xref: /openbmc/u-boot/drivers/spi/tegra114_spi.c (revision beb4d65e)
1 /*
2  * NVIDIA Tegra SPI controller (T114 and later)
3  *
4  * Copyright (c) 2010-2013 NVIDIA Corporation
5  *
6  * SPDX-License-Identifier:	GPL-2.0
7  */
8 
9 #include <common.h>
10 #include <dm.h>
11 #include <asm/io.h>
12 #include <asm/arch/clock.h>
13 #include <asm/arch-tegra/clk_rst.h>
14 #include <spi.h>
15 #include <fdtdec.h>
16 #include "tegra_spi.h"
17 
18 DECLARE_GLOBAL_DATA_PTR;
19 
20 /* COMMAND1 */
21 #define SPI_CMD1_GO			BIT(31)
22 #define SPI_CMD1_M_S			BIT(30)
23 #define SPI_CMD1_MODE_MASK		GENMASK(1, 0)
24 #define SPI_CMD1_MODE_SHIFT		28
25 #define SPI_CMD1_CS_SEL_MASK		GENMASK(1, 0)
26 #define SPI_CMD1_CS_SEL_SHIFT		26
27 #define SPI_CMD1_CS_POL_INACTIVE3	BIT(25)
28 #define SPI_CMD1_CS_POL_INACTIVE2	BIT(24)
29 #define SPI_CMD1_CS_POL_INACTIVE1	BIT(23)
30 #define SPI_CMD1_CS_POL_INACTIVE0	BIT(22)
31 #define SPI_CMD1_CS_SW_HW		BIT(21)
32 #define SPI_CMD1_CS_SW_VAL		BIT(20)
33 #define SPI_CMD1_IDLE_SDA_MASK		GENMASK(1, 0)
34 #define SPI_CMD1_IDLE_SDA_SHIFT		18
35 #define SPI_CMD1_BIDIR			BIT(17)
36 #define SPI_CMD1_LSBI_FE		BIT(16)
37 #define SPI_CMD1_LSBY_FE		BIT(15)
38 #define SPI_CMD1_BOTH_EN_BIT		BIT(14)
39 #define SPI_CMD1_BOTH_EN_BYTE		BIT(13)
40 #define SPI_CMD1_RX_EN			BIT(12)
41 #define SPI_CMD1_TX_EN			BIT(11)
42 #define SPI_CMD1_PACKED			BIT(5)
43 #define SPI_CMD1_BIT_LEN_MASK		GENMASK(4, 0)
44 #define SPI_CMD1_BIT_LEN_SHIFT		0
45 
46 /* COMMAND2 */
47 #define SPI_CMD2_TX_CLK_TAP_DELAY	BIT(6)
48 #define SPI_CMD2_TX_CLK_TAP_DELAY_MASK	GENMASK(11, 6)
49 #define SPI_CMD2_RX_CLK_TAP_DELAY	BIT(0)
50 #define SPI_CMD2_RX_CLK_TAP_DELAY_MASK	GENMASK(5, 0)
51 
52 /* TRANSFER STATUS */
53 #define SPI_XFER_STS_RDY		BIT(30)
54 
55 /* FIFO STATUS */
56 #define SPI_FIFO_STS_CS_INACTIVE	BIT(31)
57 #define SPI_FIFO_STS_FRAME_END		BIT(30)
58 #define SPI_FIFO_STS_RX_FIFO_FLUSH	BIT(15)
59 #define SPI_FIFO_STS_TX_FIFO_FLUSH	BIT(14)
60 #define SPI_FIFO_STS_ERR		BIT(8)
61 #define SPI_FIFO_STS_TX_FIFO_OVF	BIT(7)
62 #define SPI_FIFO_STS_TX_FIFO_UNR	BIT(6)
63 #define SPI_FIFO_STS_RX_FIFO_OVF	BIT(5)
64 #define SPI_FIFO_STS_RX_FIFO_UNR	BIT(4)
65 #define SPI_FIFO_STS_TX_FIFO_FULL	BIT(3)
66 #define SPI_FIFO_STS_TX_FIFO_EMPTY	BIT(2)
67 #define SPI_FIFO_STS_RX_FIFO_FULL	BIT(1)
68 #define SPI_FIFO_STS_RX_FIFO_EMPTY	BIT(0)
69 
70 #define SPI_TIMEOUT		1000
71 #define TEGRA_SPI_MAX_FREQ	52000000
72 
73 struct spi_regs {
74 	u32 command1;	/* 000:SPI_COMMAND1 register */
75 	u32 command2;	/* 004:SPI_COMMAND2 register */
76 	u32 timing1;	/* 008:SPI_CS_TIM1 register */
77 	u32 timing2;	/* 00c:SPI_CS_TIM2 register */
78 	u32 xfer_status;/* 010:SPI_TRANS_STATUS register */
79 	u32 fifo_status;/* 014:SPI_FIFO_STATUS register */
80 	u32 tx_data;	/* 018:SPI_TX_DATA register */
81 	u32 rx_data;	/* 01c:SPI_RX_DATA register */
82 	u32 dma_ctl;	/* 020:SPI_DMA_CTL register */
83 	u32 dma_blk;	/* 024:SPI_DMA_BLK register */
84 	u32 rsvd[56];	/* 028-107 reserved */
85 	u32 tx_fifo;	/* 108:SPI_FIFO1 register */
86 	u32 rsvd2[31];	/* 10c-187 reserved */
87 	u32 rx_fifo;	/* 188:SPI_FIFO2 register */
