xref: /openbmc/u-boot/drivers/spi/tegra20_slink.c (revision 610751e9)
1 /*
2  * NVIDIA Tegra SPI-SLINK controller
3  *
4  * Copyright (c) 2010-2013 NVIDIA Corporation
5  *
6  * See file CREDITS for list of people who contributed to this
7  * project.
8  *
9  * This software is licensed under the terms of the GNU General Public
10  * License version 2, as published by the Free Software Foundation, and
11  * may be copied, distributed, and modified under those terms.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21  * MA 02111-1307 USA
22  */
23 
24 #include <common.h>
25 #include <dm.h>
26 #include <asm/io.h>
27 #include <asm/arch/clock.h>
28 #include <asm/arch-tegra/clk_rst.h>
29 #include <spi.h>
30 #include <fdtdec.h>
31 #include "tegra_spi.h"
32 
33 DECLARE_GLOBAL_DATA_PTR;
34 
35 /* COMMAND */
36 #define SLINK_CMD_ENB			(1 << 31)
37 #define SLINK_CMD_GO			(1 << 30)
38 #define SLINK_CMD_M_S			(1 << 28)
39 #define SLINK_CMD_CK_SDA		(1 << 21)
40 #define SLINK_CMD_CS_POL		(1 << 13)
41 #define SLINK_CMD_CS_VAL		(1 << 12)
42 #define SLINK_CMD_CS_SOFT		(1 << 11)
43 #define SLINK_CMD_BIT_LENGTH		(1 << 4)
44 #define SLINK_CMD_BIT_LENGTH_MASK	0x0000001F
45 /* COMMAND2 */
46 #define SLINK_CMD2_TXEN			(1 << 30)
47 #define SLINK_CMD2_RXEN			(1 << 31)
48 #define SLINK_CMD2_SS_EN		(1 << 18)
49 #define SLINK_CMD2_SS_EN_SHIFT		18
50 #define SLINK_CMD2_SS_EN_MASK		0x000C0000
51 #define SLINK_CMD2_CS_ACTIVE_BETWEEN	(1 << 17)
52 /* STATUS */
53 #define SLINK_STAT_BSY			(1 << 31)
54 #define SLINK_STAT_RDY			(1 << 30)
55 #define SLINK_STAT_ERR			(1 << 29)
56 #define SLINK_STAT_RXF_FLUSH		(1 << 27)
57 #define SLINK_STAT_TXF_FLUSH		(1 << 26)
58 #define SLINK_STAT_RXF_OVF		(1 << 25)
59 #define SLINK_STAT_TXF_UNR		(1 << 24)
60 #define SLINK_STAT_RXF_EMPTY		(1 << 23)
61 #define SLINK_STAT_RXF_FULL		(1 << 22)
62 #define SLINK_STAT_TXF_EMPTY		(1 << 21)
63 #define SLINK_STAT_TXF_FULL		(1 << 20)
64 #define SLINK_STAT_TXF_OVF		(1 << 19)
65 #define SLINK_STAT_RXF_UNR		(1 << 18)
66 #define SLINK_STAT_CUR_BLKCNT		(1 << 15)
67 /* STATUS2 */
68 #define SLINK_STAT2_RXF_FULL_CNT	(1 << 16)
69 #define SLINK_STAT2_TXF_FULL_CNT	(1 << 0)
70 
71 #define SPI_TIMEOUT		1000
72 #define TEGRA_SPI_MAX_FREQ	52000000
73 
74 struct spi_regs {
75 	u32 command;	/* SLINK_COMMAND_0 register  */
76 	u32 command2;	/* SLINK_COMMAND2_0 reg */
77 	u32 status;	/* SLINK_STATUS_0 register */
78 	u32 reserved;	/* Reserved offset 0C */
79 	u32 mas_data;	/* SLINK_MAS_DATA_0 reg */
80 	u32 slav_data;	/* SLINK_SLAVE_DATA_0 reg */
81 	u32 dma_ctl;	/* SLINK_DMA_CTL_0 register */
82 	u32 status2;	/* SLINK_STATUS2_0 reg */
83 	u32 rsvd[56];	/* 0x20 to 0xFF reserved */
84 	u32 tx_fifo;	/* SLINK_TX_FIFO_0 reg off 100h */
85 	u32 rsvd2[31];	/* 0x104 to 0x17F reserved */
86 	u32 rx_fifo;	/* SLINK_RX_FIFO_0 reg off 180h */
87 };
88 
89 struct tegra30_spi_priv {
90 	struct spi_regs *regs;
