xref: /openbmc/u-boot/drivers/spi/tegra20_slink.c (revision 3dc23f78)
1 /*
2  * NVIDIA Tegra SPI-SLINK controller
3  *
4  * Copyright (c) 2010-2013 NVIDIA Corporation
5  *
6  * See file CREDITS for list of people who contributed to this
7  * project.
8  *
9  * This software is licensed under the terms of the GNU General Public
10  * License version 2, as published by the Free Software Foundation, and
11  * may be copied, distributed, and modified under those terms.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21  * MA 02111-1307 USA
22  */
23 
24 #include <common.h>
25 #include <dm.h>
26 #include <asm/io.h>
27 #include <asm/arch/clock.h>
28 #include <asm/arch-tegra/clk_rst.h>
29 #include <spi.h>
30 #include <fdtdec.h>
31 #include "tegra_spi.h"
32 
33 DECLARE_GLOBAL_DATA_PTR;
34 
35 /* COMMAND */
36 #define SLINK_CMD_ENB			(1 << 31)
37 #define SLINK_CMD_GO			(1 << 30)
38 #define SLINK_CMD_M_S			(1 << 28)
39 #define SLINK_CMD_CK_SDA		(1 << 21)
40 #define SLINK_CMD_CS_POL		(1 << 13)
41 #define SLINK_CMD_CS_VAL		(1 << 12)
42 #define SLINK_CMD_CS_SOFT		(1 << 11)
43 #define SLINK_CMD_BIT_LENGTH		(1 << 4)
44 #define SLINK_CMD_BIT_LENGTH_MASK	0x0000001F
45 /* COMMAND2 */
46 #define SLINK_CMD2_TXEN			(1 << 30)
47 #define SLINK_CMD2_RXEN			(1 << 31)
48 #define SLINK_CMD2_SS_EN		(1 << 18)
49 #define SLINK_CMD2_SS_EN_SHIFT		18
50 #define SLINK_CMD2_SS_EN_MASK		0x000C0000
51 #define SLINK_CMD2_CS_ACTIVE_BETWEEN	(1 << 17)
52 /* STATUS */
53 #define SLINK_STAT_BSY			(1 << 31)
54 #define SLINK_STAT_RDY			(1 << 30)
55 #define SLINK_STAT_ERR			(1 << 29)
56 #define SLINK_STAT_RXF_FLUSH		(1 << 27)
57 #define SLINK_STAT_TXF_FLUSH		(1 << 26)
58 #define SLINK_STAT_RXF_OVF		(1 << 25)
59 #define SLINK_STAT_TXF_UNR		(1 << 24)
60 #define SLINK_STAT_RXF_EMPTY		(1 << 23)
61 #define SLINK_STAT_RXF_FULL		(1 << 22)
62 #define SLINK_STAT_TXF_EMPTY		(1 << 21)
63 #define SLINK_STAT_TXF_FULL		(1 << 20)
64 #define SLINK_STAT_TXF_OVF		(1 << 19)
65 #define SLINK_STAT_RXF_UNR		(1 << 18)
66 #define SLINK_STAT_CUR_BLKCNT		(1 << 15)
67 /* STATUS2 */
68 #define SLINK_STAT2_RXF_FULL_CNT	(1 << 16)
69 #define SLINK_STAT2_TXF_FULL_CNT	(1 << 0)
70 
71 #define SPI_TIMEOUT		1000
72 #define TEGRA_SPI_MAX_FREQ	52000000
73 
74 struct spi_regs {
75 	u32 command;	/* SLINK_COMMAND_0 register  */
76 	u32 command2;	/* SLINK_COMMAND2_0 reg */
77 	u32 status;	/* SLINK_STATUS_0 register */
78 	u32 reserved;	/* Reserved offset 0C */
79 	u32 mas_data;	/* SLINK_MAS_DATA_0 reg */
80 	u32 slav_data;	/* SLINK_SLAVE_DATA_0 reg */
81 	u32 dma_ctl;	/* SLINK_DMA_CTL_0 register */
82 	u32 status2;	/* SLINK_STATUS2_0 reg */
83 	u32 rsvd[56];	/* 0x20 to 0xFF reserved */
84 	u32 tx_fifo;	/* SLINK_TX_FIFO_0 reg off 100h */
85 	u32 rsvd2[31];	/* 0x104 to 0x17F reserved */
86 	u32 rx_fifo;	/* SLINK_RX_FIFO_0 reg off 180h */
87 };
88 
89 struct tegra30_spi_priv {