88 	u32 spare_ctl;	/* 18c:SPI_SPARE_CTRL register */
89 };
90 
91 struct tegra114_spi_priv {
92 	struct spi_regs *regs;
93 	unsigned int freq;
94 	unsigned int mode;
95 	int periph_id;
96 	int valid;
97 	int last_transaction_us;
98 };
99 
100 static int tegra114_spi_ofdata_to_platdata(struct udevice *bus)
101 {
102 	struct tegra_spi_platdata *plat = bus->platdata;
103 	const void *blob = gd->fdt_blob;
104 	int node = bus->of_offset;
105 
106 	plat->base = dev_get_addr(bus);
107 	plat->periph_id = clock_decode_periph_id(blob, node);
108 
109 	if (plat->periph_id == PERIPH_ID_NONE) {
110 		debug("%s: could not decode periph id %d\n", __func__,
111 		      plat->periph_id);
112 		return -FDT_ERR_NOTFOUND;
113 	}
114 
115 	/* Use 500KHz as a suitable default */
116 	plat->frequency = fdtdec_get_int(blob, node, "spi-max-frequency",
117 					500000);
118 	plat->deactivate_delay_us = fdtdec_get_int(blob, node,
119 					"spi-deactivate-delay", 0);
120 	debug("%s: base=%#08lx, periph_id=%d, max-frequency=%d, deactivate_delay=%d\n",
121 	      __func__, plat->base, plat->periph_id, plat->frequency,
122 	      plat->deactivate_delay_us);
123 
124 	return 0;
125 }
126 
127 static int tegra114_spi_probe(struct udevice *bus)
128 {
129 	struct tegra_spi_platdata *plat = dev_get_platdata(bus);
130 	struct tegra114_spi_priv *priv = dev_get_priv(bus);
131 	struct spi_regs *regs;
132 	ulong rate;
133 
134 	priv->regs = (struct spi_regs *)plat->base;
135 	regs = priv->regs;
136 
137 	priv->last_transaction_us = timer_get_us();
138 	priv->freq = plat->frequency;
139 	priv->periph_id = plat->periph_id;
140 
141 	/*
142 	 * Change SPI clock to correct frequency, PLLP_OUT0 source, falling
143 	 * back to the oscillator if that is too fast.
144 	 */
145 	rate = clock_start_periph_pll(priv->periph_id, CLOCK_ID_PERIPH,
146 				      priv->freq);
147 	if (rate > priv->freq + 100000) {
148 		rate = clock_start_periph_pll(priv->periph_id, CLOCK_ID_OSC,
149 					      priv->freq);
150 		if (rate != priv->freq) {
151 			printf("Warning: SPI '%s' requested clock %u, actual clock %lu\n",
152 			       bus->name, priv->freq, rate);
153 		}
154 	}
155 
156 	/* Clear stale status here */
157 	setbits_le32(&regs->fifo_status,
158 		     SPI_FIFO_STS_ERR		|
159 		     SPI_FIFO_STS_TX_FIFO_OVF	|
160 		     SPI_FIFO_STS_TX_FIFO_UNR	|
161 		     SPI_FIFO_STS_RX_FIFO_OVF	|
162 		     SPI_FIFO_STS_RX_FIFO_UNR	|
163 		     SPI_FIFO_STS_TX_FIFO_FULL	|
164 		     SPI_FIFO_STS_TX_FIFO_EMPTY	|
165 		     SPI_FIFO_STS_RX_FIFO_FULL	|
166 		     SPI_FIFO_STS_RX_FIFO_EMPTY);
167 	debug("%s: FIFO STATUS = %08x\n", __func__, readl(&regs->fifo_status));
168 
169 	setbits_le32(&priv->regs->command1, SPI_CMD1_M_S | SPI_CMD1_CS_SW_HW |
170 		     (priv->mode << SPI_CMD1_MODE_SHIFT) | SPI_CMD1_CS_SW_VAL);
171 	debug("%s: COMMAND1 = %08x\n", __func__, readl(&regs->command1));
172 
173 	return 0;
174 }
175 
176 /**
177  * Activate the CS by driving it LOW
178  *
179  * @param slave	Pointer to spi_slave to which controller has to
180  *		communicate with
181  */
182 static void spi_cs_activate(struct udevice *dev)
183 {
184 	struct udevice *bus = dev->parent;