91 	unsigned int freq;
92 	unsigned int mode;
93 	int periph_id;
94 	int valid;
95 	int last_transaction_us;
96 };
97 
98 struct tegra_spi_slave {
99 	struct spi_slave slave;
100 	struct tegra30_spi_priv *ctrl;
101 };
102 
103 static int tegra30_spi_ofdata_to_platdata(struct udevice *bus)
104 {
105 	struct tegra_spi_platdata *plat = bus->platdata;
106 	const void *blob = gd->fdt_blob;
107 	int node = bus->of_offset;
108 
109 	plat->base = fdtdec_get_addr(blob, node, "reg");
110 	plat->periph_id = clock_decode_periph_id(blob, node);
111 
112 	if (plat->periph_id == PERIPH_ID_NONE) {
113 		debug("%s: could not decode periph id %d\n", __func__,
114 		      plat->periph_id);
115 		return -FDT_ERR_NOTFOUND;
116 	}
117 
118 	/* Use 500KHz as a suitable default */
119 	plat->frequency = fdtdec_get_int(blob, node, "spi-max-frequency",
120 					500000);
121 	plat->deactivate_delay_us = fdtdec_get_int(blob, node,
122 					"spi-deactivate-delay", 0);
123 	debug("%s: base=%#08lx, periph_id=%d, max-frequency=%d, deactivate_delay=%d\n",
124 	      __func__, plat->base, plat->periph_id, plat->frequency,
125 	      plat->deactivate_delay_us);
126 
127 	return 0;
128 }
129 
130 static int tegra30_spi_probe(struct udevice *bus)
131 {
132 	struct tegra_spi_platdata *plat = dev_get_platdata(bus);
133 	struct tegra30_spi_priv *priv = dev_get_priv(bus);
134 
135 	priv->regs = (struct spi_regs *)plat->base;
136 
137 	priv->last_transaction_us = timer_get_us();
138 	priv->freq = plat->frequency;
139 	priv->periph_id = plat->periph_id;
140 
141 	return 0;
142 }
143 
144 static int tegra30_spi_claim_bus(struct udevice *dev)
145 {
146 	struct udevice *bus = dev->parent;
147 	struct tegra30_spi_priv *priv = dev_get_priv(bus);
148 	struct spi_regs *regs = priv->regs;
149 	u32 reg;
150 
151 	/* Change SPI clock to correct frequency, PLLP_OUT0 source */
152 	clock_start_periph_pll(priv->periph_id, CLOCK_ID_PERIPH,
153 			       priv->freq);
154 
155 	/* Clear stale status here */
156 	reg = SLINK_STAT_RDY | SLINK_STAT_RXF_FLUSH | SLINK_STAT_TXF_FLUSH | \
157 		SLINK_STAT_RXF_UNR | SLINK_STAT_TXF_OVF;
158 	writel(reg, &regs->status);
159 	debug("%s: STATUS = %08x\n", __func__, readl(&regs->status));
160 
161 	/* Set master mode and sw controlled CS */
162 	reg = readl(&regs->command);
163 	reg |= SLINK_CMD_M_S | SLINK_CMD_CS_SOFT;
164 	writel(reg, &regs->command);
165 	debug("%s: COMMAND = %08x\n", __func__, readl(&regs->command));
166 
167 	return 0;
168 }
169 
170 static void spi_cs_activate(struct udevice *dev)
171 {
172 	struct udevice *bus = dev->parent;
173 	struct tegra_spi_platdata *pdata = dev_get_platdata(bus);
174 	struct tegra30_spi_priv *priv = dev_get_priv(bus);
175 
176 	/* If it's too soon to do another transaction, wait */
177 	if (pdata->deactivate_delay_us &&
178 	    priv->last_transaction_us) {