90 	struct spi_regs *regs;
91 	unsigned int freq;
92 	unsigned int mode;
93 	int periph_id;
94 	int valid;
95 	int last_transaction_us;
96 };
97 
98 struct tegra_spi_slave {
99 	struct spi_slave slave;
100 	struct tegra30_spi_priv *ctrl;
101 };
102 
103 static int tegra30_spi_ofdata_to_platdata(struct udevice *bus)
104 {
105 	struct tegra_spi_platdata *plat = bus->platdata;
106 	const void *blob = gd->fdt_blob;
107 	int node = bus->of_offset;
108 
109 	plat->base = fdtdec_get_addr(blob, node, "reg");
110 	plat->periph_id = clock_decode_periph_id(blob, node);
111 
112 	if (plat->periph_id == PERIPH_ID_NONE) {
113 		debug("%s: could not decode periph id %d\n", __func__,
114 		      plat->periph_id);
115 		return -FDT_ERR_NOTFOUND;
116 	}
117 
118 	/* Use 500KHz as a suitable default */
119 	plat->frequency = fdtdec_get_int(blob, node, "spi-max-frequency",
120 					500000);
121 	plat->deactivate_delay_us = fdtdec_get_int(blob, node,
122 					"spi-deactivate-delay", 0);
123 	debug("%s: base=%#08lx, periph_id=%d, max-frequency=%d, deactivate_delay=%d\n",
124 	      __func__, plat->base, plat->periph_id, plat->frequency,
125 	      plat->deactivate_delay_us);
126 
127 	return 0;
128 }
129 
130 static int tegra30_spi_probe(struct udevice *bus)
131 {
132 	struct tegra_spi_platdata *plat = dev_get_platdata(bus);
133 	struct tegra30_spi_priv *priv = dev_get_priv(bus);
134 
135 	priv->regs = (struct spi_regs *)plat->base;
136 
137 	priv->last_transaction_us = timer_get_us();
138 	priv->freq = plat->frequency;
139 	priv->periph_id = plat->periph_id;
140 
141 	return 0;
142 }
143 
144 static int tegra30_spi_claim_bus(struct udevice *bus)
145 {
146 	struct tegra30_spi_priv *priv = dev_get_priv(bus);
147 	struct spi_regs *regs = priv->regs;
148 	u32 reg;
149 
150 	/* Change SPI clock to correct frequency, PLLP_OUT0 source */
151 	clock_start_periph_pll(priv->periph_id, CLOCK_ID_PERIPH,
152 			       priv->freq);
153 
154 	/* Clear stale status here */
155 	reg = SLINK_STAT_RDY | SLINK_STAT_RXF_FLUSH | SLINK_STAT_TXF_FLUSH | \
156 		SLINK_STAT_RXF_UNR | SLINK_STAT_TXF_OVF;
157 	writel(reg, &regs->status);
158 	debug("%s: STATUS = %08x\n", __func__, readl(&regs->status));
159 
160 	/* Set master mode and sw controlled CS */
161 	reg = readl(&regs->command);
162 	reg |= SLINK_CMD_M_S | SLINK_CMD_CS_SOFT;
163 	writel(reg, &regs->command);
164 	debug("%s: COMMAND = %08x\n", __func__, readl(&regs->command));
165 
166 	return 0;
167 }
168 
169 static void spi_cs_activate(struct udevice *dev)
170 {
171 	struct udevice *bus = dev->parent;
172 	struct tegra_spi_platdata *pdata = dev_get_platdata(bus);
173 	struct tegra30_spi_priv *priv = dev_get_priv(bus);
174 
175 	/* If it's too soon to do another transaction, wait */
176 	if (pdata->deactivate_delay_us &&
177 	    priv->last_transaction_us) {
178 		ulong delay_us;		/* The delay completed so far */