185 	struct tegra_spi_platdata *pdata = dev_get_platdata(bus);
186 	struct tegra114_spi_priv *priv = dev_get_priv(bus);
187 
188 	/* If it's too soon to do another transaction, wait */
189 	if (pdata->deactivate_delay_us &&
190 	    priv->last_transaction_us) {
191 		ulong delay_us;		/* The delay completed so far */
192 		delay_us = timer_get_us() - priv->last_transaction_us;
193 		if (delay_us < pdata->deactivate_delay_us)
194 			udelay(pdata->deactivate_delay_us - delay_us);
195 	}
196 
197 	clrbits_le32(&priv->regs->command1, SPI_CMD1_CS_SW_VAL);
198 }
199 
200 /**
201  * Deactivate the CS by driving it HIGH
202  *
203  * @param slave	Pointer to spi_slave to which controller has to
204  *		communicate with
205  */
206 static void spi_cs_deactivate(struct udevice *dev)
207 {
208 	struct udevice *bus = dev->parent;
209 	struct tegra_spi_platdata *pdata = dev_get_platdata(bus);
210 	struct tegra114_spi_priv *priv = dev_get_priv(bus);
211 
212 	setbits_le32(&priv->regs->command1, SPI_CMD1_CS_SW_VAL);
213 
214 	/* Remember time of this transaction so we can honour the bus delay */
215 	if (pdata->deactivate_delay_us)
216 		priv->last_transaction_us = timer_get_us();
217 
218 	debug("Deactivate CS, bus '%s'\n", bus->name);
219 }
220 
221 static int tegra114_spi_xfer(struct udevice *dev, unsigned int bitlen,
222 			     const void *data_out, void *data_in,
223 			     unsigned long flags)
224 {
225 	struct udevice *bus = dev->parent;
226 	struct tegra114_spi_priv *priv = dev_get_priv(bus);
227 	struct spi_regs *regs = priv->regs;
228 	u32 reg, tmpdout, tmpdin = 0;
229 	const u8 *dout = data_out;
230 	u8 *din = data_in;
231 	int num_bytes;
232 	int ret;
233 
234 	debug("%s: slave %u:%u dout %p din %p bitlen %u\n",
235 	      __func__, bus->seq, spi_chip_select(dev), dout, din, bitlen);
236 	if (bitlen % 8)
237 		return -1;
238 	num_bytes = bitlen / 8;
239 
240 	ret = 0;
241 
242 	if (flags & SPI_XFER_BEGIN)
243 		spi_cs_activate(dev);
244 
245 	/* clear all error status bits */
246 	reg = readl(&regs->fifo_status);
247 	writel(reg, &regs->fifo_status);
248 
249 	clrsetbits_le32(&regs->command1, SPI_CMD1_CS_SW_VAL,
250 			SPI_CMD1_RX_EN | SPI_CMD1_TX_EN | SPI_CMD1_LSBY_FE |
251 			(spi_chip_select(dev) << SPI_CMD1_CS_SEL_SHIFT));
252 
253 	/* set xfer size to 1 block (32 bits) */
254 	writel(0, &regs->dma_blk);
255 
256 	/* handle data in 32-bit chunks */
257 	while (num_bytes > 0) {
258 		int bytes;
259 		int tm, i;
260 
261 		tmpdout = 0;
262 		bytes = (num_bytes > 4) ?  4 : num_bytes;
263 
264 		if (dout != NULL) {
265 			for (i = 0; i < bytes; ++i)
266 				tmpdout = (tmpdout << 8) | dout[i];
267 			dout += bytes;
268 		}
269 
270 		num_bytes -= bytes;
271 
272 		/* clear ready bit */
273 		setbits_le32(&regs->xfer_status, SPI_XFER_STS_RDY);
274 
275 		clrsetbits_le32(&regs->command1,
276 				SPI_CMD1_BIT_LEN_MASK << SPI_CMD1_BIT_LEN_SHIFT,
277 				(bytes * 8 - 1) << SPI_CMD1_BIT_LEN_SHIFT);
278 		writel(tmpdout, &regs->tx_fifo);
279 		setbits_le32(&regs->command1, SPI_CMD1_GO);
280 
281 		/*
282 		 * Wait for SPI transmit FIFO to empty, or to time out.
