xref: /openbmc/u-boot/drivers/spi/tegra114_spi.c (revision cb3761ea)
1 /*
2  * NVIDIA Tegra SPI controller (T114 and later)
3  *
4  * Copyright (c) 2010-2013 NVIDIA Corporation
5  *
6  * See file CREDITS for list of people who contributed to this
7  * project.
8  *
9  * This software is licensed under the terms of the GNU General Public
10  * License version 2, as published by the Free Software Foundation, and
11  * may be copied, distributed, and modified under those terms.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21  * MA 02111-1307 USA
22  */
23 
24 #include <common.h>
25 #include <malloc.h>
26 #include <asm/io.h>
27 #include <asm/gpio.h>
28 #include <asm/arch/clock.h>
29 #include <asm/arch-tegra/clk_rst.h>
30 #include <asm/arch-tegra114/tegra114_spi.h>
31 #include <spi.h>
32 #include <fdtdec.h>
33 
34 DECLARE_GLOBAL_DATA_PTR;
35 
36 /* COMMAND1 */
37 #define SPI_CMD1_GO			(1 << 31)
38 #define SPI_CMD1_M_S			(1 << 30)
39 #define SPI_CMD1_MODE_MASK		0x3
40 #define SPI_CMD1_MODE_SHIFT		28
41 #define SPI_CMD1_CS_SEL_MASK		0x3
42 #define SPI_CMD1_CS_SEL_SHIFT		26
43 #define SPI_CMD1_CS_POL_INACTIVE3	(1 << 25)
44 #define SPI_CMD1_CS_POL_INACTIVE2	(1 << 24)
45 #define SPI_CMD1_CS_POL_INACTIVE1	(1 << 23)
46 #define SPI_CMD1_CS_POL_INACTIVE0	(1 << 22)
47 #define SPI_CMD1_CS_SW_HW		(1 << 21)
48 #define SPI_CMD1_CS_SW_VAL		(1 << 20)
49 #define SPI_CMD1_IDLE_SDA_MASK		0x3
50 #define SPI_CMD1_IDLE_SDA_SHIFT		18
51 #define SPI_CMD1_BIDIR			(1 << 17)
52 #define SPI_CMD1_LSBI_FE		(1 << 16)
53 #define SPI_CMD1_LSBY_FE		(1 << 15)
54 #define SPI_CMD1_BOTH_EN_BIT		(1 << 14)
55 #define SPI_CMD1_BOTH_EN_BYTE		(1 << 13)
56 #define SPI_CMD1_RX_EN			(1 << 12)
57 #define SPI_CMD1_TX_EN			(1 << 11)
58 #define SPI_CMD1_PACKED			(1 << 5)
59 #define SPI_CMD1_BIT_LEN_MASK		0x1F
60 #define SPI_CMD1_BIT_LEN_SHIFT		0
61 
62 /* COMMAND2 */
63 #define SPI_CMD2_TX_CLK_TAP_DELAY	(1 << 6)
64 #define SPI_CMD2_TX_CLK_TAP_DELAY_MASK	(0x3F << 6)
65 #define SPI_CMD2_RX_CLK_TAP_DELAY	(1 << 0)
66 #define SPI_CMD2_RX_CLK_TAP_DELAY_MASK	(0x3F << 0)
67 
68 /* TRANSFER STATUS */
69 #define SPI_XFER_STS_RDY		(1 << 30)
70 
71 /* FIFO STATUS */
72 #define SPI_FIFO_STS_CS_INACTIVE	(1 << 31)
73 #define SPI_FIFO_STS_FRAME_END		(1 << 30)
74 #define SPI_FIFO_STS_RX_FIFO_FLUSH	(1 << 15)
75 #define SPI_FIFO_STS_TX_FIFO_FLUSH	(1 << 14)
76 #define SPI_FIFO_STS_ERR		(1 << 8)
77 #define SPI_FIFO_STS_TX_FIFO_OVF	(1 << 7)
78 #define SPI_FIFO_STS_TX_FIFO_UNR	(1 << 6)
79 #define SPI_FIFO_STS_RX_FIFO_OVF	(1 << 5)
80 #define SPI_FIFO_STS_RX_FIFO_UNR	(1 << 4)
81 #define SPI_FIFO_STS_TX_FIFO_FULL	(1 << 3)
82 #define SPI_FIFO_STS_TX_FIFO_EMPTY	(1 << 2)
83 #define SPI_FIFO_STS_RX_FIFO_FULL	(1 << 1)
84 #define SPI_FIFO_STS_RX_FIFO_EMPTY	(1 << 0)
85 
86 #define SPI_TIMEOUT		1000
87 #define TEGRA_SPI_MAX_FREQ	52000000
88 
89 struct spi_regs {
90 	u32 command1;	/* 000:SPI_COMMAND1 register */
91 	u32 command2;	/* 004:SPI_COMMAND2 register */
92 	u32 timing1;	/* 008:SPI_CS_TIM1 register */
93 	u32 timing2;	/* 00c:SPI_CS_TIM2 register */
94 	u32 xfer_status;/* 010:SPI_TRANS_STATUS register */
