)
30 #define QSPI_CMD1_IDLE_SDA_MASK		GENMASK(1,0)
31 #define QSPI_CMD1_IDLE_SDA_SHIFT	18
32 #define QSPI_CMD1_BIDIR			BIT(17)
33 #define QSPI_CMD1_LSBI_FE		BIT(16)
34 #define QSPI_CMD1_LSBY_FE		BIT(15)
35 #define QSPI_CMD1_BOTH_EN_BIT		BIT(14)
36 #define QSPI_CMD1_BOTH_EN_BYTE		BIT(13)
37 #define QSPI_CMD1_RX_EN			BIT(12)
38 #define QSPI_CMD1_TX_EN			BIT(11)
39 #define QSPI_CMD1_PACKED		BIT(5)
40 #define QSPI_CMD1_BITLEN_MASK		GENMASK(4,0)
41 #define QSPI_CMD1_BITLEN_SHIFT		0
42 
43 /* COMMAND2 */
44 #define QSPI_CMD2_TX_CLK_TAP_DELAY	BIT(6)
45 #define QSPI_CMD2_TX_CLK_TAP_DELAY_MASK	GENMASK(11,6)
46 #define QSPI_CMD2_RX_CLK_TAP_DELAY	BIT(0)
47 #define QSPI_CMD2_RX_CLK_TAP_DELAY_MASK	GENMASK(5,0)
48 
49 /* TRANSFER STATUS */
50 #define QSPI_XFER_STS_RDY		BIT(30)
51 
52 /* FIFO STATUS */
53 #define QSPI_FIFO_STS_CS_INACTIVE	BIT(31)
54 #define QSPI_FIFO_STS_FRAME_END		BIT(30)
55 #define QSPI_FIFO_STS_RX_FIFO_FLUSH	BIT(15)
56 #define QSPI_FIFO_STS_TX_FIFO_FLUSH	BIT(14)
57 #define QSPI_FIFO_STS_ERR		BIT(8)
58 #define QSPI_FIFO_STS_TX_FIFO_OVF	BIT(7)
59 #define QSPI_FIFO_STS_TX_FIFO_UNR	BIT(6)
60 #define QSPI_FIFO_STS_RX_FIFO_OVF	BIT(5)
61 #define QSPI_FIFO_STS_RX_FIFO_UNR	BIT(4)
62 #define QSPI_FIFO_STS_TX_FIFO_FULL	BIT(3)
63 #define QSPI_FIFO_STS_TX_FIFO_EMPTY	BIT(2)
64 #define QSPI_FIFO_STS_RX_FIFO_FULL	BIT(1)
65 #define QSPI_FIFO_STS_RX_FIFO_EMPTY	BIT(0)
66 
67 #define QSPI_TIMEOUT		1000
68 
69 struct qspi_regs {
70 	u32 command1;	/* 000:QSPI_COMMAND1 register */
71 	u32 command2;	/* 004:QSPI_COMMAND2 register */
72 	u32 timing1;	/* 008:QSPI_CS_TIM1 register */
73 	u32 timing2;	/* 00c:QSPI_CS_TIM2 register */
74 	u32 xfer_status;/* 010:QSPI_TRANS_STATUS register */
75 	u32 fifo_status;/* 014:QSPI_FIFO_STATUS register */
76 	u32 tx_data;	/* 018:QSPI_TX_DATA register */
77 	u32 rx_data;	/* 01c:QSPI_RX_DATA register */
78 	u32 dma_ctl;	/* 020:QSPI_DMA_CTL register */
79 	u32 dma_blk;	/* 024:QSPI_DMA_BLK register */
80 	u32 rsvd[56];	/* 028-107 reserved */
81 	u32 tx_fifo;	/* 108:QSPI_FIFO1 register */
82 	u32 rsvd2[31];	/* 10c-187 reserved */
83 	u32 rx_fifo;	/* 188:QSPI_FIFO2 register */
84 	u32 spare_ctl;	/* 18c:QSPI_SPARE_CTRL register */
85 };
86 
87 struct tegra210_qspi_priv {
88 	struct qspi_regs *regs;
89 	unsigned int freq;
90 	unsigned int mode;
91 	int periph_id;
92 	int valid;
93 	int last_transaction_us;
94 };
95 
96 static int tegra210_qspi_ofdata_to_platdata(struct udevice *bus)
97 {
98 	struct tegra_spi_platdata *plat = bus->platdata;
99 	const void *blob = gd->fdt_blob;
100 	int node = bus->of_offset;
101 
102 	plat->base = dev_get_addr(bus);
103 	plat->periph_id = clock_decode_periph_id(blob, node);
104 
105 	if (plat->periph_id == PERIPH_ID_NONE) {
106 		debug("%s: could not decode periph id %d\n", __func__,
107 		      plat->periph_id);
108 		return -FDT_ERR_NOTFOUND;
109 	}
110 
111 	/* Use 500KHz as a suitable default */
112 	plat->frequency = fdtdec_get_int(blob, node, "spi-max-frequency",
113 					500000);
114 	plat->deactivate_delay_us = fdtdec_get_int(blob, node,
115 					"spi-deactivate-delay", 0);