179 		ulong delay_us;		/* The delay completed so far */
180 		delay_us = timer_get_us() - priv->last_transaction_us;
181 		if (delay_us < pdata->deactivate_delay_us)
182 			udelay(pdata->deactivate_delay_us - delay_us);
183 	}
184 
185 	/* CS is negated on Tegra, so drive a 1 to get a 0 */
186 	setbits_le32(&priv->regs->command, SLINK_CMD_CS_VAL);
187 }
188 
189 static void spi_cs_deactivate(struct udevice *dev)
190 {
191 	struct udevice *bus = dev->parent;
192 	struct tegra_spi_platdata *pdata = dev_get_platdata(bus);
193 	struct tegra30_spi_priv *priv = dev_get_priv(bus);
194 
195 	/* CS is negated on Tegra, so drive a 0 to get a 1 */
196 	clrbits_le32(&priv->regs->command, SLINK_CMD_CS_VAL);
197 
198 	/* Remember time of this transaction so we can honour the bus delay */
199 	if (pdata->deactivate_delay_us)
200 		priv->last_transaction_us = timer_get_us();
201 }
202 
203 static int tegra30_spi_xfer(struct udevice *dev, unsigned int bitlen,
204 			    const void *data_out, void *data_in,
205 			    unsigned long flags)
206 {
207 	struct udevice *bus = dev->parent;
208 	struct tegra30_spi_priv *priv = dev_get_priv(bus);
209 	struct spi_regs *regs = priv->regs;
210 	u32 reg, tmpdout, tmpdin = 0;
211 	const u8 *dout = data_out;
212 	u8 *din = data_in;
213 	int num_bytes;
214 	int ret;
215 
216 	debug("%s: slave %u:%u dout %p din %p bitlen %u\n",
217 	      __func__, bus->seq, spi_chip_select(dev), dout, din, bitlen);
218 	if (bitlen % 8)
219 		return -1;
220 	num_bytes = bitlen / 8;
221 
222 	ret = 0;
223 
224 	reg = readl(&regs->status);
225 	writel(reg, &regs->status);	/* Clear all SPI events via R/W */
226 	debug("%s entry: STATUS = %08x\n", __func__, reg);
227 
228 	reg = readl(&regs->status2);
229 	writel(reg, &regs->status2);	/* Clear all STATUS2 events via R/W */
230 	debug("%s entry: STATUS2 = %08x\n", __func__, reg);
231 
232 	debug("%s entry: COMMAND = %08x\n", __func__, readl(&regs->command));
233 
234 	clrsetbits_le32(&regs->command2, SLINK_CMD2_SS_EN_MASK,
235 			SLINK_CMD2_TXEN | SLINK_CMD2_RXEN |
236 			(spi_chip_select(dev) << SLINK_CMD2_SS_EN_SHIFT));
237 	debug("%s entry: COMMAND2 = %08x\n", __func__, readl(&regs->command2));
238 
239 	if (flags & SPI_XFER_BEGIN)
240 		spi_cs_activate(dev);
241 
242 	/* handle data in 32-bit chunks */
243 	while (num_bytes > 0) {
244 		int bytes;
245 		int is_read = 0;
246 		int tm, i;
247 
248 		tmpdout = 0;
249 		bytes = (num_bytes > 4) ?  4 : num_bytes;
250 
251 		if (dout != NULL) {
252 			for (i = 0; i < bytes; ++i)
253 				tmpdout = (tmpdout << 8) | dout[i];
254 			dout += bytes;
255 		}
256 
257 		num_bytes -= bytes;
258 
259 		clrsetbits_le32(&regs->command, SLINK_CMD_BIT_LENGTH_MASK,
260 				bytes * 8 - 1);
261 		writel(tmpdout, &regs->tx_fifo);
262 		setbits_le32(&regs->command, SLINK_CMD_GO);
263 
264 		/*
265 		 * Wait for SPI transmit FIFO to empty, or to time out.