95 	u32 fifo_status;/* 014:SPI_FIFO_STATUS register */
96 	u32 tx_data;	/* 018:SPI_TX_DATA register */
97 	u32 rx_data;	/* 01c:SPI_RX_DATA register */
98 	u32 dma_ctl;	/* 020:SPI_DMA_CTL register */
99 	u32 dma_blk;	/* 024:SPI_DMA_BLK register */
100 	u32 rsvd[56];	/* 028-107 reserved */
101 	u32 tx_fifo;	/* 108:SPI_FIFO1 register */
102 	u32 rsvd2[31];	/* 10c-187 reserved */
103 	u32 rx_fifo;	/* 188:SPI_FIFO2 register */
104 	u32 spare_ctl;	/* 18c:SPI_SPARE_CTRL register */
105 };
106 
107 struct tegra_spi_ctrl {
108 	struct spi_regs *regs;
109 	unsigned int freq;
110 	unsigned int mode;
111 	int periph_id;
112 	int valid;
113 };
114 
115 struct tegra_spi_slave {
116 	struct spi_slave slave;
117 	struct tegra_spi_ctrl *ctrl;
118 };
119 
120 static struct tegra_spi_ctrl spi_ctrls[CONFIG_TEGRA114_SPI_CTRLS];
121 
122 static inline struct tegra_spi_slave *to_tegra_spi(struct spi_slave *slave)
123 {
124 	return container_of(slave, struct tegra_spi_slave, slave);
125 }
126 
127 int tegra114_spi_cs_is_valid(unsigned int bus, unsigned int cs)
128 {
129 	if (bus >= CONFIG_TEGRA114_SPI_CTRLS || cs > 3 || !spi_ctrls[bus].valid)
130 		return 0;
131 	else
132 		return 1;
133 }
134 
135 struct spi_slave *tegra114_spi_setup_slave(unsigned int bus, unsigned int cs,
136 		unsigned int max_hz, unsigned int mode)
137 {
138 	struct tegra_spi_slave *spi;
139 
140 	debug("%s: bus: %u, cs: %u, max_hz: %u, mode: %u\n", __func__,
141 		bus, cs, max_hz, mode);
142 
143 	if (!spi_cs_is_valid(bus, cs)) {
144 		printf("SPI error: unsupported bus %d / chip select %d\n",
145 		       bus, cs);
146 		return NULL;
147 	}
148 
149 	if (max_hz > TEGRA_SPI_MAX_FREQ) {
150 		printf("SPI error: unsupported frequency %d Hz. Max frequency"
151 			" is %d Hz\n", max_hz, TEGRA_SPI_MAX_FREQ);
152 		return NULL;
153 	}
154 
155 	spi = spi_alloc_slave(struct tegra_spi_slave, bus, cs);
156 	if (!spi) {
157 		printf("SPI error: malloc of SPI structure failed\n");
158 		return NULL;
159 	}
160 	spi->ctrl = &spi_ctrls[bus];
161 	if (!spi->ctrl) {
162 		printf("SPI error: could not find controller for bus %d\n",
163 		       bus);
164 		return NULL;
165 	}
166 
167 	if (max_hz < spi->ctrl->freq) {
168 		debug("%s: limiting frequency from %u to %u\n", __func__,
169 		      spi->ctrl->freq, max_hz);
170 		spi->ctrl->freq = max_hz;
171 	}
172 	spi->ctrl->mode = mode;
173 
174 	return &spi->slave;
175 }
176 
177 void tegra114_spi_free_slave(struct spi_slave *slave)
178 {
179 	struct tegra_spi_slave *spi = to_tegra_spi(slave);
180 
181 	free(spi);
182 }
183 
184 int tegra114_spi_init(int *node_list, int count)
185 {
186 	struct tegra_spi_ctrl *ctrl;
187 	int i;
188 	int node = 0;
189 	int found = 0;
190 
191 	for (i = 0; i < count; i++) {
192 		ctrl = &spi_ctrls[i];
193 		node = node_list[i];
194 
195 		ctrl->regs = (struct spi_regs *)fdtdec_get_addr(gd->fdt_blob,
196 								 node, "reg");
197 		if ((fdt_addr_t)ctrl->regs == FDT_ADDR_T_NONE) {
198 			debug("%s: no spi register found\n", __func__);
199 			continue;
200 		}
201 		ctrl->freq = fdtdec_get_int(gd->fdt_blob, node,