116 	debug("%s: base=%#08lx, periph_id=%d, max-frequency=%d, deactivate_delay=%d\n",
117 	      __func__, plat->base, plat->periph_id, plat->frequency,
118 	      plat->deactivate_delay_us);
119 
120 	return 0;
121 }
122 
123 static int tegra210_qspi_probe(struct udevice *bus)
124 {
125 	struct tegra_spi_platdata *plat = dev_get_platdata(bus);
126 	struct tegra210_qspi_priv *priv = dev_get_priv(bus);
127 
128 	priv->regs = (struct qspi_regs *)plat->base;
129 
130 	priv->last_transaction_us = timer_get_us();
131 	priv->freq = plat->frequency;
132 	priv->periph_id = plat->periph_id;
133 
134 	return 0;
135 }
136 
137 static int tegra210_qspi_claim_bus(struct udevice *bus)
138 {
139 	struct tegra210_qspi_priv *priv = dev_get_priv(bus);
140 	struct qspi_regs *regs = priv->regs;
141 
142 	/* Change SPI clock to correct frequency, PLLP_OUT0 source */
143 	clock_start_periph_pll(priv->periph_id, CLOCK_ID_PERIPH, priv->freq);
144 
145 	debug("%s: FIFO STATUS = %08x\n", __func__, readl(&regs->fifo_status));
146 
147 	/* Set master mode and sw controlled CS */
148 	setbits_le32(&regs->command1, QSPI_CMD1_M_S | QSPI_CMD1_CS_SW_HW |
149 		     (priv->mode << QSPI_CMD1_MODE_SHIFT));
150 	debug("%s: COMMAND1 = %08x\n", __func__, readl(&regs->command1));
151 
152 	return 0;
153 }
154 
155 /**
156  * Activate the CS by driving it LOW
157  *
158  * @param slave	Pointer to spi_slave to which controller has to
159  *		communicate with
160  */
161 static void spi_cs_activate(struct udevice *dev)
162 {
163 	struct udevice *bus = dev->parent;
164 	struct tegra_spi_platdata *pdata = dev_get_platdata(bus);
165 	struct tegra210_qspi_priv *priv = dev_get_priv(bus);
166 
167 	/* If it's too soon to do another transaction, wait */
168 	if (pdata->deactivate_delay_us &&
169 	    priv->last_transaction_us) {
170 		ulong delay_us;		/* The delay completed so far */
171 		delay_us = timer_get_us() - priv->last_transaction_us;
172 		if (delay_us < pdata->deactivate_delay_us)
173 			udelay(pdata->deactivate_delay_us - delay_us);
174 	}
175 
176 	clrbits_le32(&priv->regs->command1, QSPI_CMD1_CS_SW_VAL);
177 }
178 
179 /**
180  * Deactivate the CS by driving it HIGH
181  *
182  * @param slave	Pointer to spi_slave to which controller has to
183  *		communicate with
184  */
185 static void spi_cs_deactivate(struct udevice *dev)
186 {
187 	struct udevice *bus = dev->parent;
188 	struct tegra_spi_platdata *pdata = dev_get_platdata(bus);
189 	struct tegra210_qspi_priv *priv = dev_get_priv(bus);
190 
191 	setbits_le32(&priv->regs->command1, QSPI_CMD1_CS_SW_VAL);
192 
193 	/* Remember time of this transaction so we can honour the bus delay */
194 	if (pdata->deactivate_delay_us)
195 		priv->last_transaction_us = timer_get_us();
196 
197 	debug("Deactivate CS, bus '%s'\n", bus->name);
198 }
199 
200 static int tegra210_qspi_xfer(struct udevice *dev, unsigned int bitlen,
201 			     const void *data_out, void *data_in,
202 			     unsigned long flags)
203 {
204 	struct udevice *bus = dev->parent;
205 	struct tegra210_qspi_priv *priv = dev_get_priv(bus);
206 	struct qspi_regs *regs = priv->regs;