179 		delay_us = timer_get_us() - priv->last_transaction_us;
180 		if (delay_us < pdata->deactivate_delay_us)
181 			udelay(pdata->deactivate_delay_us - delay_us);
182 	}
183 
184 	/* CS is negated on Tegra, so drive a 1 to get a 0 */
185 	setbits_le32(&priv->regs->command, SLINK_CMD_CS_VAL);
186 }
187 
188 static void spi_cs_deactivate(struct udevice *dev)
189 {
190 	struct udevice *bus = dev->parent;
191 	struct tegra_spi_platdata *pdata = dev_get_platdata(bus);
192 	struct tegra30_spi_priv *priv = dev_get_priv(bus);
193 
194 	/* CS is negated on Tegra, so drive a 0 to get a 1 */
195 	clrbits_le32(&priv->regs->command, SLINK_CMD_CS_VAL);
196 
197 	/* Remember time of this transaction so we can honour the bus delay */
198 	if (pdata->deactivate_delay_us)
199 		priv->last_transaction_us = timer_get_us();
200 }
201 
202 static int tegra30_spi_xfer(struct udevice *dev, unsigned int bitlen,
203 			    const void *data_out, void *data_in,
204 			    unsigned long flags)
205 {
206 	struct udevice *bus = dev->parent;
207 	struct tegra30_spi_priv *priv = dev_get_priv(bus);
208 	struct spi_regs *regs = priv->regs;
209 	u32 reg, tmpdout, tmpdin = 0;
210 	const u8 *dout = data_out;
211 	u8 *din = data_in;
212 	int num_bytes;
213 	int ret;
214 
215 	debug("%s: slave %u:%u dout %p din %p bitlen %u\n",
216 	      __func__, bus->seq, spi_chip_select(dev), dout, din, bitlen);
217 	if (bitlen % 8)
218 		return -1;
219 	num_bytes = bitlen / 8;
220 
221 	ret = 0;
222 
223 	reg = readl(&regs->status);
224 	writel(reg, &regs->status);	/* Clear all SPI events via R/W */
225 	debug("%s entry: STATUS = %08x\n", __func__, reg);
226 
227 	reg = readl(&regs->status2);
228 	writel(reg, &regs->status2);	/* Clear all STATUS2 events via R/W */
229 	debug("%s entry: STATUS2 = %08x\n", __func__, reg);
230 
231 	debug("%s entry: COMMAND = %08x\n", __func__, readl(&regs->command));
232 
233 	clrsetbits_le32(&regs->command2, SLINK_CMD2_SS_EN_MASK,
234 			SLINK_CMD2_TXEN | SLINK_CMD2_RXEN |
235 			(spi_chip_select(dev) << SLINK_CMD2_SS_EN_SHIFT));
236 	debug("%s entry: COMMAND2 = %08x\n", __func__, readl(&regs->command2));
237 
238 	if (flags & SPI_XFER_BEGIN)
239 		spi_cs_activate(dev);
240 
241 	/* handle data in 32-bit chunks */
242 	while (num_bytes > 0) {
243 		int bytes;
244 		int is_read = 0;
245 		int tm, i;
246 
247 		tmpdout = 0;
248 		bytes = (num_bytes > 4) ?  4 : num_bytes;
249 
250 		if (dout != NULL) {
251 			for (i = 0; i < bytes; ++i)
252 				tmpdout = (tmpdout << 8) | dout[i];
253 			dout += bytes;
254 		}
255 
256 		num_bytes -= bytes;
257 
258 		clrsetbits_le32(&regs->command, SLINK_CMD_BIT_LENGTH_MASK,
259 				bytes * 8 - 1);
260 		writel(tmpdout, &regs->tx_fifo);
261 		setbits_le32(&regs->command, SLINK_CMD_GO);
262 
263 		/*
264 		 * Wait for SPI transmit FIFO to empty, or to time out.