202 					    "spi-max-frequency", 0);
203 		if (!ctrl->freq) {
204 			debug("%s: no spi max frequency found\n", __func__);
205 			continue;
206 		}
207 
208 		ctrl->periph_id = clock_decode_periph_id(gd->fdt_blob, node);
209 		if (ctrl->periph_id == PERIPH_ID_NONE) {
210 			debug("%s: could not decode periph id\n", __func__);
211 			continue;
212 		}
213 		ctrl->valid = 1;
214 		found = 1;
215 
216 		debug("%s: found controller at %p, freq = %u, periph_id = %d\n",
217 		      __func__, ctrl->regs, ctrl->freq, ctrl->periph_id);
218 	}
219 
220 	return !found;
221 }
222 
223 int tegra114_spi_claim_bus(struct spi_slave *slave)
224 {
225 	struct tegra_spi_slave *spi = to_tegra_spi(slave);
226 	struct spi_regs *regs = spi->ctrl->regs;
227 
228 	/* Change SPI clock to correct frequency, PLLP_OUT0 source */
229 	clock_start_periph_pll(spi->ctrl->periph_id, CLOCK_ID_PERIPH,
230 			       spi->ctrl->freq);
231 
232 	/* Clear stale status here */
233 	setbits_le32(&regs->fifo_status,
234 		     SPI_FIFO_STS_ERR		|
235 		     SPI_FIFO_STS_TX_FIFO_OVF	|
236 		     SPI_FIFO_STS_TX_FIFO_UNR	|
237 		     SPI_FIFO_STS_RX_FIFO_OVF	|
238 		     SPI_FIFO_STS_RX_FIFO_UNR	|
239 		     SPI_FIFO_STS_TX_FIFO_FULL	|
240 		     SPI_FIFO_STS_TX_FIFO_EMPTY	|
241 		     SPI_FIFO_STS_RX_FIFO_FULL	|
242 		     SPI_FIFO_STS_RX_FIFO_EMPTY);
243 	debug("%s: FIFO STATUS = %08x\n", __func__, readl(&regs->fifo_status));
244 
245 	/* Set master mode and sw controlled CS */
246 	setbits_le32(&regs->command1, SPI_CMD1_M_S | SPI_CMD1_CS_SW_HW |
247 		     (spi->ctrl->mode << SPI_CMD1_MODE_SHIFT));
248 	debug("%s: COMMAND1 = %08x\n", __func__, readl(&regs->command1));
249 
250 	return 0;
251 }
252 
253 void tegra114_spi_cs_activate(struct spi_slave *slave)
254 {
255 	struct tegra_spi_slave *spi = to_tegra_spi(slave);
256 	struct spi_regs *regs = spi->ctrl->regs;
257 
258 	clrbits_le32(&regs->command1, SPI_CMD1_CS_SW_VAL);
259 }
260 
261 void tegra114_spi_cs_deactivate(struct spi_slave *slave)
262 {
263 	struct tegra_spi_slave *spi = to_tegra_spi(slave);
264 	struct spi_regs *regs = spi->ctrl->regs;
265 
266 	setbits_le32(&regs->command1, SPI_CMD1_CS_SW_VAL);
267 }
268 
269 int tegra114_spi_xfer(struct spi_slave *slave, unsigned int bitlen,
270 		const void *data_out, void *data_in, unsigned long flags)
271 {
272 	struct tegra_spi_slave *spi = to_tegra_spi(slave);
273 	struct spi_regs *regs = spi->ctrl->regs;
274 	u32 reg, tmpdout, tmpdin = 0;
275 	const u8 *dout = data_out;
276 	u8 *din = data_in;
277 	int num_bytes;
278 	int ret;
279 
280 	debug("%s: slave %u:%u dout %p din %p bitlen %u\n",
281 	      __func__, slave->bus, slave->cs, dout, din, bitlen);
282 	if (bitlen % 8)
283 		return -1;
284 	num_bytes = bitlen / 8;
285 
286 	ret = 0;
287 
288 	/* clear all error status bits */
289 	reg = readl(&regs->fifo_status);
290 	writel(reg, &regs->fifo_status);
291 
292 	/* clear ready bit */
293 	setbits_le32(&regs->xfer_status, SPI_XFER_STS_RDY);
294 
295 	clrsetbits_le32(&regs->command1, SPI_CMD1_CS_SW_VAL,
296 			SPI_CMD1_RX_EN | SPI_CMD1_TX_EN | SPI_CMD1_LSBY_FE |