207 	u32 reg, tmpdout, tmpdin = 0;
208 	const u8 *dout = data_out;
209 	u8 *din = data_in;
210 	int num_bytes, tm, ret;
211 
212 	debug("%s: slave %u:%u dout %p din %p bitlen %u\n",
213 	      __func__, bus->seq, spi_chip_select(dev), dout, din, bitlen);
214 	if (bitlen % 8)
215 		return -1;
216 	num_bytes = bitlen / 8;
217 
218 	ret = 0;
219 
220 	/* clear all error status bits */
221 	reg = readl(&regs->fifo_status);
222 	writel(reg, &regs->fifo_status);
223 
224 	/* flush RX/TX FIFOs */
225 	setbits_le32(&regs->fifo_status,
226 		     (QSPI_FIFO_STS_RX_FIFO_FLUSH |
227 		      QSPI_FIFO_STS_TX_FIFO_FLUSH));
228 
229 	tm = QSPI_TIMEOUT;
230 	while ((tm && readl(&regs->fifo_status) &
231 		      (QSPI_FIFO_STS_RX_FIFO_FLUSH |
232 		       QSPI_FIFO_STS_TX_FIFO_FLUSH))) {
233 		tm--;
234 		udelay(1);
235 	}
236 
237 	if (!tm) {
238 		printf("%s: timeout during QSPI FIFO flush!\n",
239 		       __func__);
240 		return -1;
241 	}
242 
243 	/*
244 	 * Notes:
245 	 *   1. don't set LSBY_FE, so no need to swap bytes from/to TX/RX FIFOs;
246 	 *   2. don't set RX_EN and TX_EN yet.
247 	 *      (SW needs to make sure that while programming the blk_size,
248 	 *       tx_en and rx_en bits must be zero)
249 	 *      [TODO] I (Yen Lin) have problems when both RX/TX EN bits are set
250 	 *	       i.e., both dout and din are not NULL.
251 	 */
252 	clrsetbits_le32(&regs->command1,
253 			(QSPI_CMD1_LSBI_FE | QSPI_CMD1_LSBY_FE |
254 			 QSPI_CMD1_RX_EN | QSPI_CMD1_TX_EN),
255 			(spi_chip_select(dev) << QSPI_CMD1_CS_SEL_SHIFT));
256 
257 	/* set xfer size to 1 block (32 bits) */
258 	writel(0, &regs->dma_blk);
259 
260 	if (flags & SPI_XFER_BEGIN)
261 		spi_cs_activate(dev);
262 
263 	/* handle data in 32-bit chunks */
264 	while (num_bytes > 0) {
265 		int bytes;
266 
267 		tmpdout = 0;
268 		bytes = (num_bytes > 4) ?  4 : num_bytes;
269 
270 		if (dout != NULL) {
271 			memcpy((void *)&tmpdout, (void *)dout, bytes);
272 			dout += bytes;
273 			num_bytes -= bytes;
274 			writel(tmpdout, &regs->tx_fifo);
275 			setbits_le32(&regs->command1, QSPI_CMD1_TX_EN);
276 		}
277 
278 		if (din != NULL)
279 			setbits_le32(&regs->command1, QSPI_CMD1_RX_EN);
280 
281 		/* clear ready bit */
282 		setbits_le32(&regs->xfer_status, QSPI_XFER_STS_RDY);
283 
284 		clrsetbits_le32(&regs->command1,
285 				QSPI_CMD1_BITLEN_MASK << QSPI_CMD1_BITLEN_SHIFT,
286 				(bytes * 8 - 1) << QSPI_CMD1_BITLEN_SHIFT);
287 
288 		/* Need to stabilize other reg bits before GO bit set.
289 		 * As per the TRM:
290 		 * "For successful operation at various freq combinations,
291 		 * a minimum of 4-5 spi_clk cycle delay might be required
292 		 * before enabling the PIO or DMA bits. The worst case delay
293 		 * calculation can be done considering slowest qspi_clk as
294 		 * 1MHz. Based on that 1us delay should be enough before
295 		 * enabling PIO or DMA." Padded another 1us for safety.
296 		 */
297 		udelay(2);
298 		setbits_le32(&regs->command1, QSPI_CMD1_GO);
299 		udelay(1);
300 
301 		/*
302 		 * Wait for SPI transmit FIFO to empty, or to time out.