265 		 * The RX FIFO status will be read and cleared last
266 		 */
267 		for (tm = 0, is_read = 0; tm < SPI_TIMEOUT; ++tm) {
268 			u32 status;
269 
270 			status = readl(&regs->status);
271 
272 			/* We can exit when we've had both RX and TX activity */
273 			if (is_read && (status & SLINK_STAT_TXF_EMPTY))
274 				break;
275 
276 			if ((status & (SLINK_STAT_BSY | SLINK_STAT_RDY)) !=
277 					SLINK_STAT_RDY)
278 				tm++;
279 
280 			else if (!(status & SLINK_STAT_RXF_EMPTY)) {
281 				tmpdin = readl(&regs->rx_fifo);
282 				is_read = 1;
283 
284 				/* swap bytes read in */
285 				if (din != NULL) {
286 					for (i = bytes - 1; i >= 0; --i) {
287 						din[i] = tmpdin & 0xff;
288 						tmpdin >>= 8;
289 					}
290 					din += bytes;
291 				}
292 			}
293 		}
294 
295 		if (tm >= SPI_TIMEOUT)
296 			ret = tm;
297 
298 		/* clear ACK RDY, etc. bits */
299 		writel(readl(&regs->status), &regs->status);
300 	}
301 
302 	if (flags & SPI_XFER_END)
303 		spi_cs_deactivate(dev);
304 
305 	debug("%s: transfer ended. Value=%08x, status = %08x\n",
306 	      __func__, tmpdin, readl(&regs->status));
307 
308 	if (ret) {
309 		printf("%s: timeout during SPI transfer, tm %d\n",
310 		       __func__, ret);
311 		return -1;
312 	}
313 
314 	return 0;
315 }
316 
317 static int tegra30_spi_set_speed(struct udevice *bus, uint speed)
318 {
319 	struct tegra_spi_platdata *plat = bus->platdata;
320 	struct tegra30_spi_priv *priv = dev_get_priv(bus);
321 
322 	if (speed > plat->frequency)
323 		speed = plat->frequency;
324 	priv->freq = speed;
325 	debug("%s: regs=%p, speed=%d\n", __func__, priv->regs, priv->freq);
326 
327 	return 0;
328 }
329 
330 static int tegra30_spi_set_mode(struct udevice *bus, uint mode)
331 {
332 	struct tegra30_spi_priv *priv = dev_get_priv(bus);
333 
334 	priv->mode = mode;
335 	debug("%s: regs=%p, mode=%d\n", __func__, priv->regs, priv->mode);
336 
337 	return 0;
338 }
339 
340 static const struct dm_spi_ops tegra30_spi_ops = {
341 	.claim_bus	= tegra30_spi_claim_bus,
342 	.xfer		= tegra30_spi_xfer,
343 	.set_speed	= tegra30_spi_set_speed,
344 	.set_mode	= tegra30_spi_set_mode,
345 	/*
346 	 * cs_info is not needed, since we require all chip selects to be
347 	 * in the device tree explicitly
348 	 */
349 };
350 
351 static const struct udevice_id tegra30_spi_ids[] = {
352 	{ .compatible = "nvidia,tegra20-slink" },
353 	{ }
354 };
355 
356 U_BOOT_DRIVER(tegra30_spi) = {
357 	.name	= "tegra20_slink",
358 	.id	= UCLASS_SPI,
359 	.of_match = tegra30_spi_ids,
360 	.ops	= &tegra30_spi_ops,
361 	.ofdata_to_platdata = tegra30_spi_ofdata_to_platdata,
362 	.platdata_auto_alloc_size = sizeof(struct tegra_spi_platdata),
363 	.priv_auto_alloc_size = sizeof(struct tegra30_spi_priv),
364 	.per_child_auto_alloc_size	= sizeof(struct spi_slave),
365 	.probe	= tegra30_spi_probe,
366 };
367