283 		 * The RX FIFO status will be read and cleared last
284 		 */
285 		for (tm = 0; tm < SPI_TIMEOUT; ++tm) {
286 			u32 fifo_status, xfer_status;
287 
288 			xfer_status = readl(&regs->xfer_status);
289 			if (!(xfer_status & SPI_XFER_STS_RDY))
290 				continue;
291 
292 			fifo_status = readl(&regs->fifo_status);
293 			if (fifo_status & SPI_FIFO_STS_ERR) {
294 				debug("%s: got a fifo error: ", __func__);
295 				if (fifo_status & SPI_FIFO_STS_TX_FIFO_OVF)
296 					debug("tx FIFO overflow ");
297 				if (fifo_status & SPI_FIFO_STS_TX_FIFO_UNR)
298 					debug("tx FIFO underrun ");
299 				if (fifo_status & SPI_FIFO_STS_RX_FIFO_OVF)
300 					debug("rx FIFO overflow ");
301 				if (fifo_status & SPI_FIFO_STS_RX_FIFO_UNR)
302 					debug("rx FIFO underrun ");
303 				if (fifo_status & SPI_FIFO_STS_TX_FIFO_FULL)
304 					debug("tx FIFO full ");
305 				if (fifo_status & SPI_FIFO_STS_TX_FIFO_EMPTY)
306 					debug("tx FIFO empty ");
307 				if (fifo_status & SPI_FIFO_STS_RX_FIFO_FULL)
308 					debug("rx FIFO full ");
309 				if (fifo_status & SPI_FIFO_STS_RX_FIFO_EMPTY)
310 					debug("rx FIFO empty ");
311 				debug("\n");
312 				break;
313 			}
314 
315 			if (!(fifo_status & SPI_FIFO_STS_RX_FIFO_EMPTY)) {
316 				tmpdin = readl(&regs->rx_fifo);
317 
318 				/* swap bytes read in */
319 				if (din != NULL) {
320 					for (i = bytes - 1; i >= 0; --i) {
321 						din[i] = tmpdin & 0xff;
322 						tmpdin >>= 8;
323 					}
324 					din += bytes;
325 				}
326 
327 				/* We can exit when we've had both RX and TX */
328 				break;
329 			}
330 		}
331 
332 		if (tm >= SPI_TIMEOUT)
333 			ret = tm;
334 
335 		/* clear ACK RDY, etc. bits */
336 		writel(readl(&regs->fifo_status), &regs->fifo_status);
337 	}
338 
339 	if (flags & SPI_XFER_END)
340 		spi_cs_deactivate(dev);
341 
342 	debug("%s: transfer ended. Value=%08x, fifo_status = %08x\n",
343 	      __func__, tmpdin, readl(&regs->fifo_status));
344 
345 	if (ret) {
346 		printf("%s: timeout during SPI transfer, tm %d\n",
347 		       __func__, ret);
348 		return -1;
349 	}
350 
351 	return ret;
352 }
353 
354 static int tegra114_spi_set_speed(struct udevice *bus, uint speed)
355 {
356 	struct tegra_spi_platdata *plat = bus->platdata;
357 	struct tegra114_spi_priv *priv = dev_get_priv(bus);
358 
359 	if (speed > plat->frequency)
360 		speed = plat->frequency;
361 	priv->freq = speed;
362 	debug("%s: regs=%p, speed=%d\n", __func__, priv->regs, priv->freq);
363 
364 	return 0;
365 }
366 
367 static int tegra114_spi_set_mode(struct udevice *bus, uint mode)
368 {
369 	struct tegra114_spi_priv *priv = dev_get_priv(bus);
370 
371 	priv->mode = mode;
372 	debug("%s: regs=%p, mode=%d\n", __func__, priv->regs, priv->mode);
373 
374 	return 0;
375 }
376 
377 static const struct dm_spi_ops tegra114_spi_ops = {
378 	.xfer		= tegra114_spi_xfer,
379 	.set_speed	= tegra114_spi_set_speed,
380 	.set_mode	= tegra114_spi_set_mode,
381 	/*
382 	 * cs_info is not needed, since we require all chip selects to be
383 	 * in the device tree explicitly
384 	 */
385 };
386 
387 static const struct udevice_id tegra114_spi_ids[] = {
388 	{ .compatible = "nvidia,tegra114-spi" },
389 	{ }
390 };
391 
392 U_BOOT_DRIVER(tegra114_spi) = {
393 	.name	= "tegra114_spi",
394 	.id	= UCLASS_SPI,
395 	.of_match = tegra114_spi_ids,
396 	.ops	= &tegra114_spi_ops,
397 	.ofdata_to_platdata = tegra114_spi_ofdata_to_platdata,
398 	.platdata_auto_alloc_size = sizeof(struct tegra_spi_platdata),
399 	.priv_auto_alloc_size = sizeof(struct tegra114_spi_priv),
400 	.probe	= tegra114_spi_probe,
401 };
402