303 		 * The RX FIFO status will be read and cleared last
304 		 */
305 		for (tm = 0; tm < QSPI_TIMEOUT; ++tm) {
306 			u32 fifo_status, xfer_status;
307 
308 			xfer_status = readl(&regs->xfer_status);
309 			if (!(xfer_status & QSPI_XFER_STS_RDY))
310 				continue;
311 
312 			fifo_status = readl(&regs->fifo_status);
313 			if (fifo_status & QSPI_FIFO_STS_ERR) {
314 				debug("%s: got a fifo error: ", __func__);
315 				if (fifo_status & QSPI_FIFO_STS_TX_FIFO_OVF)
316 					debug("tx FIFO overflow ");
317 				if (fifo_status & QSPI_FIFO_STS_TX_FIFO_UNR)
318 					debug("tx FIFO underrun ");
319 				if (fifo_status & QSPI_FIFO_STS_RX_FIFO_OVF)
320 					debug("rx FIFO overflow ");
321 				if (fifo_status & QSPI_FIFO_STS_RX_FIFO_UNR)
322 					debug("rx FIFO underrun ");
323 				if (fifo_status & QSPI_FIFO_STS_TX_FIFO_FULL)
324 					debug("tx FIFO full ");
325 				if (fifo_status & QSPI_FIFO_STS_TX_FIFO_EMPTY)
326 					debug("tx FIFO empty ");
327 				if (fifo_status & QSPI_FIFO_STS_RX_FIFO_FULL)
328 					debug("rx FIFO full ");
329 				if (fifo_status & QSPI_FIFO_STS_RX_FIFO_EMPTY)
330 					debug("rx FIFO empty ");
331 				debug("\n");
332 				break;
333 			}
334 
335 			if (!(fifo_status & QSPI_FIFO_STS_RX_FIFO_EMPTY)) {
336 				tmpdin = readl(&regs->rx_fifo);
337 				if (din != NULL) {
338 					memcpy(din, &tmpdin, bytes);
339 					din += bytes;
340 					num_bytes -= bytes;
341 				}
342 			}
343 			break;
344 		}
345 
346 		if (tm >= QSPI_TIMEOUT)
347 			ret = tm;
348 
349 		/* clear ACK RDY, etc. bits */
350 		writel(readl(&regs->fifo_status), &regs->fifo_status);
351 	}
352 
353 	if (flags & SPI_XFER_END)
354 		spi_cs_deactivate(dev);
355 
356 	debug("%s: transfer ended. Value=%08x, fifo_status = %08x\n",
357 	      __func__, tmpdin, readl(&regs->fifo_status));
358 
359 	if (ret) {
360 		printf("%s: timeout during SPI transfer, tm %d\n",
361 		       __func__, ret);
362 		return -1;
363 	}
364 
365 	return ret;
366 }
367 
368 static int tegra210_qspi_set_speed(struct udevice *bus, uint speed)
369 {
370 	struct tegra_spi_platdata *plat = bus->platdata;
371 	struct tegra210_qspi_priv *priv = dev_get_priv(bus);
372 
373 	if (speed > plat->frequency)
374 		speed = plat->frequency;
375 	priv->freq = speed;
376 	debug("%s: regs=%p, speed=%d\n", __func__, priv->regs, priv->freq);
377 
378 	return 0;
379 }
380 
381 static int tegra210_qspi_set_mode(struct udevice *bus, uint mode)
382 {
383 	struct tegra210_qspi_priv *priv = dev_get_priv(bus);
384 
385 	priv->mode = mode;
386 	debug("%s: regs=%p, mode=%d\n", __func__, priv->regs, priv->mode);
387 
388 	return 0;
389 }
390 
391 static const struct dm_spi_ops tegra210_qspi_ops = {
392 	.claim_bus	= tegra210_qspi_claim_bus,
393 	.xfer		= tegra210_qspi_xfer,
394 	.set_speed	= tegra210_qspi_set_speed,
395 	.set_mode	= tegra210_qspi_set_mode,
396 	/*
397 	 * cs_info is not needed, since we require all chip selects to be
398 	 * in the device tree explicitly
399 	 */
400 };
401 
402 static const struct udevice_id tegra210_qspi_ids[] = {
403 	{ .compatible = "nvidia,tegra210-qspi" },
404 	{ }
405 };
406 
407 U_BOOT_DRIVER(tegra210_qspi) = {
408 	.name = "tegra210-qspi",
409 	.id = UCLASS_SPI,
410 	.of_match = tegra210_qspi_ids,
411 	.ops = &tegra210_qspi_ops,
412 	.ofdata_to_platdata = tegra210_qspi_ofdata_to_platdata,
413 	.platdata_auto_alloc_size = sizeof(struct tegra_spi_platdata),
414 	.priv_auto_alloc_size = sizeof(struct tegra210_qspi_priv),
415 	.per_child_auto_alloc_size = sizeof(struct spi_slave),
416 	.probe = tegra210_qspi_probe,
417 };
418