266 		 * The RX FIFO status will be read and cleared last
267 		 */
268 		for (tm = 0, is_read = 0; tm < SPI_TIMEOUT; ++tm) {
269 			u32 status;
270 
271 			status = readl(&regs->status);
272 
273 			/* We can exit when we've had both RX and TX activity */
274 			if (is_read && (status & SLINK_STAT_TXF_EMPTY))
275 				break;
276 
277 			if ((status & (SLINK_STAT_BSY | SLINK_STAT_RDY)) !=
278 					SLINK_STAT_RDY)
279 				tm++;
280 
281 			else if (!(status & SLINK_STAT_RXF_EMPTY)) {
282 				tmpdin = readl(&regs->rx_fifo);
283 				is_read = 1;
284 
285 				/* swap bytes read in */
286 				if (din != NULL) {
287 					for (i = bytes - 1; i >= 0; --i) {
288 						din[i] = tmpdin & 0xff;
289 						tmpdin >>= 8;
290 					}
291 					din += bytes;
292 				}
293 			}
294 		}
295 
296 		if (tm >= SPI_TIMEOUT)
297 			ret = tm;
298 
299 		/* clear ACK RDY, etc. bits */
300 		writel(readl(&regs->status), &regs->status);
301 	}
302 
303 	if (flags & SPI_XFER_END)
304 		spi_cs_deactivate(dev);
305 
306 	debug("%s: transfer ended. Value=%08x, status = %08x\n",
307 	      __func__, tmpdin, readl(&regs->status));
308 
309 	if (ret) {
310 		printf("%s: timeout during SPI transfer, tm %d\n",
311 		       __func__, ret);
312 		return -1;
313 	}
314 
315 	return 0;
316 }
317 
318 static int tegra30_spi_set_speed(struct udevice *bus, uint speed)
319 {
320 	struct tegra_spi_platdata *plat = bus->platdata;
321 	struct tegra30_spi_priv *priv = dev_get_priv(bus);
322 
323 	if (speed > plat->frequency)
324 		speed = plat->frequency;
325 	priv->freq = speed;
326 	debug("%s: regs=%p, speed=%d\n", __func__, priv->regs, priv->freq);
327 
328 	return 0;
329 }
330 
331 static int tegra30_spi_set_mode(struct udevice *bus, uint mode)
332 {
333 	struct tegra30_spi_priv *priv = dev_get_priv(bus);
334 
335 	priv->mode = mode;
336 	debug("%s: regs=%p, mode=%d\n", __func__, priv->regs, priv->mode);
337 
338 	return 0;
339 }
340 
341 static const struct dm_spi_ops tegra30_spi_ops = {
342 	.claim_bus	= tegra30_spi_claim_bus,
343 	.xfer		= tegra30_spi_xfer,
344 	.set_speed	= tegra30_spi_set_speed,
345 	.set_mode	= tegra30_spi_set_mode,
346 	/*
347 	 * cs_info is not needed, since we require all chip selects to be
348 	 * in the device tree explicitly
349 	 */
350 };
351 
352 static const struct udevice_id tegra30_spi_ids[] = {
353 	{ .compatible = "nvidia,tegra20-slink" },
354 	{ }
355 };
356 
357 U_BOOT_DRIVER(tegra30_spi) = {
358 	.name	= "tegra20_slink",
359 	.id	= UCLASS_SPI,
360 	.of_match = tegra30_spi_ids,
361 	.ops	= &tegra30_spi_ops,
362 	.ofdata_to_platdata = tegra30_spi_ofdata_to_platdata,
363 	.platdata_auto_alloc_size = sizeof(struct tegra_spi_platdata),
364 	.priv_auto_alloc_size = sizeof(struct tegra30_spi_priv),
365 	.probe	= tegra30_spi_probe,
366 };
367