297 			(slave->cs << SPI_CMD1_CS_SEL_SHIFT));
298 
299 	/* set xfer size to 1 block (32 bits) */
300 	writel(0, &regs->dma_blk);
301 
302 	if (flags & SPI_XFER_BEGIN)
303 		spi_cs_activate(slave);
304 
305 	/* handle data in 32-bit chunks */
306 	while (num_bytes > 0) {
307 		int bytes;
308 		int is_read = 0;
309 		int tm, i;
310 
311 		tmpdout = 0;
312 		bytes = (num_bytes > 4) ?  4 : num_bytes;
313 
314 		if (dout != NULL) {
315 			for (i = 0; i < bytes; ++i)
316 				tmpdout = (tmpdout << 8) | dout[i];
317 			dout += bytes;
318 		}
319 
320 		num_bytes -= bytes;
321 
322 		clrsetbits_le32(&regs->command1,
323 				SPI_CMD1_BIT_LEN_MASK << SPI_CMD1_BIT_LEN_SHIFT,
324 				(bytes * 8 - 1) << SPI_CMD1_BIT_LEN_SHIFT);
325 		writel(tmpdout, &regs->tx_fifo);
326 		setbits_le32(&regs->command1, SPI_CMD1_GO);
327 
328 		/*
329 		 * Wait for SPI transmit FIFO to empty, or to time out.
330 		 * The RX FIFO status will be read and cleared last
331 		 */
332 		for (tm = 0, is_read = 0; tm < SPI_TIMEOUT; ++tm) {
333 			u32 fifo_status, xfer_status;
334 
335 			fifo_status = readl(&regs->fifo_status);
336 
337 			/* We can exit when we've had both RX and TX activity */
338 			if (is_read &&
339 			    (fifo_status & SPI_FIFO_STS_TX_FIFO_EMPTY))
340 				break;
341 
342 			xfer_status = readl(&regs->xfer_status);
343 			if (!(xfer_status & SPI_XFER_STS_RDY))
344 				continue;
345 
346 			if (fifo_status & SPI_FIFO_STS_ERR) {
347 				debug("%s: got a fifo error: ", __func__);
348 				if (fifo_status & SPI_FIFO_STS_TX_FIFO_OVF)
349 					debug("tx FIFO overflow ");
350 				if (fifo_status & SPI_FIFO_STS_TX_FIFO_UNR)
351 					debug("tx FIFO underrun ");
352 				if (fifo_status & SPI_FIFO_STS_RX_FIFO_OVF)
353 					debug("rx FIFO overflow ");
354 				if (fifo_status & SPI_FIFO_STS_RX_FIFO_UNR)
355 					debug("rx FIFO underrun ");
356 				if (fifo_status & SPI_FIFO_STS_TX_FIFO_FULL)
357 					debug("tx FIFO full ");
358 				if (fifo_status & SPI_FIFO_STS_TX_FIFO_EMPTY)
359 					debug("tx FIFO empty ");
360 				if (fifo_status & SPI_FIFO_STS_RX_FIFO_FULL)
361 					debug("rx FIFO full ");
362 				if (fifo_status & SPI_FIFO_STS_RX_FIFO_EMPTY)
363 					debug("rx FIFO empty ");
364 				debug("\n");
365 				break;
366 			}
367 
368 			if (!(fifo_status & SPI_FIFO_STS_RX_FIFO_EMPTY)) {
369 				tmpdin = readl(&regs->rx_fifo);
370 				is_read = 1;
371 
372 				/* swap bytes read in */
373 				if (din != NULL) {
374 					for (i = bytes - 1; i >= 0; --i) {
375 						din[i] = tmpdin & 0xff;
376 						tmpdin >>= 8;
377 					}
378 					din += bytes;
379 				}
380 			}
381 		}
382 
383 		if (tm >= SPI_TIMEOUT)
384 			ret = tm;
385 
386 		/* clear ACK RDY, etc. bits */
387 		writel(readl(&regs->fifo_status), &regs->fifo_status);
388 	}
389 
390 	if (flags & SPI_XFER_END)
391 		spi_cs_deactivate(slave);
392 
393 	debug("%s: transfer ended. Value=%08x, fifo_status = %08x\n",
394 	      __func__, tmpdin, readl(&regs->fifo_status));
395 
396 	if (ret) {
397 		printf("%s: timeout during SPI transfer, tm %d\n",
398 		       __func__, ret);
399 		return -1;
400 	}
401 
402 	return 0;
403 }
404